Index

a
ABT-414 336, 370
ABV-838, 335
acute myeloid leukemia (AML) 11
ADC bioanalysis
 ADC assays in regulated studies 196–197
 antibody-conjugated payload levels 181
 anti-therapeutic antibodies 181
 assays 193–194
 biodistribution assessment 195–196
 biomeasures and biomarkers 199–200
 calculated conjugated payload determination 187–188
 calicheamicin and microtubule inhibitors 180
 cleavable linker 188–189
 custom anti-payload reagents 181
 cytotoxic payloads 181
 immunogenicity assays 194–195
 immunoprecipitation mass spectrometry 180
 intact protein bioanalysis 184–186
 LC/MS strategies 182–183
 ligand binding assays 190–191, 197–198
 nonregulated unconjugated payload 183–184
 peptide-based analysis 189–190
 pharmacokinetic bioanalysis 186–187
 potential analytes 181–182
 reagents 191–192
 reference standards 192
 regulated anti-therapeutic assays 199
 regulated conjugated payload LC/MS assays 199
 serum total antibody 181
 target interference 194
 total antibody assays 192–193
 unconjugated payload 198–199
 in vivo drug-to-antibody ratio 179–180
 Adcertis® 40, 59, 62, 245–246, 261, 347. see also brentuximab vedotin
 ADC immunogenicity assays 194–195
 ADC inotuzumab ozogamicin (CMC-544) 88
 ADC nonclinical safety assessments
 allometric scaling factor 282
 anticancer pharmaceuticals 268, 271
 carcinogenicity 272
 cytotoxic agents 269
ADC nonclinical safety assessments
(contd.)
developmental and reproductive
toxicology 280
dosing schedules 283
FDA experience 268–269
first-in-human dose
selection 280–282
first-in-human dosing 269
generalized nonclinical development
program 271
genotoxicity 280
ICH S9 Guidelines 270
ICH S6 Guidelines 272
immunohistochemistry-based tissue
cross-reactivity 271
IND application 270
late-stage clinical
development 269
monoclonal antibodies 267
pharmacokinetics/
toxicokinetics 279
pharmacology studies 278–279
phase 1 dose-escalation
studies 268
species selection 272–275
study duration and dose
regimen 275–276
study test article 276–278
ADC pharmacokinetic
bioanalysis 186–187
ADC reference standards 192
ADCs in clinical development
antibody 321, 327
clinical trial phases 321, 327
clinical use of 330
FDA approved 329–330
future of 330
hematological malignancies and
renal cell carcinoma
ABV-838 335
auristatins 330–332
calicheamicins 335
maytansinoids 332–333
milatuzumab-doxorubicin 335
pyrrolobenzodiazepines 334–335
history of 329
linker 327–328
oncology therapies 340
payload 328
phase I clinical trials 321–326
solid malignancies
auristatins 335–338
maytansinoids 338–339
MM-302 339
ADC targets
biparatopic ADCs 51
cardiomyocytes 39
cell surface antigen 39
DNA repair inhibitors 52
dose-limiting toxicities 38
endosome/lysosome system 39
immunomodulatory cancer
drugs 52
indication-dependent selection
(see indication-dependent
ADC target selection)
indication-independent selection
(see indication-independent
ADC target selection)
internalization and lysosomal
localization 36–37
lifastuzumab vedotin 37–38
MMAE 38
mRNA expression profiles 36
myth vs. reality 36
PF-06263507 38
polyspecific ADCs 51
posttranscriptional regulatory
mechanisms 36
protein expression 36
safety studies 51
trastuzumab 38
trastuzumab emtansine 37
tubulin inhibitors 39
tumor-associated antigens 35
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ado-trastuzumab emtansine (T-DM1)</td>
<td>14–15, 19, 207</td>
</tr>
<tr>
<td>see also trastuzumab emtansine (T-DM1)</td>
<td></td>
</tr>
<tr>
<td>pharmacokinetics</td>
<td>259</td>
</tr>
<tr>
<td>adozelesin</td>
<td>10–11</td>
</tr>
<tr>
<td>AETHERA study</td>
<td>392, 400</td>
</tr>
<tr>
<td>AGS-16</td>
<td>292</td>
</tr>
<tr>
<td>AGS-16C3F</td>
<td>338</td>
</tr>
<tr>
<td>Ags67e</td>
<td>331</td>
</tr>
<tr>
<td>ALCANZA trial</td>
<td>398</td>
</tr>
<tr>
<td>AlexaFluor488</td>
<td>96</td>
</tr>
<tr>
<td>amatoxins</td>
<td>478–479</td>
</tr>
<tr>
<td>AMG 172</td>
<td>339</td>
</tr>
<tr>
<td>AMG 595</td>
<td>339</td>
</tr>
<tr>
<td>anaplastic large-cell lymphoma (ALCL) cells</td>
<td>381</td>
</tr>
<tr>
<td>anetumab ravtansine (BAY 94–9343)</td>
<td>339</td>
</tr>
<tr>
<td>anthracyclines</td>
<td>477–478</td>
</tr>
<tr>
<td>antibodies</td>
<td>156, 482</td>
</tr>
<tr>
<td>alternative formats and masked antibodies</td>
<td>488–489</td>
</tr>
<tr>
<td>beyond oncology</td>
<td>489–491</td>
</tr>
<tr>
<td>engineered cysteines</td>
<td>483–484</td>
</tr>
<tr>
<td>enzyme-assisted conjugation</td>
<td>484–487</td>
</tr>
<tr>
<td>non-native amino acids and selenocysteine</td>
<td>487–488</td>
</tr>
<tr>
<td>occupational health and safety aspects</td>
<td>156</td>
</tr>
<tr>
<td>antibody-conjugated drug</td>
<td>254</td>
</tr>
<tr>
<td>antibody-conjugated MMAE (ac-MMAE)</td>
<td>309</td>
</tr>
<tr>
<td>antibody-conjugated payload levels</td>
<td>181</td>
</tr>
<tr>
<td>antibody-dependent cell-mediated cytotoxicity (ADCC)</td>
<td>385</td>
</tr>
<tr>
<td>antibody-dependent cellular cytotoxicity (ADCC)</td>
<td>8, 140–141</td>
</tr>
<tr>
<td>antibody-dependent cellular phagocytosis (ADCP)</td>
<td>141</td>
</tr>
<tr>
<td>antibody-drug conjugate (ADC)</td>
<td></td>
</tr>
<tr>
<td>antibody isotype</td>
<td>7–8</td>
</tr>
<tr>
<td>antitumor activity</td>
<td>24</td>
</tr>
<tr>
<td>biochemical and microbiological testing</td>
<td>74</td>
</tr>
<tr>
<td>brentuximab vedotin</td>
<td>24</td>
</tr>
<tr>
<td>clinical development</td>
<td>287–290</td>
</tr>
<tr>
<td>clinical pharmacology</td>
<td></td>
</tr>
<tr>
<td>considerations</td>
<td>301</td>
</tr>
<tr>
<td>comparability</td>
<td>76</td>
</tr>
<tr>
<td>components and mechanism of action</td>
<td></td>
</tr>
<tr>
<td>conjugation</td>
<td></td>
</tr>
<tr>
<td>ICH Q6B</td>
<td>62</td>
</tr>
<tr>
<td>linker design</td>
<td>65–66</td>
</tr>
<tr>
<td>lysine and cysteine conjugation</td>
<td>63</td>
</tr>
<tr>
<td>novel payloads</td>
<td>64–65</td>
</tr>
<tr>
<td>physical and chemical forces</td>
<td>63</td>
</tr>
<tr>
<td>storage, handling, and quality of reagents</td>
<td>64</td>
</tr>
<tr>
<td>succinimidyl functionality</td>
<td>62</td>
</tr>
<tr>
<td>thiol-based conjugation</td>
<td>62</td>
</tr>
<tr>
<td>unconjugated gemtuzumab</td>
<td>64</td>
</tr>
<tr>
<td>critical quality attributes</td>
<td>60–61</td>
</tr>
<tr>
<td>cysteine residues</td>
<td>17–19</td>
</tr>
<tr>
<td>cytotoxic compounds</td>
<td>10</td>
</tr>
<tr>
<td>design of phase 1 studies</td>
<td>293</td>
</tr>
<tr>
<td>from discovery into early clinical development</td>
<td>292–293</td>
</tr>
<tr>
<td>DNA-targeting payloads</td>
<td>11</td>
</tr>
<tr>
<td>dosing regimen</td>
<td></td>
</tr>
<tr>
<td>optimization</td>
<td>296–297</td>
</tr>
<tr>
<td>dosing strategy</td>
<td></td>
</tr>
<tr>
<td>considerations</td>
<td>294–296</td>
</tr>
<tr>
<td>doxorubicin</td>
<td>5</td>
</tr>
<tr>
<td>drug-drug interaction</td>
<td></td>
</tr>
<tr>
<td>assessments</td>
<td>302–303</td>
</tr>
<tr>
<td>efficacious dose range</td>
<td>218–220</td>
</tr>
<tr>
<td>extended characterization</td>
<td>74–75</td>
</tr>
<tr>
<td>first-in-human starting dose</td>
<td></td>
</tr>
<tr>
<td>estimation</td>
<td>293–294</td>
</tr>
<tr>
<td>formulation</td>
<td>68–70</td>
</tr>
</tbody>
</table>
antibody-drug conjugate (ADC) (contd.)
functional activity of antibody moiety 8–9
general manufacturing process 60
hydrophilic antibody protein 3
immunogenicity 303
linker chemistries 12–14
lysine residues 13–17
mAb engineering 66–67
monoclonal antibody 59
organ impairment
assessments 301–302
payloads targeting tubulin 10–12
pharmacokinetics 23–24
pharmacometric strategies 307–308
phase 1 study design 297–299
physiologically based pharmacokinetic and quantitative systems pharmacology models 308–311
potent anticancer compounds 4
product development 59
purification 68
QT/QTc assessments 303, 306–307
quality and stability testing
chemical and physicochemical degradation pathways 70–71
dynamic light scattering 73
hydrophobic interaction chromatography 73
imaging capillary isoelectric focusing 73
ion exchange chromatography 73
multi-angle light scattering 72
product development and characterization 70
residual solvents 74
reverse-phase HPLC 74
size exclusion chromatography 71
solution-based chromatographic and electrophoretic methods 71
quality target product profile 62
structural attributes 19–20
supportive strategies 299–301, 304–306
therapeutic index 3–4
therapeutic indications 291–292
vinca alkaloids 5
in vitro properties 20–21
in vivo efficacy 20–23
antibody isotype 7–8
anti-CanAg antibody 7
anti-CD11a-LXR agonist ADC 490–491
anti-CD19 antibody 7
anti-CD30 antibody 43
anti-CD79b-vcMMAE 397
anti-CD22 mAb 138
anti-CD30 monoclonal antibodies 292
anti-CD22-NMS249 478
anti-CD30-val-cit-PABC-MMAE ADC 87
anti-Cripto antigen 292
antidrug antibody (ADA) 279
antifolate receptor alpha (anti-FRα) antibody 7
antigen and antibody-drug conjugate internalization 211–212
antigen binding assays 137–139
antigen-binding potency 74
antigen density 211
anti-HER2 antibody trastuzumab 40
anti-idiotypic mAbs 143
antiproduct antibodies (APA) 143
anti-therapeutic antibodies (ATAs) 248
anti-therapeutic assays 199
ASG-22CE 336
ASG-15ME 336
Asn-297 486
auristatins 17, 47
hematological malignancies and renal cell carcinoma 330–332 solid malignancies 335–338 autologous stem cell transplantation (ASCT) 382
Av integrin 292

bacterial transglutaminase (BTG) 92
β-arylethylamine-drug ligand 91
basiliximab 417
benzodiazepine dimers 474, 476–477
Bexar 446
bicyclononyne (BCN) 93
biodistribution assessment, ADC 195–196 biomarker assays 216
brentuximab vedotin 13, 18, 209
ALCANZA trial 398
anaplastic large-cell lymphoma 382–383
anaplastic lymphoma kinase gene 382–383
antitumor activity 387
CD30 expression level and response to BV 393–394
CD30 with monoclonal antibodies 383–386
clinical context 394–395
ECHELON-1 399
ECHELON-2 397
efficacy 391–393
FDA approval 382
Hodgkin’s lymphoma 382
Karpas 299 387
localized ALCL xenograft model 387
mechanism of action 386–387
mechanisms of resistance 395–397
ongoing clinical trials 397–398
pharmacokinetics 261

rituximab 381
safety/tolerability 388–391
T-cell prolymphocytic leukemia 398
valine-citrulline linkage 387
bromoacetamidecaproyl-monomethyl auristatin F (bac-MMAF) 114
bystander effect 155

CA6 292
calicheamicin 11, 38, 269, 297, 335
camptothecin analog SN38 11
CanAng 292
Cancer Cell Line Encyclopedia (CCLE) 44
cancer stem cells (CSCs) 48
cantuzumab 7
carbonic anhydrase 292
carbonic anhydrase IX (CAIX, G250) 455
carcinoembryonic antigen (CEA) 409, 418–419, 441
caspase-cleaved cytokeratin 18 (ccCK18) 216
Caspase-Glo® 3/7 assay 139
cathepsin B 189
cathepsin B lysosomal protease 86
cathepsin B-sensitive linkers 87
CD19 292
CD20 412–415
CD22 291–292, 416
CD25 416–417
CD30 291, 381
CD33 291, 417
CD56 292
CD70 292
CD74 292
CD138 292
CD79b 50
CD30-targeted mAb therapy 386
CEACAM5 292
cell-based binding assays 138
cell-based cytotoxicity assays 139–140
cell line testing 210–211
antigen and antibody-drug conjugate internalization 211–212
antigen density 211
payload processing and binding 213–214
CellTiter-Fluor™ kit 140
cell viability assays 139
Center of Drug Evaluation and Research (CDER) 268
chemical protective clothing
eye and face protection 168
gloves 167–168
protective clothing 167
chemical stability, ADCs
auristatin payload–linkers 112
bromoacetamidecaproyl-monomethyl auristatin F 114
cBR96-AEVB 112
cBR96 conjugates 112
cleavable linkers 111
dipeptide-linked conjugates 113
gemtuzumab ozogamicin conjugate 113
hydrazine linker conjugates 114
maleimidocaproyl-monomethyl auristatin F 114
maytansinoid payload analogs 113
noncleavable linkers 111
protein chemical liabilities 111
thioether-succinimide linkage 113
Val-Cit peptide 113
chiHEA125-ama ADC 479
chimeric antibodies 6
cleavable linkers 188–189
vs. noncleavable linkers 88–89
and self-immolative groups 86–88
clinical pharmacology and pharmacokinetics,
T-DM1 361–362
clinical pharmacology considerations,
ADCs 301
clivatuzumab 419
coltuximab 7
coltuximab ravtansine 19
complement-dependent cytotoxicity (CDC) 141
conjugated antibody 254
conjugated payload LC/MS assays 199
conjugation
ICH Q6B 62
linker design 65–66
lysine and cysteine conjugation 63
novel payloads 64–65
physical and chemical forces 63
storage, handling, and quality of reagents 64
succinimidyl functionality 62
thiol-based conjugation 62
unconjugated gemtuzumab 64
64Cu 449–451
64Cu-DOTA-trastuzumab 449
custom anti-payload reagents 181
cysteine-linked ADCs 134–135
cysteine-rebrided ADCs 480
cysteine residues, conjugation of payloads to antibodies 17–19
cytochrome P450 3A4 (CYP3A4) 309
cytochrome P450 drug-metabolizing enzymes 302
cytokeratin 18 (CK18) 216
cytotoxic compounds,
structures of 10
cytotoxic drug 253–254
cytotoxic payloads 181
cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) antibodies 230
d
dasatinib 490
diethylene triamine pentaacetic acid (DTPA) 412
Index

diffuse large B-cell lymphoma (DLBCL) 393
dipeptide-linked conjugates 113
disulfide rebridging 479–481
di-thiopyridylmaleimide (DTM) 91
DNA-damaging agents 209
DNA-targeting payloads 11
dose-escalation methods 298
dose-limiting toxicity (DLT) criteria 297
dosimetry, for radioimmunotherapy 445–447
dosing regimen optimization 296–297
dosing strategy considerations 294–296
doxorubicin 5, 269
doxorubicin propyloxazoline (DPO) cytotoxins 90
drug-drug interaction assessments 302–303
drug-induced pancreatitis 391
drug loading distribution 133–134
cysteine-linked ADCs 134–135
lysine-linked ADCs 134
drug-related substances 137
drug-to-antibody ratio (DAR) 45, 67, 132–133, 184–186
duocarmycin 11, 87

glucosyltransferases and glycan engineering 486–487
microbial transglutaminase 484–485
enzyme-cleavable linkers 189
enzyme-linked immunosorbent assay (ELISA) 97, 254
epidermal growth factor receptor (EGFR) 445
ethylvinyl acetate (EVA) 124
European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (EORTC QLQ-C30) 368

f

Fc-dependent effector functions 140–142
FDA approved ADCs 329–330
first-in-human (FIH) dose selection 217, 280–282
first-in-human starting dose estimation 293–294
5T4 292
5T4-calicheamicin ADC 38
Fleximer technology 90
Fleximer™ polymeric linkers 481–482
formulation and stability, ADCs ado-trastuzumab emtansine 122
aggregation mechanism 115
arginine-containing solutions 118
brentuximab vedotin 122
chemical stability 111–114
commercially available ADCs 115–116
conjugation approach 117
cytotoxic agents 120
design process 105
development 105
diluent and dilution factor 122
drug load fractions 118–119
formulation and stability, ADCs
(contd.)
formation of interchain cross-links 120
health care professionals 123
ionic strength 117
logistical considerations 123–125
lyophilized products 121
melting temperature 118–119
monoclonal antibody 115
N-acetylated amino acids 120–121
physical and chemical degradation pathways 105
physical stability 106–111
self-association 115
solubility 115
target doses 121–122
thermal stability 117
trastuzumab 120
formylglycine-generating enzyme (FGE) 91, 485–486
40-kDa type II membrane-associated glycoprotein 383
FRα-positive Ovcar-3 cell line 22
Functional Assessment of Cancer Therapy–Breast (FACT-B) 367

G

68Ga 448–449
gadolinium-enhanced dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) 435
GATSBY 372–373
gemtuzumab ozogamicin (GO) 113, 209, 385
generic tAb assays 193
genotoxicity 280
glembatumumab vedotin 337
glucosyltransferases and other glycan engineering 486–487
GlycoConnect 93

GPNMB 292
granulocyte colony-stimulating factor (GCSF) 390
GSK2857916 331

h
hematological malignancies and renal cell carcinoma
ABV-838 335
auristatins 330–332
calicheamicins 335
maytansinoids 332–333
milatuzumab-doxorubicin 335
pyrrolobenzodiazepines 334–335
hematologic malignancies 412–415
Herceptin® 348
high-density polyethylene (HDPE) 125
highest nonseverely toxic dose (HNSTD) 293
Hsp90 inhibitor 452
human antmouse antibodies (HAMA) 415
human equivalent dose (HED) 293
human(ized) IgG1 antibody 15
hydrazone-linked ADC milatuzumab-doxorubicin 87
hydrazone linker conjugates 114
HyHEL-10 (H10) antibody 107

i

124I 454–456
125I-and 131I-labeled anti-A33 antibody 455
ICH S7A 278
ICH S9 and ICH S6(R1) Guidelines 272
ICH S7B 278
IgG1 scaffolds 107
IgG1 scaffolds 107
immunogenicity, ADCs 303
immunogenicity assays 142–144
immunohistochemistry-based tissue cross-reactivity (TCR) study 271
Index

\[\text{In-bevacizumab} \] 447
\[\text{IncuCyte ZOOM} \] 140
indication-dependent ADC target selection
auristatins 47
brentuximab vedotin 43
cancer stem cells 48
CD30 43
clinical development 40–43
DNA-targeting agents 46
drug-to-antibody ratio 45
genetic profiling studies 44
hematological malignancies 48
hematological targets 47
HER2 overexpression 40
maytansinoids 47
microtubule inhibitors 46
off-target effects 47
quantitative proteomic approaches 44
target expression patterns 44–45
target expression profiling 46
trastuzumab emtansine 40
indication-independent ADC target selection 48
CD74 49–50
cell surface localization 49
lymphocyte antigen 6 complex locus E 50
milatuzumab-Dox 50
phenotypic screening 49
polatuzumab vedotin 50
indolino-benzodiazepine (IGN) dimers 476
indusatumab vedotin (MLN0264) 336
industrial hygiene
monitoring 169–170
air monitoring 170
surface monitoring 170–171
\[\text{In-igovomab} \] 441
inotuzumab ozogamicin 209
\[\text{In satumomab pendetide} \] 443, 458
intact protein bioanalysis 184–186
International Conference of Harmonisation (ICH) Guidelines 268
International Consortium for Innovation and Quality in Pharmaceutical Development 257
Investigational New Drug (IND) applications
antibody-drug conjugate efficacious dose range 218–220
anticipated human efficacious dose 217
first-in-human dose selection 217
pharmacological activity 216
safety assessments 217
\[\text{I-PEG-AVP0458} \] 455
irinotecan SN-38 (2 NMEs) 269
\[\text{I-tositumomab} \] 412–413
\[\text{Kadcyla} \] 37, 59, 62. see also trastuzumab emtansine (T-DM1)
Karpas 299 387
KARPAS 299R 396
\[\text{l} \]
lapatinib 346
LC/MS/MS quantitation of unconjugated payload 198–199
leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) 229
leukemias 417
Lewis y 292
lifastuzumab vedotin 37–38
ligand binding assays
non-regulated ADC pharmacokinetic and immunogenicity 190–191
regulated ADC pharmacokinetics and immunogenicity evaluation 197–198
linker and conjugation technology 96–98
analytical methods 96–98
antigen-mediated internalization 85
cleavable linkers and self-immolative groups 86–88
cleavable vs. noncleavable linkers 88–89
drug resistance 94–96
magic bullets 98
next-generation linker technologies 89–91
pharmacokinetics and ADME 93
polyethylene glycol 93–94
site-specific conjugation, homogeneous drug species, and therapeutic window 91–93
solid tumor penetration 96
linker chemistries 12–14
linker technologies 154–156
localized ALCL xenograft model 387
lorvotuzumab mertansine (IMGN901) 338
low-density polyethylene (LDPE) 124
Lym-1 (anti-HLA-DR10 antibody) 415–416
lymphocyte antigen 6 complex locus E (LY6E) 50
lymphomas 415–417
lysine-linked ADCs 134
lysine residues, conjugation of payloads to antibodies
ado-trastuzumab emtansine 14–15
deconvoluted mass spectra 16
human(ized) IgG1 antibody 15
maytansinoid-to-antibody molar ratio 15
N-hydroxysuccinimide esters 13
pharmacokinetic properties 13
mAb engineering 66–67
maleimidocaproyl (MC) linker 86
maleimidocaproyl-monomethyl auristatin F (mc-MMAF) 114
maleimidomethyl cyclohexane-1-carboxylate (MCC) linker 86
malignant Hodgkin Reed–Sternberg cell 381
masked antibodies 488–489
material handling, ADC activities
comprehensive program 161
facility-handling payloads 161
handling of powders 162–163
handling of solutions 162–163
specific chemical risk assessment 160
written procedures 161
maytansine 153
maytansinoids 47
hematological malignancies and renal cell carcinoma
332–333
payloads 95
solid malignancies 338–339
MDX-060 385
medical surveillance program, ADCs 171–172
mesothelin 292
microbial transglutaminase 67, 484–485
microtubule-binding agents 209
microtubule inhibitor monomethyl auristatin E (MMAE) 38
microtubule inhibitors (MTIs) 46, 474, 476
milatuzumab-doxorubicin (hLL1-dox, IMMU-110) 335
mirvetuximab 7
mirvetuximab soravtansine 8, 22
MM-302 (HER2-tPLD) 339
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 44
monoclonal antibodies 4
mono-imine IGN anti-CD33 ADC 476–477
monomethyl auristatin F (MMAF) 138
mononuclear phagocytic system (MPS) 94
murine antibodies 6
murine monoclonal antibody (AC10) 384
mycosis fungoides (MF) 393
myelosuppression 308
Mylotarg® 64, 245, 347
n “naked” antibody 19
NCI-N87 gastric xenograft model 372
Nectin-4 292
neonatal Fc receptor (FcRn) 208
neonatal Fc receptor (FcRn)-dependent recycling 246
neutralizing antibody (NAB) assays 191
next-generation ADC technologies antibodies 482
alternative formats and masked antibodies 488–489
beyond oncology 489–491 engineered cysteines 483–484
enzyme-assisted conjugation 484–487
non-native amino acids and selenocysteine 487–488
emerging ADC technologies and exemplary constructs 474–475
novel cytotoxic payloads and linkers
amatoxins 478–479
anthracyclines 477–478
benzodiazepine dimers 474, 476–477
disulfide rebridging 479–481

Fleximer™ polymeric linkers 481–482
microtubule inhibitors 474, 476
technology innovations 473
90Y-clivatuzumab tetraxetan (90Y-hPAM4) 420
90Y-DOTA-panitumumab 419
90Y-hMN-14-anti-CEA 421
90Y-ibritumomab tiuxetan 414, 420
N-maleimidomethyl cyclohexane-1-carboxylate 347
noncleavable linkers 86
nonclinical pharmacology and mechanistic modeling
ado-trastuzumab emtansine 207
antibody-drug conjugate pharmacology 227–228
antigen-dependent and antigen-independent toxicities 210
cell line testing 210–211
antigen and antibody-drug conjugate internalization 211–212
antigen density 211
payload processing and binding 213–214
cleavable linkers 209
considerations for nonclinical testing 229–230
DNA-damaging agents 209
dose limitations 210
enhanced pharmacokinetic modeling 226–227
IND applications
antibody-drug conjugate efficacious dose range 218–220
anticipated human efficacious dose 217
first-in-human dose selection 217
pharmacological activity 216
safety assessments 217
nonclinical pharmacology and mechanistic modeling (contd.)
mechanism of action 207–208
microtubule-binding agents 209
neonatal Fc receptor 208
noncleavable linkers 209
pH-dependent electrostatic binding 208
quantitative systems pharmacology 221
shed antigen and endosomal processing 225–226
subcellular trafficking 225
target-mediated toxicity 228–229
tumor tissue transport considerations 221–225
xenograft models biomarker assays 216
nonhuman primates 214
payload bystander effects 215–216
PDXs 214
non-native amino acids and selenocysteine 487–488
non-regulated ADC pharmacokinetic and immunogenicity assays 193–194
ligand binding assays 190–191
reagents 191–192
reference standards 192
total antibody assays 192–193
nonregulated unconjugated payload bioanalysis 183–184
Norton–Simon hypothesis 296
novel cytotoxic payloads and linkers amatoxins 478–479
anthracyclines 477–478
benzodiazepine dimers 474, 476–477
disulfide rebridging 479–481
Fleximer™ polymeric linkers 481–482
microtubule inhibitors 474, 476
N-succinimido 4-[(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker 86

occupational exposure limit (OEL) 157
occupational health and safety aspects, ADCs
air changes and airflow 164
air monitoring 170
antibodies 156
binding efficiency 159
cell surface targets 153
changing areas 164–165
cleaning 167
components of typical ADC molecule 152
conjugation 166
designated areas 165
eye and face protection 168
facility-handling payloads 161
free payload in conjugation formulation 160
gloves 167–168
handling of powders 162–163
handling of solutions 162–163
HVAC and air pressure relationships 164
linker technologies 154–156
local effects in lung 160
lyophilization 166–167
medical surveillance program 171–172
occupational hazard assessment 157–158
partial conjugates 156
payloads 153–154
payload synthesis 165–166
potent compound awareness training 169
protective clothing 167
recirculation and filtration of room air 164
respiratory protection 168
routes of occupational exposure 159
standard operating procedures 169
standard risk assessment methodologies 151
surface monitoring 170–171
unintended targets 160
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) 412
organ impairment assessments, ADCs 301–302
OSHA’s Hazard Communication Standard 168
Oxford Genome Anatomy Project (OGAP) 50

p
pancanceroma antigen 443–444
partial conjugates 156
patient-derived xenograft (PDX) models 21, 209
payload bystander effects 215–216
payload processing and binding 213–214
pentumomab 419
peptide-based analysis 189–190
peripheral neuropathy 390
permeability glycoprotein (PgP) 95
personal protective equipment
 chemical protective clothing 167–168
 respiratory protection 168
pertuzumab 346, 445
PF-06263507 38
P-glycoprotein 213
pharmacokinetics 23–24
 acute myeloid leukemia 245
 ADC biodistribution 248–249
 ADC clearance 249–250
 ado-trastuzumab emtansine 259
antibody component 246
bioanalytical methods 254–255
brentuximab vedotin 261
CD33-targeted antibody 245
characteristics to small molecule and mAb 246–247
cytotoxic drug 253–254
design optimization 257–258
exposure–response relationship 246
immunogenicity 248
linker stability 250–251
maytansinoid derivative 246
mean parameters 259–260
pharmacokinetic/pharmacodynamic models 256–257
pinocytosis 247
receptor-mediated endocytosis 247
site of conjugation and drug load 252–253
toxicokinetics 279
 in vitro assays 255–256
 in vivo studies 256
pharmacology studies 278–279
pharmacometric strategies, ADCs 307–308
phenotypic screening 49
physical stability, ADCs
 amine-coupled ADCs 107
 anti-6xHis antibody 107
 biotin load 107
 CH2 domain 109
coupling of payload-linkers 106
 DAR 8 fragmentation 110
drug DM1 108
formation of aggregates 108–109
 IgG1 scaffolds 107
ionic strength buffer 108, 110
 partially buried lysines 106
steric hindrance 106
 structural perturbation 110
surface properties 106
physical stability, ADCs (contd.)
time-and DAR-dependent fragment formation 110–111
trastuzumab 108
physiologically based pharmacokinetic and quantitative systems pharmacology models 308–311
physiologically based pharmacokinetic (PBPK) model 301
PI3K/AKT signaling pathway 370
PNU159682 229
copolycarbonate 125
polyethylene glycol (PEG) linkers 93–94
spacers 66
poly-1-hydroxymethylethylene hydroxymethyl formal (PHF) 90
polytetrafluoroethylene (PTFE) 125
polytherics 481
positional isomers 136
positron emission tomography (PET) 64
68Ga 448–449
124I 454–456
89Zr 451–454
potent anticancer compounds 4
potent compound awareness training 169
potent tumor cell-killing mechanism 6
Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals 270
Probody™ technology 489
prostate-specific membrane antigen (PSMA) 441–443
PSMA 292
pyridazinedione (PD) linker 96
pyrrolobenzodiazepine (PBD) dimers 11, 269, 474, 476
pyrrolobenzodiazepines (PBDs) 64, 334–335
q
QC assay development
ADC concentration 136
antigen binding assays 137–139
assays designed for ADCs 131–132
cell-based cytotoxicity assays 139–140
cysteine-linked ADCs 134–135
drug-related substances 137
drug-to-antibody ratio 132–133
Fc-dependent effector functions 140–142
immunogenicity assays 142–144
impurity profile analysis 144
lysine-linked ADCs 134
monoclonal antibody 131
positional isomers 136
quality and stability testing, ADCs
chemical and physicochemical degradation pathways 70–71
dynamic light scattering 73
hydrophobic interaction chromatography 73
imaging capillary isoelectric focusing 73
ion exchange chromatography 73
multi-angle light scattering 72
product development and characterization 70
residual solvents 74
reverse-phase HPLC 74
size exclusion chromatography 71
solution-based chromatographic and electrophoretic methods 71
quality target product profile (QTPP) 62
quantitative systems pharmacology (QSP) models 221
radioactive thymidine/5-bromo-2’-deoxyuridine (BrdU) 139
radioimmunotherapy (RIT)
 administration 422
 bevacizumab 423
 chemistry 411–412
 chemotherapy 420–421
cyclosporine A 422
EBRT and chemotheraphy 421–422
external beam radiation treatment 421
hematologic malignancies 412–415
 history of 409–410
 leukemias 417
 lymphomas 415–417
radioisotopes 410–411
solid tumors 417–418
 carcinoembryonic antigen 418–419
 clivatuzumab 419
 90Y-DOTA-panitumumab 419
 pemtumomab 419
 trastuzumab 419
 211At-labeled trastuzumab 419–420
radioisotopes 410–411
radiolabeled antibody-based imaging, oncology
 antibodies as imaging agents
 cold antibody 438
 engineered antibody formats 436
 high tissue signal 436
 111In-labelled hCTM01 439
 radiolabeled tracers 437
 radionuclides 436
 shorter-lived radionuclides 437
 signal-to-background ratio 435
stable labeling method 435
 applications 434–435
clinical benefit 462
commercialization considerations 456–460
PET
 64Cu 449–451
 68Ga 448–449
 124I 454–456
 89Zr 451–454
scintigraphy and SPECT advantages 439
antibody imaging agents 440
CEA 441
dosimetry for radioimmunotherapy 445–447
early assessment of response 447
EGFR 445
HER2 444–445
 111In-based imaging 440
 pancarcinoma antigen 443–444
 PSMA 441–443
 TAG-72 443
 99mTc-based imaging agents 440
 technetium 439
radretumab 455
REDECTANE® 455
regulated ADC pharmacokinetics and immunogenicity evaluation assays 196–197
biomeasures and biomarkers 199–200
 ligand binding assays 197–198
regulated anti-therapeutic assays 199
regulated conjugated payload LC/MS assays 199
regulated LC/MS/MS quantitation of unconjugated payload 198–199
resazurin 140
rituximab 291, 381
S
SAR3419 153, 332, 333
scintigraphy and SPECT, ADCs
 advantages 439
 antibody imaging agents 440
CEA 441
dosimetry for
 radioimmunotherapy 445–447
eyear assessment of
 response 447
EGFR 445
HER2 444–445
 111In-based imaging 440
 pancarcinoma antigen 443–444
PSMA 441–443
TAG-72 443
99mTc-based imaging agents 440
technetium 439
seco-DUBA 87
Sezary syndrome 393
SGN-75 332
SGN-CD19A 331–332
SGN-CD33A 334–335
SGN-CD70A 334
SGN-LIV1A 337
shed antigen and endosomal
 processing 225–226
Simcyp Population-Based
 Simulator 309
single-agent vinblastine 394
SJG-136 10–11
SLC44A4 292
small immunoprotein (SIP) 488
SMARTag 91
SN-38 payload-linked ADCs 90
solid malignancies
 auristatins 335–338
 maytansinoids 338–339
 MM-302 339
 “stand-alone” bifunctional
 reagents 13
subcellular trafficking 225
succinimidyl trans-4-(maleimidylmethyl)cyclohexane-1-carboxylate (SMCC) 347
SYD-985 87
SynAffix 486

t
tangential flow filtration (TFF) 68
target-mediated toxicity,
 ADCs 228–229
99mTc-murine anti-melanoma
 fragments 441
99mTc nofetumomab merpentan 443
99mTc-votumumab 441
TENB2 292
The Cancer Genome Atlas
 (TCGA) 44
THIOMAB-MUC16-MMAE 92
THIOMAB® drugconjugated
 antibodies 226
THIOMABs 483
THIOMAB® technology 252
THIOMAB-
 trastuzumab-DM1 ADC 92
thio-trastuzumab-MC-VC-MMAE
 THIOMABs 252
TH3RESA trial 367–368
total antibody (tAb) 192–193, 254
traceless linkers 13
trastuzumab 419
trastuzumab-Dolaflexin ADC 90
traztuzumab emtansine
 (T-DM1) 37, 338
antitumor efficacy 348, 350
clinical pharmacology and
 pharmacokinetics 361–362
conjugated antibody 351
cyotoxic agent 346
disulfide-linked conjugate 349
disulfide linkers 348
dose-limiting toxicities 357
dosing schedule 359
GATSBY 372–373
HER2 345
HER2-directed therapy 372
HER2 overexpression 371
HER2-positive breast tumor model 348
HER2-positive SK-BR-3 and BT-474 cells 351
HER2 protein expression 373
humanized monoclonal antibody 346
MARIANNE 371
maytansine 347, 357
nonclinical toxicity 352–356
pharmacokinetic analyses 351
phase I adverse events 357–358
phase I efficacy 358–359
phase III trials 362–363
biomarkers 369–371
EMILIA trial 363–367
TH3RESA trial 367–368
treatment exposure 369
phase II trials 359–361
PIK3CA mutation status 374
PI3K signaling 352
p95HER2 352
preclinical safety profiles 352
preclinical studies 372
structure of 347
thioether-linked conjugate 349
thrombocytopenia 374
trastuzumab-SPDP-DM1 251
Trial Outcome Index Physical/Functional/Breast (TOI-PFB) 367
tubulin 10–12
tubulysins 474
tumor-associated glycoprotein (TAG)-72 antigen 443
tumor necrosis factor (TNF) 381
tumor tissue transport considerations 221–225
211At-labeled trastuzumab 419–420
2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cycloododecane (TCMC) 412
unconjugated drug 254
US Food and Drug Administration (FDA) 287
Val-Cit-PABC linker 189
Val-Cit peptide 113
valine-citrulline (val-cit) dipeptide linker 86
vascular endothelial growth factor (VEGF)-A 452
vinca alkaloids 5
xenograft models
biomarker assays 216
nonhuman primates 214
payload bystander effects 215–216
PDXs 214
Y90 411
Y90-ibritumomab tiuxetan 412
90Y-rituximab 451
Zevalin 446
89Zr 451–454
89Zr-cetuximab 454
89Zr-DFO-MSTP2109A 454
89Zr-GC1008 454
89Zr-labeled anti-mesothelin antibody 454
89Zr-RG7116 454
89Zr-trastuzumab 452–453