Index

Note: Italicized page locators indicate a photo/figure; tables are noted with t.

A
Abalone, dispersed Sall repeat in, 73
Abiotic stress responses, shrimp aquaculture and, 25
Acanthopterygii Perciformes, examples of species with genomic resources and number of ESTs in GenBank, 4t
Acipenserids, cell lines from ATCC available for, 207
actin, RT-PCR analysis of, 202
Actions, ethics and, 346
Activators, in inducible gene expression systems, 244, 246
Activin, 293
Activin receptor signaling pathway, TGF-β ligands and, 292
Activin type I and II transmembrane receptors, 292
ActRIIA receptors, 292
ActRIIB receptors, 292, 293
Acute phase serum amyloid A, 213t
Adaptive immune response, antigen presentation in, 125–126
Adjuvants, challenge for effective vaccines and, 128
Adrianichthyidae, medaka within, 268
Aeromonas hydrophila
 genomic sequencing of, 90t
 transgenic expression and resistance against, 112
Aeromonas salmonicida
 bacterial pathogens and genomic variability and subspecies identification, 91–92
 proteomics, 92–93
 host metabolomics and, 96–97
 host-pathogen interactions and, 94
 SSH cDNA libraries and study of, 95
 vaccines for, 153
Aeromonas salmonicida subsp. salmonicida, genomic sequencing of, 90t
AE6, DNA vaccine vector construction and, 160
Affymetrix, 6, 13
Agilent, 6
Agricultural biotechnologies, ethical issues around, 345
AHNV, See Atlantic halibut nodavirus
Albumin, DNA vaccine vector construction and, 159
Alginites, 110
All-female broodstocks of Atlantic halibut, production of, 44–46
gonadal differentiation and endocrine sex reversal, 45–46
sex determination and gynogenesis, 45
Alpha-helical antimicrobial peptides, 106
Alternative protein sources, physiological factors related to use of, 62
American oysters (Crassostrea virginica), centromeric sequences identified in, 73
American Tissue Culture Collection, 207
Ammonia, marine aquaculture and accumulation of, 76
Among-family selection, aquaculture and, 50
African catfish (Clarias gariepinus), ActRIIB protein injection and increased size of, 294
Agilential, 6
Agricultural biotechnologies, ethical issues around, 345
AHNV, See Atlantic halibut nodavirus
Albumin, DNA vaccine vector construction and, 159
Alginites, 110
All-female broodstocks of Atlantic halibut, production of, 44–46
gonadal differentiation and endocrine sex reversal, 45–46
sex determination and gynogenesis, 45
Alpha-helical antimicrobial peptides, 106
Alternative protein sources, physiological factors related to use of, 62
American oysters (Crassostrea virginica), centromeric sequences identified in, 73
American Tissue Culture Collection, 207
Ammonia, marine aquaculture and accumulation of, 76
Among-family selection, aquaculture and, 50

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.

355
Index

Antimicrobial peptides, 256
Antimicrobial Peptide Database, 106

Antifreeze proteins, 253–255
distribution of, from marine fish and invertebrates, 109;
distribution of, 106–107
future developments of, 113
physical properties of, 105–106
production of, 105
as therapeutics in aquaculture, 105–113
therapeutic potential of, 110–113
Antiviral protection, in shrimp, RNAi-based experiments in
Aquaculture
Aquaculture biotechnology(ies)
ethics, 322–323
potential ecological and genetic impacts of, 321–336
practical biological containment methods and, 336
Aquaculture broodstocks, intentional selection in, 324
Aquaculture escapees
event with, 326
transgenesis and risks associated with, 335
Aquaculture ethics in biotechnology
century, 345–352
Aquaculture fish species, selected, expressed sequence tag
collections of, 4r
Aquaculture industry, benefits attributed to, 348
Aquaculture-relevant traits, examples of experimental approaches to, 14
Aquaculture research, “genomics toolboxes” and, 3
Aquafeeds, 349
AquaNet, 283, 287
Aquaporins, ectopic expression of,
Aquatron (Dalhousie University), 285, 309
Aquatic biotechnologies, defining
Aquaculture-relevant traits, examples of experimental approaches to, 14
Aquaculture research, “genomics toolboxes” and, 3
Aquafeeds, 349
AquaNet, 283, 287
Aquaporins, ectopic expression of,
Atlantic Canada
Atlantic salmon farming, 258
development of genetic/genomic tools and production improvements in Atlantic halibut, 44, 44
maximum spring sea ice conditions in, 259
Atlantic cod (Gadus morhua), 3
contribution of antifreeze proteins to, 256
immune-related gene discovery in, 96
mapping genome of, 132
microarray platforms for, 7t
number of ESTs in GenBank, 4
sperm cryopreservation studies for, 307
Atlantic Cod Genomics and Broodstock Development Project, 3–4, 132
functional genomics workflow in, 5
Atlantic cod 20K oligonucleotide microarray, description of, 9
Atlantic halibut broodstock management
broodstock selection, 50–51
impact of generation time, 50
marker-assisted selection, 50–51
future directions, 51
genetic and genomic approaches to, 43–51
genetic linkage map and, 47
overview, 43–44
pedigree analysis and, 46–47, 48t
production of all-female stocks of
Atlantic halibut, 44–46
gonadal differential and endocrine sex reversal, 45–46
sex determination and gynogenesis, 45
quantitative trait loci, 49–50
considerations for QTL analysis, 49–50
status of QTL mapping in halibut, 50
Atlantic halibut (Hippoglossus hippoglossus)
analysis of expressed sequence tags in, 179
Atlantic salmon sea cage operation
Atlantic wolffish (Anarhichas lupus)
AF(G)P in, 255
contribution of antifreeze proteins to, 256
Attenuated vaccines, 98
Autogenous vaccines, DNA vaccines vs., 98
Automated DNA sequencing, xii
B
BAC end sequences, 3
Backcross lines, sexually dimorphic traits in clonal fishes and, 65
BAC libraries. See Bacterial artificial chromosome (BAC) libraries
BACs. See Bacterial artificial chromosomes
Bacterial artificial chromosome (BAC) libraries, 3
chromosome identification in rainbow trout and, 73
Bacterial artificial chromosomes, 36, 241
Bacterial pathogens
A. salmonicida, 89, 91–93
genomic variability and subspecies identification, 91–92
proteomics, 92–93
of fish, genomic sequencing of, 90t
“Basal promoter,” transgene expression and, 239
Bathymodiolus azoricus, 106
Bay scallops, type of karyotype in, 73
BBs. See Brockmann bodies
Bcl-X1, 5
Belgian Blue cattle, myostatin gene in, 291
Beta-actin promoter, in vivo testing of, 219
IPNV capsid protein injected in, 153
length of time plasmid DNA detected in, 159
local population structure and, 323
microarray platforms for, 7t
number of ESTs in GenBank, 4t
oligo-based microarrays for, 94
perspective and distribution of plasmid DNA in, 166
SD locus and, 74–75
selective crossbreeding programs for, introduction of, 160
sibling pair produced with one hemizygous growth hormone transgenic parent, 334
transgene expression and transmission in, 236
viral DNA vaccines for, 155t
Atlantic salmon genome sequencing project, 61
Atlantic salmon (Salmo salar)
AFP genes transferred to, 253
BAC libraries for, 75
centromeric sequences identified in, 73
competitive displacement of wild individuals and, 327
contribution of antifreeze proteins to, 256
cytokines as adjuvants for DNA vaccines and, 161
freezing point of (without AF(G)P), 255
gene expression-based toxicogenomics approach applied to, 277
genome sequencing projects for, xii “genomics toolboxes” and, 3
GH and myosatellite cells from, 219
immune system in, 121
mitochondrial genes of, 181
occupation of expressed sequence tags in, 106
Brockmann bodies
Atlantic salmon farming, 258
development of genetic/genomic tools and production improvements in, 259
maximum spring sea ice conditions in, 259
Atlantic cod (Gadus morhua), 3
contribution of antifreeze proteins to, 256
immune-related gene discovery in, 96
mapping genome of, 132
microarray platforms for, 7t
number of ESTs in GenBank, 4
sperm cryopreservation studies for, 307
Atlantic Cod Genomics and Broodstock Development Project, 3–4, 132
functional genomics workflow in, 5
Atlantic cod 20K oligonucleotide microarray, description of, 9
Atlantic halibut broodstock management
broodstock selection, 50–51
impact of generation time, 50
marker-assisted selection, 50–51
future directions, 51
genetic and genomic approaches to, 43–51
genetic linkage map and, 47
overview, 43–44
pedigree analysis and, 46–47, 48t
production of all-female stocks of
Atlantic halibut, 44–46
gonadal differential and endocrine sex reversal, 45–46
sex determination and gynogenesis, 45
quantitative trait loci, 49–50
considerations for QTL analysis, 49–50
status of QTL mapping in halibut, 50
Atlantic halibut (Hippoglossus hippoglossus)
analysis of expressed sequence tags in, 179
Atlantic salmon sea cage operation
Atlantic wolffish (Anarhichas lupus)
AF(G)P in, 255
contribution of antifreeze proteins to, 256
Attenuated vaccines, 98
Autogenous vaccines, DNA vaccines vs., 98
Automated DNA sequencing, xii
B
BAC end sequences, 3
Backcross lines, sexually dimorphic traits in clonal fishes and, 65
BAC libraries. See Bacterial artificial chromosome (BAC) libraries
BACs. See Bacterial artificial chromosomes
Bacterial artificial chromosome (BAC) libraries, 3
chromosome identification in rainbow trout and, 73
Bacterial artificial chromosomes, 36, 241
Bacterial pathogens
A. salmonicida, 89, 91–93
genomic variability and subspecies identification, 91–92
proteomics, 92–93
of fish, genomic sequencing of, 90t
“Basal promoter,” transgene expression and, 239
Bathymodiolus azoricus, 106
Bay scallops, type of karyotype in, 73
BBs. See Brockmann bodies
Bcl-X1, 5
Belgian Blue cattle, myostatin gene in, 291
Beta-actin promoter, in vivo testing of, 219
IPNV capsid protein injected in, 153
length of time plasmid DNA detected in, 159
local population structure and, 323
microarray platforms for, 7t
number of ESTs in GenBank, 4t
oligo-based microarrays for, 94
perspective and distribution of plasmid DNA in, 166
SD locus and, 74–75
selective crossbreeding programs for, introduction of, 160
sibling pair produced with one hemizygous growth hormone transgenic parent, 334
transgene expression and transmission in, 236
viral DNA vaccines for, 155t
Atlantic salmon genome sequencing project, 61
Atlantic salmon (Salmo salar)
AFP genes transferred to, 253
BAC libraries for, 75
centromeric sequences identified in, 73
competitive displacement of wild individuals and, 327
contribution of antifreeze proteins to, 256
cytokines as adjuvants for DNA vaccines and, 161
freezing point of (without AF(G)P), 255
gene expression-based toxicogenomics approach applied to, 277
genome sequencing projects for, xii “genomics toolboxes” and, 3
GH and myosatellite cells from, 219
immune system in, 121
mitochondrial genes of, 181
occupation of expressed sequence tags in, 106
Brockmann bodies
Atlantic salmon farming, 258
development of genetic/genomic tools and production improvements in, 259
maximum spring sea ice conditions in, 259
Atlantic cod (Gadus morhua), 3
contribution of antifreeze proteins to, 256
immune-related gene discovery in, 96
mapping genome of, 132
microarray platforms for, 7t
number of ESTs in GenBank, 4
sperm cryopreservation studies for, 307
Atlantic Cod Genomics and Broodstock Development Project, 3–4, 132
functional genomics workflow in, 5
Atlantic cod 20K oligonucleotide microarray, description of, 9
Atlantic halibut broodstock management
broodstock selection, 50–51
impact of generation time, 50
marker-assisted selection, 50–51
future directions, 51
genetic and genomic approaches to, 43–51
genetic linkage map and, 47
overview, 43–44
pedigree analysis and, 46–47, 48t
production of all-female stocks of
Atlantic halibut, 44–46
gonadal differential and endocrine sex reversal, 45–46
sex determination and gynogenesis, 45
quantitative trait loci, 49–50
considerations for QTL analysis, 49–50
status of QTL mapping in halibut, 50
Atlantic halibut (Hippoglossus hippoglossus)
analysis of expressed sequence tags in, 179
Atlantic salmon sea cage operation
Atlantic wolffish (Anarhichas lupus)
AF(G)P in, 255
contribution of antifreeze proteins to, 256
Attenuated vaccines, 98
Autogenous vaccines, DNA vaccines vs., 98
Automated DNA sequencing, xii
B
BAC end sequences, 3
Backcross lines, sexually dimorphic traits in clonal fishes and, 65
BAC libraries. See Bacterial artificial chromosome (BAC) libraries
BACs. See Bacterial artificial chromosomes
Bacterial artificial chromosome (BAC) libraries, 3
chromosome identification in rainbow trout and, 73
Bacterial artificial chromosomes, 36, 241
Bacterial pathogens
A. salmonicida, 89, 91–93
genomic variability and subspecies identification, 91–92
proteomics, 92–93
of fish, genomic sequencing of, 90t
“Basal promoter,” transgene expression and, 239
Bathymodiolus azoricus, 106
Bay scallops, type of karyotype in, 73
BBs. See Brockmann bodies
Bcl-X1, 5
Belgian Blue cattle, myostatin gene in, 291
Beta-actin promoter, in vivo testing of, 160
Beta-catenin-dependent (or canonical) pathway, 183
Beta-catenin-independent (or non-canonical) pathway, 183
Beta-catenin-2, 183
Beta-glucans immunostimulants, 111
Betanodaviruses
RNA interference and viral pathogenesis of, in fish, 89
vaccine development and, 158
β-cells, juvenile-onset diabetes and loss of, 281
Beta-sheet class of AMPs, 106
Index

β-integrin, RNAi-based experiments in Penaeid shrimp and, 313
Big defensin, distribution and spectrum of activity of, 109
Bioactive domain, for myostatin peptide, 293
Biocarta, 12
Biocoductor, 10, 11
Biodiversity
cryopreservation and, 314
species invasions and effects on, 326
Biotechs, 306
Biotechnology community, applied to, 277
Biological response modifiers, 129
antibody response after vaccination and, 130
enhanced immune responses and, 129
Biomarkers, microarrays, toxicogenomics and, 277
Biomonitoring fish models of, 268–269, 271–273
estrogenic compounds, 269, 271
heavy metals, 271–272
mutagens, 272–273
persistent organic pollutants, 272
transgenic developing, 267
systems of, examples, 270
Biomonitoring transgenic systems, advantages of, 274–275
Biotechnological strains, cryopreservation and preservation of, 314
Biotechnology, See also Ethics
future of, in aquaculture, 131–132
modern aquaculture production and, 322
wide use of transgenic technology and, 267
Biotechnology community, ecologically neutral technology development and, 336
Bivalves, AMP sequences identified in, 107
Black scallop (Mimachlamys varia), type of karyotype in, and location for major and minor rDNA loci, 73
Black tiger shrimp (Penaeus monodon), AMP sequences identified in, 107
Blast database (NCBI), 13
Blastomere cryopreservation, 312–313
Blast2GO, 10, 13
Blue catfish (Ictalurus furcatus) microarray platforms for, 7t
number of ESTs in GenBank, 4t
Bluefin tuna (Thunnus thynnus), germ cell transplantation and, 223
Blue fluorescent protein, 275
Blue revolution, 348
eo-ecological considerations for, 321–336
Bonamia ostreae, tachyplesin I active against, 110
Bovine papillomavirus-1 E2 DNA-binding protein, structural similarity between VP9 and, 150
Brg1, in zebrafish, 185
BRMs. See Biological response modifiers
Brockmann bodies, 282
Brodstock improvement, 347
Brodstock management, cryopreservation and, 313
Brodstock selection markers, xii
Brook trout (Salvelinus fontinalis), primary cell culture methods for head kidney and, 208
Brown-spotted grouper (Epinephelus tauvina), studying proteomic profiles of, with iTRAQ and LC-MS/MS, 145, 147
B7 molecules, 125
C
Caenorhabditis elegans, feeding or bacteria-mediated RNAi and, 34
Callinecina, 106
distribution and spectrum of activity of, 109
Canadian Food Inspection Agency, 154
Canadian Institutes for Health Research, 283
Candida albicans, AMPs and, 108
Canulation, trout sperm extraction by, 309
Captively reared populations, lower genetic diversity in, 327–328
Carcinin, distribution and spectrum of activity of, 109
Carp. See also Common carp beta-actin promoter in, evaluation and in vivo testing of, 159, 160
clonal lines of, 55
gene expression-based toxicogenomics approach applied to, 277
sperm cryopreservation studies for, 307
Carp myosin-heavy-chain promoter, DNA vaccine vector construction and, 160
Caspa3, RNAi-based experiments in Penaeid shrimp and, 313
Caspa3 homolog, RNAi-based experiments in Penaeid shrimp and, 313
Castaigne, Jean-Paul, 283
Catfish
BAC libraries for, 75
gene sequencing projects for, xii
transgenic, disease resistance and, 112
CAT gene, 268
Cathelicidins, 106
distribution and spectrum of activity of, 109
Cathepsin D, EST size, accession # of
Cathepsin K, EST size, accession # of
similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213
Cathepsin K, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213
Cationic lipid-based DNA delivery, mechanism of, 163
Cattle production, genetic selection and, 313
CCL4, trout macrophage studies and, 212
CCV. See Channel catfish virus
cDNA, xii
shrimp and subtracting highly redundant genes from, 22
unmodified vs. modified, expected gene frequency distribution in, 25
cDNA libraries, 94
targeted, trait-relevant gene discovery and, 4–6
cDNA microarrays, cDNA clones and, 94
CD4-T cells, 126
CD8+T cells, 126
Cecropin, 108
distribution and spectrum of activity of, 109
Cell culture systems, choosing, 207
Cellular innate immunity, 123
CGP. See Atlantic Cod Genomics and Broodstock Development Project
Index

359
cGRASP. See consortium for Genomics Research on All Salmonids Project
Channel catfish (Ictalurus punctatus), 3 centromeric sequences identified in, 73 cytokines as adjuvants for DNA vaccines and, 161 microarray platforms for, 7t number of ESTs in GenBank, 4t viral DNA vaccines for, 156t Channel catfish virus, DNA vaccines for, 156t, 158 Chemokine CCL4/MIP-1β, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213t Chemokines, as measures of immune responses, 126–127 Chemolithotrophic bacteria, ammonia oxidation and, 76 Chemotaxin, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213t

Chicken
Chilling sensitivity, embryo cryopreservation and, 311 Chimaera production, germ-line, confirming, 195–196 China (ancient), beginnings of culture of fish in, xi Chinese shrimp (Fenneropenaeus chinensis), AMP sequences identified in, 107 Chinook salmon (Oncorhynchus tshawytscha)
analyzing adaptive immune response of, and virulence of V. anguillarum, 129 BAC libraries for, 75 microarray platforms for, 7t number of ESTs in GenBank, 4t SD locus and, 75 spawning channels used for, 131 viral DNA vaccines for, 155t ChiP-on-chip arrays, 15 Chordin, DV patterning and, 184 Chromosome fragments, clonal lines and, 58 Chrysophin, 106 distribution and spectrum of activity of, 109t Chum salmon (Oncorhynchus keta) cryopreservation of, 312 sex chromosomes and, 75 Ciba-Geigy, 283 CIHR. See Canadian Institutes for Health Research cis-acting DNA regulatory elements, transgene expression and, 239 Clam (Ruditapes decussatus), AMP sequences identified in, 107 Clavanin, 106 distribution and spectrum of activity of, 109t Clavinspirin, 106 cytotoxic activity of, 110 distribution and spectrum of activity of, 109t Clodronate liposomes, 163 Clonal fishes advantages of clonal lines, 56–58 ease of mitochondrial transfer, 57–58 speed of generation, 56–57 Cryotop, 328 Cryostallin, 328

Clonal line system, advantages and disadvantages of, 65
of microarray data, 11–12 Cluster/Tree View, 10t CMV-IEMPCV1.4, DNA vaccine vector construction and, 160 CMV immediate early promoter/enhancer, 159 Coadapted gene complexes, 328 Cod (Gadus morhua), primary cell culture methods for head kidney from, 212 Coho salmon (Oncorhynchus kisutch) cosmid libraries for, 75 identification of YY individual in, using GH-Y probe, 72 immune system in, 121 number of ESTs in GenBank, 4t transgene localization in, 73–74 Colony stimulating factor 1 receptor microscopic changes in rainbow trout mononuclear phagocytes and, 210

primary cell culture methods for head kidney and, 211
Common carp (Cyprinus carpio), 3
\(\beta \)-actin promoter region in, 239
cytokines as adjuvants for DNA
vaccines and, 161
maternal expression of sonic
hedgehog in, 184
microarray platforms for, 7t
number of ESTs in GenBank, 4t
cytokines as adjuvants for DNA
vaccines and, 161
maternal expression of sonic
hedgehog in, 184
microarray platforms for, 7t
viral DNA vaccines for, 155
Competition, native habitats and, 327
Concatemerization, transgene, 238
Condition factor, defined, 297
Consequentialist ethics, 352
Consortium for Genomics Research
on All Salmonids Project
cGRASP), 6, 84, 95
Continuous cell lines, advantages
with, 207
Convergent evolution, 323
Cooling, controlled, sperm
cryopreservation and, 308
Copy number, molecular level
variation and, 324
Corn, inbred lines of, 56
Cosmid libraries, 75
Cotton congeners
(Gossypium
barbadense), 323
CPA. See Cryoprotectant agents
CPAs
embryo cryopreservation and, 311
oocyte cryopreservation and, 310
sperm extenders and, 308
Crabs, white spot syndrome virus in,
142
Crayfish, white spot syndrome virus
in, 142
CRE-ERT fusion protein, Cre and,
245
Crustacean hyperglycemic hormone,
RNAi-based experiments in
Penaeid shrimp and, 30t
Crustaceans, white spot syndrome
virus in, 142
Crustins, 106
RNAi-based experiments in
Penaeid shrimp and, 31t
Cryobanking, reproductive
technologies combined with, 313
Cryodamage, 306–307
Cryopreservation, 305–314, 347
applications, 313–314
broodstock management, 313
conervation of biodiversity, 314
Index

germplasm banking and genetic
selection programs, 313–314
preservation of biotechnological
strains, 314
blastomere and primordial germ
cell, 312–313
cell, basic principles of, 305–307
cryodamage, 306–307
slow, controlled freezing, 306
vitrification, 306
of clonal line sperm, 57
defined, 305
embryo, 310–312
gamete
oocyte, 309–310
sperm, 307–309
surrogate parent technology and,
229–230
Cryopreserved sperm, fish genetic
material preserved in,
203–204
defined, 305
embryo, 310–312
gamete
oocyte, 309–310
sperm, 307–309
surrogate parent technology and,
229–230
Cryopreservation, 305–314, 347
applications, 313–314
broodstock management, 313
conervation of biodiversity, 314
coadministration of, with vaccines,
112
live attenuated bacteria and, 128
as measures of immune responses,
126–127
Cytoplasmic microinjection,
transgenic fish creation by, 323
D
Dalhousie University, Aquatron at,
285, 286
Database for Annotation,
Visualization and Integrated
Discovery. See DAVID
Data visualization and processing,
10–11
DAVID, 10t, 12
Days postinfection, 87
DEAD protein family, 180
Defensin, 106
distribution and spectrum of activity
of, 109t
Deontological ethics, 352
Designer promoters, in transgenic fish,
275
Diabetes mellitus
fish islets and treatment of, 289
insulin-dependent, 281
Dicer 1, RNAi-based experiments in
Penaeid shrimp and, 31t
Dicynthaurin, 106
Differential expression
cloning studies in Penaeid shrimp,
26t–28t
understanding gene function and,
22, 25
Dilemma, defined, within context of
ethics, 346
Dimethylsulfoxide
as cryoprotectant, 306
embryo cryopreservation and,
311
Direct feminization, description of,
44–45
Disease
control of, using AMPs, 111–113
direct administration, 111–112
DNA vaccines, 112
genetic selection for
enhancement of disease
response, 112
transgenic expression, 112–113
vaccine adjuvants, 112
control of in aquaculture, current
approaches to, 110–111
ecological effects of, 327
Disease diagnostics, xii
Index

Disease resistance, transgenic technology and, 267
Disease responses, genetic selection for enhancement of, 112
Diversity of fish, surrogate parent technology and, 229–230

DMEM

DMEM cell culture methods for satellite cells and, 214, 215 containing 10% FBS, differentiation of rainbow trout muscle satellite cells cultured at 18°C with, 215
primary cell culture methods for head kidney and, 208

DMSO. See Dimethylsulfoxide

DNA

DNA clones and utilization of, 60–61
sperm cryopreservation and integrity of, 308
DNA:DNA hybridization, A. salmonicida studies and, 91
DNA microarrays, xii, 3, 13
DNA regulatory elements, identification of, 239, 241
DNA sequencing technologies, xii
DNA vaccines, 112, 113 for aquaculture animals, 155–156
autogenous vaccines vs., 98
candidates for, 156–158 components in, 154
conclusions and future directions for, 167
cytokines as adjuvants for, 160–161
delivery methods for, 161–163 advantages and disadvantages with, 162r
formulating plasmid DNA, 161–162
gene transfer inefficiency, 161
intradermal and intramuscular injection, 161
liposomes, 162–163
mechanism of cationic lipid-based DNA delivery, 163
use of liposome-formulations in fish, 163
development of criteria for, 154
research targets for, 157
formulations, 158–160
vector construction, 158–160
overview of, 153–154
public opinion, 166–167
regulatory constraints, 165–166

Edwardsiella ictaluri

genomic sequencing of, 90r
studying virulence genes of, 92
transgenic catfish and resistance to, 112

Edwardsiella tarda, genomic sequencing of, 90t

Eel (Anguilla anguilla), primary cell culture methods for head kidney from, 212

Eggs

fertilization of, thawed sperm and, 308
transdifferentiation of spermatogonia, from adult fish into, 227–228

Egg transcriptome, 177–187
introduction on, 178
as maternal legacy to embryo, 177–187

Egypt (ancient), beginnings of culture of fish in, xi

Electrophile response elements, response of, to environmental pollutants, 276r

Embryo cell culture, derived from blastula showing ES-like morphology with aggregates of embryo cells, 194

Embryo cryopreservation, 310–312
Embryogenesis, analyzing role of maternal mRNA during, 180

Embryogenesis signaling, transforming growth factor beta superfamily of secreted cytokines and, 183–184

Embryological studies, morpholinos and, 88

Embryonic development, early, maternal factors and driving of, 181

Embryonic stem (ES) cell cultures, mouse, genetic alterations introduced into germ line with, 193

Embryos

early, mRNA in before mid-blastula transition, 179–181
early, transcriptomic analysis of, 177–187
egg transcriptome as maternal legacy to, 177–187
newly hatched, immunologic immaturity of, 224–225
newly hatched, microinjection of germ cells into peritoneal cavity of, 226

Embryos

for viral diseases of farmed fish and shellfish, 153–167
DNA viruses, DNA vaccines for, 158
dnd, RT-PCR analysis of, 201, 202
“Double haploid” offspring, clonal lines and, 56

Diversity of fish, surrogate parent technology and, 229–230

DMEM

differentiation of rainbow trout muscle satellite cells cultured at 18°C with, 215
primary cell culture methods for head kidney and, 208

DMSO. See Dimethylsulfoxide

DNA:DNA hybridization, A. salmonicida studies and, 91
DNA microarrays, xii, 3, 13
DNA regulatory elements, identification of, 239, 241
DNA sequencing technologies, xii
DNA vaccines, 112, 113 for aquaculture animals, 155–156
autogenous vaccines vs., 98
candidates for, 156–158 components in, 154
conclusions and future directions for, 167
cytokines as adjuvants for, 160–161
delivery methods for, 161–163 advantages and disadvantages with, 162r
formulating plasmid DNA, 161–162
gene transfer inefficiency, 161
intradermal and intramuscular injection, 161
liposomes, 162–163
mechanism of cationic lipid-based DNA delivery, 163
use of liposome-formulations in fish, 163
development of criteria for, 154
research targets for, 157
formulations, 158–160
vector construction, 158–160
overview of, 153–154
public opinion, 166–167
regulatory constraints, 165–166

Edwardsiella ictaluri

genomic sequencing of, 90r
studying virulence genes of, 92
transgenic catfish and resistance to, 112

Edwardsiella tarda, genomic sequencing of, 90t

Eel (Anguilla anguilla), primary cell culture methods for head kidney from, 212

Eggs

fertilization of, thawed sperm and, 308
transdifferentiation of spermatogonia, from adult fish into, 227–228

Egg transcriptome, 177–187
introduction on, 178
as maternal legacy to embryo, 177–187

Egypt (ancient), beginnings of culture of fish in, xi

Electrophile response elements, response of, to environmental pollutants, 276r

Embryo cell culture, derived from blastula showing ES-like morphology with aggregates of embryo cells, 194
Embryo cryopreservation, 310–312
Embryogenesis, analyzing role of maternal mRNA during, 180
Embryogenesis signaling, transforming growth factor beta superfamily of secreted cytokines and, 183–184
Embryological studies, morpholinos and, 88
Embryonic development, early, maternal factors and driving of, 181
Embryonic stem (ES) cell cultures, mouse, genetic alterations introduced into germ line with, 193
Embryos

early, mRNA in before mid-blastula transition, 179–181
early, transcriptomic analysis of, 177–187
egg transcriptome as maternal legacy to, 177–187
newly hatched, immunologic immaturity of, 224–225
newly hatched, microinjection of germ cells into peritoneal cavity of, 226

Edwardsiella ictaluri

genomic sequencing of, 90r
studying virulence genes of, 92
transgenic catfish and resistance to, 112

Edwardsiella tarda, genomic sequencing of, 90t

Eel (Anguilla anguilla), primary cell culture methods for head kidney from, 212

Eggs

fertilization of, thawed sperm and, 308
transdifferentiation of spermatogonia, from adult fish into, 227–228

Egg transcriptome, 177–187
introduction on, 178
as maternal legacy to embryo, 177–187

Egypt (ancient), beginnings of culture of fish in, xi

Electrophile response elements, response of, to environmental pollutants, 276r

Embryo cell culture, derived from blastula showing ES-like morphology with aggregates of embryo cells, 194
Embryo cryopreservation, 310–312
Embryogenesis, analyzing role of maternal mRNA during, 180
Embryogenesis signaling, transforming growth factor beta superfamily of secreted cytokines and, 183–184
Embryological studies, morpholinos and, 88
Embryonic development, early, maternal factors and driving of, 181
Embryonic stem (ES) cell cultures, mouse, genetic alterations introduced into germ line with, 193
Embryos

early, mRNA in before mid-blastula transition, 179–181
early, transcriptomic analysis of, 177–187
egg transcriptome as maternal legacy to, 177–187
newly hatched, immunologic immaturity of, 224–225
newly hatched, microinjection of germ cells into peritoneal cavity of, 226

Edwardsiella ictaluri

genomic sequencing of, 90r
studying virulence genes of, 92
transgenic catfish and resistance to, 112

Edwardsiella tarda, genomic sequencing of, 90t

Eel (Anguilla anguilla), primary cell culture methods for head kidney from, 212

Eggs

fertilization of, thawed sperm and, 308
transdifferentiation of spermatogonia, from adult fish into, 227–228

Egg transcriptome, 177–187
introduction on, 178
as maternal legacy to embryo, 177–187

Egypt (ancient), beginnings of culture of fish in, xi

Electrophile response elements, response of, to environmental pollutants, 276r

Embryo cell culture, derived from blastula showing ES-like morphology with aggregates of embryo cells, 194
Embryo cryopreservation, 310–312
Embryogenesis, analyzing role of maternal mRNA during, 180
Embryogenesis signaling, transforming growth factor beta superfamily of secreted cytokines and, 183–184
Embryological studies, morpholinos and, 88
Embryonic development, early, maternal factors and driving of, 181
Embryonic stem (ES) cell cultures, mouse, genetic alterations introduced into germ line with, 193
Embryos

early, mRNA in before mid-blastula transition, 179–181
early, transcriptomic analysis of, 177–187
egg transcriptome as maternal legacy to, 177–187
newly hatched, immunologic immaturity of, 224–225
newly hatched, microinjection of germ cells into peritoneal cavity of, 226
Index

Embryos (Continued)
- prehatch, hybrids between trout and salmon, 226
- Empirical premises, ethical arguments and, 350
- Encapsulation, ideal islet tissue for, 288
- Endocrine sex reversal, Atlantic halibut and, 45–46
- Endosomal escape, efficient gene delivery and, 163
- Enhanced growth rate, transgenic technology and, 267
- Enhancers in genes, 240
- transgene expression and, 239, 241
- Entrez human gene symbols, 12
- Enveloping layer, Irf6 and differentiation of, in zebrafish embryos, 184
- Environment, aquaculture and, 349, 351
- Environmental ethics, pluralistic expression of, 351
- Environmental monitoring, 347
- Environmental pollutants, summary of response element responses to, 276
- Estrogen response element. See Estrogen response element
- Ergosan, 130
- ER LBD, modification of, 245
- ES cell pluripotency, ultimate test of, 195
- ES cells, transgenic tilapia and, 287
- Escherichia coli
 - AMPs and, 113
 - DNA-derived VP2 and, 157
 - live attenuated bacteria and, 128
 - tetracycline regulated system and, 244
- EST. See Expressed sequence tags
- EST surveys, antimicrobial peptides and, 107
- Ethical arguments, normative components and, 350
- Ethical decision-making, 346, 352
- Ethical dilemma, defined, 345
- Ethical dimensions, facts and substance of, 345
- Ethics, 352
 - of aquaculture in biotechnology century, 345–352
 - from facts to ethical issues, 350–352
 - factual content, for and against, 350
 - features of a controversy, 348–350
 - modern aquaculture as a focal point, 347–348
 - role of, 346
- Ethylene glycol, embryo cryopreservation and, 311
- E2
 - LOEC of, for hemizygous transgenic fish, 269
 - Tg(mvtg1:gfp) transgenic medaka and induction of GFP expression by, 271
- Eukaryotic gene expression, control of
- European flounder
 - gene expression-based toxicogenomics approach applied to, 277
 - transcriptional response of liver of, 95
- European sea bass (Dicentrarchus labrax)
 - microarray platforms for, 7
 - number of ESTs in GenBank, 4
 - Evolutionary processes, at transgene loci, 324
- Exons, in genes, 240
- Exotic habitats, 326
- Exploitative competition, ecological effects of, 327
- Expressed sequence tag (EST) collections
- Expressions studies, utilization of DNA or RNA from clones and, 60–61
- Extenders
 - cryopreservation and, 306
 - sperm cryopreservation and formulation of, 307–308
- Extinction issues, germ cell transplantation in fish and, 229–230
- F
 - FACS. See Fluorescence-activated cell sorting
 - Facts, substance of ethical dilemmas and, 345
 - Factual claims, verifying accuracy of, 350
 - Fadrozole, masculinizing fish with, 45
 - False discovery rates, 11
 - Fathead minnow (Pimephales promelas)
 - frog virus 3 and, 88
 - gene expression-based toxicogenomics approach applied to, 277
- FDA. See Food and Drug Administration
- FDRs. See False discovery rates
- Feed conversion efficiency, 347
- Female gametes, cryopreservation of, 309–310
- Females, clonal lines and poor fertility of, 58
- Female stocks, of Atlantic halibut, production of, 44–46
- Femtosecond lasers, embryo cryopreservation and, 312
- Fenneropenaeus chinensis
differential expression cloning studies in, 28
 - genomic research by EST analysis for, 22
 - microarrays with gene contents and, 25
- Fertilization, 309
- Fertilization rates, sperm cryopreservation and, 308
- Fiber (muscle) diameter distribution, from transgenic and control fish, 300
Index

Finfish
 adaptive immunity in, 121–132
 antigen presentation in adaptive immune response, 125–126
 Atlantic cod 20K oligonucleotide microarray, 9
 chromosome set manipulated, characterization of interspecific hybrids and, 75
 cytokines and chemokines as measures of immune responses, 126–127
 future of biotechnology and immunology in aquaculture, 131–132
 future recommendations for microarray research, 13–15
 genomic tools for understanding molecular basis of production-relevant traits in, 3–15
 immune system as whole integrative defence mechanism, 121–125
 humoral innate immunity, 122–123
 main features of fish adaptive immune system, 123–125
 main features of fish innate immune system, 122
 immunostimulants, 129–130
 improving broodstock and breeding practices, 130–131
 knowledge of fish immunity and what it means for vaccines, 127–129
 adjuvants, 128
 live attenuated bacteria as carriers, 128–129
 method of delivery, 128
 MH receptors, 125
 MH sequences and their applications, 126
 microarray data analysis tools, 9–13
 clustering, 11–12
 data visualization and processing, 10–11
 functional annotation of gene lists, 12–13
 statistical analysis of gene expression differences, 11
 microarray technology applied to aquaculture and research on, 6, 9–13
 monitoring of health status, 130
 qPCR, 129

selected microarray platforms, overview of, 7t–8t
targeted trait-relevant gene discovery, 4–6
FISH. See Fluorescence in situ hybridization
Fish
 antifreeze proteins isolated from, 254
 aquaculture and welfare of, 349
 contribution of antifreeze proteins to freeze protection of, 256
 control and transgenic, muscle sections (representative) from, 300
 extinction dangers facing, 314
 germ cell transplantation in, 223–230
 myostatin and, 293–294
 pathogens identified in, 76–77
 Fish antifreeze protein genes, xi
 Fish cell cultures, genetic manipulation of, 196
 Fish farms, utilitarian principle and, 351
 Fish health, 83–98
 bacterial pathogens-A. salmonicida, 89, 91–93
 genomic variability and subspecies identification, 91–92
 proteomics, 92–93
 genomics and proteomics applied to vaccine development, 97–98
 genomics applied to studies of, 83–84
 host-pathogen interactions, 93–97
 host metabolomics, 96–97
 host proteomics, 96
 metabolomics applied to studies of, 84–85
 proteomics applied to studies of, 84
 studies of pathogen biology, 85–93
 viral pathogens-Iridoviridae, 85–93
 functional information from sequence data, 86–87
 genomic studies, 85–86
 molecular diagnostic test development, 86
 proteomics, 87–89
 Fish meal
 alternative protein for, 62
 as protein source in aquaculture, sustainability issues and, 61
 Fish promoters, DNA vaccine vector construction and, 159–160
 Fish skeletal muscle cells, functional characterization of and their application in aquaculture, 216–219
 Fish sperm, characteristics of, 307
 Fish stem cell technology, application of, to aquaculture and marine biotechnology, 193–204
 5S rDNA, locations of, in fish species, 72–73
 Flatfish pleuronectin promoters, DNA vaccine vector construction and, 160
 Flatfish species, sexually dimorphic size variation in, 44
 Flavobacterium psychrophilum, genomic sequencing of, 90t
 fli1 promoter, 242
 Floxed Transgene X construct, transgenic fish with cell-specific Cre expression and, 246
 FLP pili (flpA), bioinformatic analysis of A. salmonicida and, 92
 Fluorescence-activated cell sorting, 199
 Fluorescence in situ hybridization
 application of, in aquaculture-related research, 71–77
 assignment of genetic linkage groups to specific chromosomes, 75–76
 characterization of interspecific hybrids and chromosome set manipulated finfish, 75
 future applications of, 77
 identification and characterization of sex chromosomes, 74–75
 identification of pathogens in cultured shellfish, fish, and wastewater generated by aquaculture, 76–77
 localization of repetitive sequences, transposons, and transgenes, 71–74
 use of, 71
 Fluorescent proteins, multicolor transgenic biomonitoring fish and, 275–276
 Fluorescent transgenic embryos/larvae, toxicological screening and use of, 273, 273–274
Follistatin, 292
myostatin bound by, 293
overexpression of
quadrupling of mice muscle mass
and, 293
“six pack” phenotype in P1
juvenile transgenic fish and,
296, 298
in transgenic rainbow trout, 291
in trout, muscle growth and, 296
Follistatin coding sequence, rainbow
tROUT, mylc expression and, 295
Follistatin construct
DNA, production statistics for
rainbow trout eggs injected
with, 296r
rainbow trout and, 294–295
Follistatin overexpressing transgenic
tROUT, transgenic F1 offspring and
future of, 300
Follistatin transcript levels, in 50 ng of
RNA from transgenic and control
RBT, 297
Food and Drug Administration, xii
DNA vaccine safety and,
165–166
Food preservation, AMPs and, 113
Food production, population growth
and, 131
Food security, aquaculture’s role in,
348
Forkhead Box H1 protein, 184
Freeze protection of fish, antifreeze
proteins and, 256
Freeze resistance, transgenic
technology and, 267
Freeze-resistant fish, producing for
aquaculture, summary, 263
Freeze-resistant salmon, future
directions in production of,
260–263
Freezing
adverse effects of, 305–306
slow and controlled, 306
of sperm, 308, 309
French straws, sperm loading in, 309
Frog virus 3 (FV3), 88, 108
Fugu (Takifugu rubripes)
cytokines as adjuvants for DNA
vaccines and, 161
genome sequences available for, xii
Functional annotation of gene lists,
12–13
Functional genomics, 4–6, 13–15, 83
Funding, for breeding programs, 286
Fusarium oxysporum, AMPs and
inhibition of, 108

Index

G
GAD, 13
Gadiformes, selected microarray
platforms, overview of, 7
Galectin, EST size, accession # of
similar protein, species most
similar to, BLASTx E-value, and
clones in 12 hour and 30 hour
ESTs, 213r
Galectin-like protein
EST size, accession # of similar
protein, species most similar
to, BLASTx E-value, and
clones in 12 hour and 30 hour
ESTs, 213r
Gal4 enhancer trap lines
efficient generation of, 244
in neural circuits of zebrafish, 243
GA4 protein, 242, 243
Gal4-UAS, 242–244
Gal4-UAS binary system, for
tissue-specific expression of
transgenes, 243
Gal4-VP16 protein, 242
Gal4-VP16 TF, 244
Gamete cryopreservation, 307–310
oocyte cryopreservation, 309–310
sperm cryopreservation, 307–309
Gametogenesis, shrimp aquaculture
and, 25
Gastrulation, maternal factors
involved in, 184–185
GATA-2 gene, 241
GDF. See Growth and differentiation
factors
GDF-11, 293
GenBank, number of ESTs in, 4–6, 4t
Gene carriers, ideal, properties for,
161
Gene constructs, uses for, 235
Gene delivery methods, DNA vaccines
and advantages/disadvantages of,
162r
Gene discovery efforts, cDNA
libraries and, 4–6
Gene expression, 21
differential expression and, 22
Gene expression analysis, 11
Gene expression arrays, 15
Gene Expression Omnibus (GEO)
database, 6, 186
Gene knockdowns, RNA interference
(RNAi) and, 288
Gene knock-down studies, for
maternal factors involved in
germline establishment, 181,
183
Gene lists, functional annotation of,
12–13
Gene microinjection technique, 284
Gene Ontology (GO) annotation, 13
Generation time, Atlantic halibut and
impact of, 50
Genes
in fish, paucity of knowledge about
in 1980s, xii
structure of, with exons, promoter
region, and enhancers, 240
Gene Set Analysis, 9, 10r
Gene set enrichment analysis, 10r, 12
Genes, 9, 10r, 12
GeneSpring GX, 9
Genetic linkage groups, FISH and
assignment of, to specific
cchromosomes, 75–76
Genetic maps/mapping, 21
homozygosity of clonal lines and,
59–60
for shrimp species, 35–36
Genetic markers, shrimp and
development of, for breeding
purposes, 35
Genetic programming optimization of
neural networks, 36
Genetic selection programs,
cryopreservation and, 313–314
Genetic variability, halibut pedigree
studies and, 46–46
Gene transfer inefficiency, DNA
vaccines and, 161
GenMAPP, 10r, 12
Genome Analyzer, 35
Genome Canada, 132
Genome mapping, comparative, FISH
and, 77
Genome sequencing, clonal lines and,
61
Genomic DNA libraries, xii
Genomics
defined, 83
fish health studies and application
of, 83–84
vaccine development and, 97–98
Genomic Southern blotting, xii
Genomics studies, of shrimp,
analytical challenges with, 36–37
“Genomics toolboxes,” aquaculture
research and, 3
Genomic studies, viral
pathogens-Iridoviridae and,
85–86
GenePix, 9
GEO, 13
Geodia barretii, 77
Index

Health status of fish, monitoring, 130
Heat shock, inducible systems and, 246–247
Heat shock elements, 247
Heat-shock-like protein, DNA vaccine vector construction and, 159
Heat shock protein 70, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213
Heat shock proteins, 247, 271
Heat shock response element, response of, to environmental pollutants, 276
Heat stress resistance, identifying genes contributing to, examples, 14
Heavy metals biomonitoring transgenic fish systems and, 270
models of biomonitoring fish and, 271–272
Helicase-coding gene, RNAi-based experiments in Penaeid shrimp and, 32
Hemocyanin, RNAi-based experiments in Penaeid shrimp and, 30
Hepcidin, distribution and spectrum of activity of, 109
Herring sperm, first report on cryopreservation of, 307
Heterochromatin formulation, 242
Heterologous regulatory sequences, 241–242
Heterozygous clonal lines, 55
High-throughput studies, of differential expression and gene discovery in shrimp, 22, 25, 29
Hirame rhabdovirus (HIRRV), viral DNA vaccines against, 155
Histidine-rich clavanins, 106
Histones, 106
HIV-1, mussel defensins active against, 108
Homologous regulatory sequences, 241
Homozgyosity, of inbred lines, 55
Homozgyous clonal lines, 59
Homozgyous females, poor fertility of, 58
Host defense peptides, 105. See also Antimicrobial peptides
Host defenses, viral envelope proteins and, 147
Host-pathogen interactions, 93–97 fish health and host metabolomics, 96–97 host proteomics, 96 studies, RNAi-based experiments in Penaeid shrimp and, 31
Host signaling pathways, regulating, viruses and, 88
Hox gene promoters, 242
HRE. See Hypoxia response element
HSEs. See Heat shock elements
HSP70, 271, 272
hsp70 promoter region, testing of, in heterologous scenarios, 242
HSPs. See Heat shock proteins
Human alpha defensin I, 108
Human health, aquaculture and, 349
Humoral immune response, variation in, among fish, 121
Humoral innate immunity, 122–123
Hybrid clones, 59
Hybridization, 326
Hyperplasia of muscle fibers, in transgenic fish, 298–299
Hypoxia response element, response of, to environmental pollutants, 276
I
ICAT. See Isotope-coded affinity tag
ICAT identification, of differentially expressed shrimp proteins during WSSV infection, 145
Ice, AFP binding to, 215
Ice conditions in aquaculture sea cage operation during a severe winter, 259 at sea cage sites, example, 258
Ice nucleation, 305
Ichabod phenotype, 183
Ichabod phenotype, 183
Ichthyophthirius multifiliis, vaccine efficacy trials reported for, 156
Ichthyophthirius multifiliis, viral DNA vaccines against, 155
Ictalurid herpes virus 1, 158
Ictalurid herpes virus 1, 158
Ictalurids, cell lines from ATCC available for, 207
I-FABP gene, reporter gene expression to zebrafish intestine and, 242
IGF-I, trout skeletal muscle cells and, 216
IHNV. See Infectious hematopoietic necrosis virus
Illumina, 15
Imagene, 9
Immune gene discovery in fish, vaccines and, 98
Immune immaturity, of newly hatched embryos, transplanted cells and, 224–225
Immune responses, shrimp aquaculture and, 25
Immune system cellular innate immunity, 123
fish adaptive, main features of, 123–125
humoral innate immunity, 122–123
main features of, in fish, 122
as whole integrative defence mechanism, 121–125
Immunization process, description of, 160
Immunology, future of, in aquaculture, 131–132
Immunostimulants, 110, 129–130
Inbred lines, clonal fishes: harnessing power of, 55–56
Incentives, ethics and, 346
Incubation, primary cell culture methods for head kidney and, 209–210, 212
Indinavir, inhibition of trout GLUT4 vs. mammalian GLUT4 and, 217–218
Indirect effects, abiotic and biotic, 326
Indirect feminization, description of, 45
Inducible gene expression systems, 244–247
cyclization of recombination, 244–246
heat shock, 246–247
tetracycline regulated system, 244
Industrial aquaculture, environment and, 351
Infectious hematopoietic necrosis virus, 154
antiviral activity of AMPs and, 108
systemic antiviral responses and, 165
vaccine efficacy trials reported for, 156
viral DNA vaccines against, 155
Infectious salmon anemia virus, 156
Infectious pancreatic necrosis virus, 153
antiviral activity of AMPs and, 108
DNA vaccine trials for, 157
viral DNA vaccines against, 155
Infectious salmon anemia virus, vaccinations against, 155

Infectious spleen and kidney necrosis iridovirus, genus, accession number, and references, 85r
Insulator sequences, 239
Insulin
DNA vaccine vector construction and, 159
tilapia vs. human, differences in, 282, 288
trout skeletal muscle cells and, 216, 217, 218
Insulin-like growth factor II, DNA vaccine vector construction and, 159
Insulin-stimulated 2-deoxyglucose uptake, in trout muscle cells, time course of, 217
Intentional selection, in aquaculture broodstocks, consequences of, 324
Interbreeding, 325–326
native habitats and, 327–328
Interference competition, ecological effects of, 327
Interferon regulatory factor 1, 5
Interferon regulatory factor 6 (Irf6), gastrulation and, 184
Interleukin-1 receptor, type II, EST
Interleukin-8, 161
Interleukin-2, 160
Interleukin-1, 160, 212
Interleukin-1, 160
Interleukin-8, 161
EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r
Interleukin-18, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r
Interleukin 1 receptor, type II, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r
Interspecific hybrids, characterization of, 75
Introgression, native habitats and, 327–328
IPNV. See Infectious pancreatic necrosis virus
IRF1. See Interferon regulatory factor 1
Iridoviridae, 142
host-pathogen interactions and, 94
viral pathogens, 85–89
functional information from sequence data, 86–87 genomic studies, 85–86 molecular diagnostic test development, 86 proteomics, 87–89 viruses within, for which there are completed genomic sequences, 85r
Iridoviruses, defined, 142
ISAV. See Infectious salmon anemia virus
ISKNV. See Infectious spleen and kidney necrosis iridovirus
ISKNV genome, bioinformatic analysis of, 88–89
islet1 regulatory region, 242
Islets of Langerhans, replacing, diabetes treatment and, 281
Isobaric tags for relative and absolute quantification. See iTRAQ
Isoelectric focusing. 2D PAGE and, 84
Isozyme analysis, 188
Ishigaki Chinook salmon, (Oncorhynchus tshawytscha), viral DNA vaccines for, 155
K
Japanese flounder (Paralichthys olivaceus), 86
length of time CAT protein expressed in, 159
microarray platforms for, 7t
viral DNA vaccines for, 155t, 156t
Japanese killifish, (O. latipes), DV
Japanese leucine zipper kinases (JLZKs), 92
Japanese Medaka, establishment of, as vertebrate model, xii
Japanese yellow croaker iridovirus, (LCDV)
Japanese killifish, (O. latipes), DV
Japanese killifish, (O. latipes), DV
Japanese leucine zipper kinases (JLZKs), 92
Japanese yellow croaker iridovirus, (LCDV)
JDFI. See Juvenile Diabetes Foundation International
JDRF. See Juvenile Diabetes Research Foundation
Juvenile Diabetes Foundation International
Juvenile Diabetes Foundation, 284
Juvenile Diabetes Research Foundation, 284
Juvenile-onset diabetes, 281
K
Cananymcin, 166
katA, 92
KEGG, 12, 13
kita, RT-PCR analysis of, 202
kith, RT-PCR analysis of, 202
Kitlg, recombinant, effect on growth of zebrafish PGCs, 198–199, 199
Kitlgb, recombinant, effect on growth of zebrafish PGCs, 198–199, 199
k-means clustering, 11–12
Knockout technology, future improvements to transgenic tilapia and, 287
Koi carp vaccined against CyHV3 infections in, 153
cytosine DNA vaccines for, 155r
Kokanee salmon (Oncorhynchus nerka), viral DNA vaccines for, 155r
Kyoto Encyclopedia of Genes and Genomes. See KEGG
L
Lactococcus garvieae genomic sequencing of, 90r
studying virulence genes of, 92
LacZ gene, 268
Laminin, cell culture methods for satellite cells and, 215
LAMP, detection of fish/shellfish pathogens and, 86
Land use, aquaculture and impact on, 349
Large insert size genomic libraries, for shrimp species, 36
Large yellow croaker iridovirus, genus, accession number, and references, 85r
Late antiviral responses (LA VRs), 165
Late antiviral responses (LA VRs), 165
Late antiviral responses (LA VRs), 165
LBD. See Ligand-binding domain
LCDV. See Lymphocystis disease virus
Leishmania major, mussel defensins and fragments active against, 110
Leukemia inhibitory factor, human and mouse, zebrafish ES cell cultures and, 195
Leventhal, Joe, 284
LIF. See Leukemia inhibitory factor
Ligand-binding domain, 245
Limma, 10, 11
Linkage mapping, Atlantic halibut and, 47, 49
Lipofectin, 163
Lipofectin, 163
Liposomes defined, 162
generation delivery and, 162–163
various uses for, 163
“Index”
Listonella anguillarum, first vaccine for, 153
LITAF, viral replication and, 88
Litopenaeus setiferus
differential expression cloning studies in, 26t, 27t
genomic research by EST analysis for, 22
Litopenaeus stylirostris
differential expression cloning studies in, 26t
microarrays with gene contents and, 25
Live attenuated bacteria, as carriers, 128–129
Live attenuated vaccines, xi, 153
Liver-type AFP
skin-type AFP vs., 257
winter flounder and production/secretion of, 256
Liver type 1 AFP, improving freeze resistance of rainbow trout and, 267
Livestock husbandry, intensive, 347
Loaches, clonal lines of, 55
Localization of repetitive sequences, FISH and, 71–74
LOEC. See Lowest-observed-effects concentration
London Life Insurance Company, 282
Long terminal repeat, of zebrafish, DNA vaccine vector construction and, 160
Lowest-observed-effects concentration, of E2 for hemizygous transgenic fish, 269
Low sea water temperatures, danger posed to fish by, 253
Low temperature limitations, to sea cage aquaculture, 258–259
LPS, studies using trout macrophages and, 212, 214
LPS-stimulated macrophage cDNA libraries, comparison of selected EST frequencies between 12 and 30 hour, 213r
LTR. See Long terminal repeat luciferase, 268
LYCIV. See Large yellow croaker iridovirus
Lymphocystis disease virus
DNA vaccines for, 158
genus, accession number, and references, 85t
viral DNA vaccines against, 156t
Lymphocystivirus, full genome sequences available for, 85

Index

M
Mackerel (*Scomber japonicus*), germ cell transplantation and, 223
MacroGard, 130
Macrophage receptor with collagenous structure
microscopic changes in rainbow trout mononuclear phagocytes and, 210
primary cell culture methods for head kidney and, 211
Macrophages, differentiated, obtaining, 208
Maine hatchery, halibut broodstock obtaining, 208
Major histocompatibility (MH) genes, 123
Male fingerprints, tilapia growers and preference for, 74
Mammalian islets, tilapia islets and, 282
Mammalian promoter regions, 242
Mammals, inhibition of myostatin in, 242
Mammalian islets, tilapia islets and, 282
Mammalian promoter regions, 242

Marine biotechnology, fish stem cell technology applied in, 193, 203–204
Marine Genomics website, 22
Marine invertebrates, diversity of
LPS-stimulated macrophage cDNA libraries, comparison of selected EST frequencies between 12 and 30 hour, 213r
LTR. See Long terminal repeat luciferase, 268
LYCIV. See Large yellow croaker iridovirus
Lymphocystis disease virus
DNA vaccines for, 158
genus, accession number, and references, 85t
viral DNA vaccines against, 156t
Lymphocystivirus, full genome sequences available for, 85

male, rainbow trout embryos obtained from, after transplanting trout primordial germ cells, 226
rainbow trout spermatogonia transplanted into, 227–228
testis triploid, cross sections of, 229
triploid, germ cell transplantation and, 228–229
triploid, ovaries from into which rainbow trout spermatogonia had been transplanted, 230
Masu salmon parents, female, rainbow trout embryos obtained from, 228
Maternal-embryo-transition, zygotic transcription and, 177
Maternal mRNAs
degradation patterns of, throughout embryonic development, 177, 178
detecting, methods for, 180
major role played by, 187 in oocyte, 177
role of, in oocyte quality and early embryonic development, 181, 182r, 183–186
gastrulation and, 184–185
gene knock-down studies, germline establishment and, 181, 183
neurogenesis and, 185
pattern formation and, 183–184
somitogenesis and, 185
study of, in unfertilized eggs of varying quality, 185
transcriptomic analysis of oocyte quality in fish, 185–186
for which differential abundance evidenced using QPCR in eggs of varying quality, 187t
Matrix metalloproteinase 9
EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r
MBT. See Mid-blastula transition
Mcl-1, 5
MDHT. See 17alpha-methylidyhydrotestosterone
Medaka ES cells, establishing culture conditions for, 195
Medaka (*Oryzias latipes*)
gen expression-based toxicogenomics approach applied to, 277
genome sequences available for, xii
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>heat shock response tested in, 247</td>
<td></td>
</tr>
<tr>
<td>MBT in, 180</td>
<td></td>
</tr>
<tr>
<td>oocyte cryopreservation studies and, 310</td>
<td></td>
</tr>
<tr>
<td>role of maternal mRNAs in oocyte quality and early embryonic development, 182</td>
<td></td>
</tr>
<tr>
<td>as sentinels in aquatic technology, 268</td>
<td></td>
</tr>
<tr>
<td>successful transgene integration in, 238</td>
<td></td>
</tr>
<tr>
<td>Tg(mvtg1::gfp) transgenic, induction of GFP expression by E2, 271</td>
<td></td>
</tr>
<tr>
<td>transgene expression and transmission in, 236</td>
<td></td>
</tr>
<tr>
<td>vasa RNA expression in, 183</td>
<td></td>
</tr>
<tr>
<td>vsg mRNAs inducible in, 269</td>
<td></td>
</tr>
<tr>
<td>Medium-throughput studies, of differential expression and gene discovery in shrimp, 22, 25, 29</td>
<td></td>
</tr>
<tr>
<td>Megalocytivirus, full genome</td>
<td></td>
</tr>
<tr>
<td>sequences available for, 85</td>
<td></td>
</tr>
<tr>
<td>Melitin, cytotoxic activity of, 110</td>
<td></td>
</tr>
<tr>
<td>Membrane protectants, sperm extenders and, 308</td>
<td></td>
</tr>
<tr>
<td>Memory immune response, 124</td>
<td></td>
</tr>
<tr>
<td>Messenger RNA (mRNA) maternal, methods for detection of, 180</td>
<td></td>
</tr>
<tr>
<td>in oocyte and early embryo before mid-blastula transition, 179–181</td>
<td></td>
</tr>
<tr>
<td>MET. See Maternal-embryo-transition</td>
<td></td>
</tr>
<tr>
<td>Metabolite profiles, determination of, 84</td>
<td></td>
</tr>
<tr>
<td>Metabolome, 84</td>
<td></td>
</tr>
<tr>
<td>Metabolomics defined, 84</td>
<td></td>
</tr>
<tr>
<td>fish health studies and application of, 84–85</td>
<td></td>
</tr>
<tr>
<td>host, fish health and, 96–97</td>
<td></td>
</tr>
<tr>
<td>Metallothionein A, DNA vaccine vector construction and, 159</td>
<td></td>
</tr>
<tr>
<td>Metallothionein B, DNA vaccine vector construction and, 159</td>
<td></td>
</tr>
<tr>
<td>Metal response element, response of, to environmental pollutants, 276r</td>
<td></td>
</tr>
<tr>
<td>Methanol, embryo cryopreservation and, 311</td>
<td></td>
</tr>
<tr>
<td>MGD-1,2, distribution and spectrum of activity of, 109r</td>
<td></td>
</tr>
<tr>
<td>MH complex, 125</td>
<td></td>
</tr>
<tr>
<td>MH receptors, types of, 125</td>
<td></td>
</tr>
<tr>
<td>MH sequences, applications of, 126</td>
<td></td>
</tr>
<tr>
<td>MIAME. See Minimum Information About a Microarray Experiment</td>
<td></td>
</tr>
<tr>
<td>Mice, inbred lines of, 56</td>
<td></td>
</tr>
<tr>
<td>Microarray-based comparative genomic hybridization, A. salmonicida studies and, 91</td>
<td></td>
</tr>
<tr>
<td>Microarray data analysis tools, 9–13</td>
<td></td>
</tr>
<tr>
<td>clustering, 11–12</td>
<td></td>
</tr>
<tr>
<td>data visualization and processing, 10–11</td>
<td></td>
</tr>
<tr>
<td>functional annotation of gene lists, 12–13</td>
<td></td>
</tr>
<tr>
<td>noncommercial software, 9, 10r</td>
<td></td>
</tr>
<tr>
<td>statistical analysis of gene expression differences, 11</td>
<td></td>
</tr>
<tr>
<td>Microarray platforms, overview of, and use in aquaculture, 6, 9</td>
<td></td>
</tr>
<tr>
<td>Microarrays defined, 25</td>
<td></td>
</tr>
<tr>
<td>toxicogenomics and, 276–277</td>
<td></td>
</tr>
<tr>
<td>Microarray technology applying in finfish aquaculture and research, 6, 7r–8r, 9–15</td>
<td></td>
</tr>
<tr>
<td>Atlantic cod 20K oligonucleotide microarray, 9</td>
<td></td>
</tr>
<tr>
<td>microarray data analysis tools, 9–13</td>
<td></td>
</tr>
<tr>
<td>overview of microarray platforms, 6, 9</td>
<td></td>
</tr>
<tr>
<td>recommendations and future directions, 13–15</td>
<td></td>
</tr>
<tr>
<td>studying differential gene expression at high-throughput and, 25</td>
<td></td>
</tr>
<tr>
<td>Microencapsulation, islet transplantation and, 282</td>
<td></td>
</tr>
<tr>
<td>microRNA, 187</td>
<td></td>
</tr>
<tr>
<td>Microsatellite markers, shrimp breeding programs and, 22</td>
<td></td>
</tr>
<tr>
<td>Microsatellites halibut QTL analysis and, 49</td>
<td></td>
</tr>
<tr>
<td>pedigree analysis and, 46</td>
<td></td>
</tr>
<tr>
<td>penaeid species and, 35</td>
<td></td>
</tr>
<tr>
<td>Mid-blastula transition, 177, 178</td>
<td></td>
</tr>
<tr>
<td>in zebrafish, timing of, 180</td>
<td></td>
</tr>
<tr>
<td>Minimum Information About a Microarray Experiment, 13</td>
<td></td>
</tr>
<tr>
<td>Missgrnin, 106 distribution and spectrum of activity of, 109r</td>
<td></td>
</tr>
<tr>
<td>Misty somites, embryonic development in zebrafish and, 185</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial transfer, clonal lines and ease of, 57–58</td>
<td></td>
</tr>
<tr>
<td>Molecular diagnostic test development, viral pathogens-Iridoviridae and, 86</td>
<td></td>
</tr>
<tr>
<td>Molt-inhibiting hormone, RNAI-based experiments in Penaeid shrimp and, 30r</td>
<td></td>
</tr>
<tr>
<td>Mononuclear phagocytes in fish, 208–214</td>
<td></td>
</tr>
<tr>
<td>primary cell culture methods for head kidney, 208–212</td>
<td></td>
</tr>
<tr>
<td>Moral reasoning, distinctive features in, 350</td>
<td></td>
</tr>
<tr>
<td>Moronecinid, 106 distribution and spectrum of activity of, 109r</td>
<td></td>
</tr>
<tr>
<td>Morpholino oligonucleotides, antisense, gene knock-down studies and, 181</td>
<td></td>
</tr>
<tr>
<td>Morpholinos, 88</td>
<td></td>
</tr>
<tr>
<td>functional analysis of SGIV genes with, 147</td>
<td></td>
</tr>
<tr>
<td>MOs. See Morpholino oligonucleotides</td>
<td></td>
</tr>
<tr>
<td>Mosaic expression pattern, in primary transgenic fish, 236</td>
<td></td>
</tr>
<tr>
<td>Mosaic hyperplasia, 294</td>
<td></td>
</tr>
<tr>
<td>Mosaicism for fish and mammalian P1 transgenic organisms, 296–297</td>
<td></td>
</tr>
<tr>
<td>germline, F1 transgenic organisms and, 300 reducing, 314</td>
<td></td>
</tr>
<tr>
<td>Mozambique tilapia (Oreochromis mossambicus) homologous promoters tested in, 247</td>
<td></td>
</tr>
<tr>
<td>hsp70 in, 242</td>
<td></td>
</tr>
<tr>
<td>MRE. See Metal response element</td>
<td></td>
</tr>
<tr>
<td>mRNA differential display, 22</td>
<td></td>
</tr>
<tr>
<td>Mud loach (Misgurnus mizolepis), transgene instability among populations of, 324</td>
<td></td>
</tr>
<tr>
<td>Multicolor transgenic biomonitoring fish, 275–276</td>
<td></td>
</tr>
<tr>
<td>Multitest, 10r</td>
<td></td>
</tr>
<tr>
<td>Muscle, in mammals, regulation of growth and differentiation of, 291</td>
<td></td>
</tr>
<tr>
<td>Muscle fibers, hyperplasia of, in transgenic fish, 298–299</td>
<td></td>
</tr>
<tr>
<td>Muscle growth/differentiation in fish, myostatin and, 294</td>
<td></td>
</tr>
<tr>
<td>follistatin overexpression and, 296 localized, in P1 follistatin transgenic fish, 296–297</td>
<td></td>
</tr>
<tr>
<td>transforming growth factor-β superfamilies members and, 291</td>
<td></td>
</tr>
<tr>
<td>Muscle mass, overexpression of follistatin and quadrupling of, in mice, 293</td>
<td></td>
</tr>
</tbody>
</table>
Index

Muscle tissue, of GFP transgenic fish, GFP protein synthesis in, 297

Mussel defensins and fragments, antiparasitic activity of, 110

Mutagens
biomonitoring transgenic fish systems and, 270
models of biomonitoring fish and, 272–273

Mycobacterium marinum
 genomic sequencing of, 90
studying virulence genes of, 92

Myelopoiesis, in mammals, 208

Myostatin, 292, 292
deficiency and inhibition of, 291–293
myostatin protein and, 292–293
transforming growth factor-β muscle regulatory pathway and, 292
fish and, 293–294
muscle growth, 294
tGF-β inhibition, 294
inhibition of, and other TGF-β in mammals, 293
secretion of, 293

Myostatin peptide, domains for, 293

Myostatin protein, 292–293

Mycoticin, 106
distribution and spectrum of activity of, 109

Mytilin, 106
antifungal activity of, 108
distribution and spectrum of activity of, 109

Mytinycin, 106
distribution and spectrum of activity of, 109
fungal growth inhibited by, 108

Naked Cuticle, zebrafish homologs of, 183

nanos, RT-PCR analysis of, 201, 202
National Center for Biotechnology Information, 186

Native habitats
aquaculture and effects within, 327–328
competition, 327
interbreeding and introgression, 327–328

Natural killer cell enhancement factor, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213

No tail gene, 196

Nova Scotia hatchery, halibut broodstock pedigree analysis, 48t

Novel viral proteins
structural characterization of, 147, 149–150
structural analysis of WSSV VP9, 149–150
structural analysis of WSSV VP26 and VP28, 147, 149

target selection and expression, 147

NR-13, 5
NS, 157

NSERC. See Natural Sciences and Engineering Research Council

N-terminal signaling domain, for myostatin peptide, 293

Nuclear magnetic resonance (NMR) spectroscopy, 64, 141

Nucleic acids, enhanced immune responses and, 129

O

Ocean pout (*Macrozoarces americanus*)
AF(G)P in, 255
contribution of antifreeze proteins to, 256
Oligonucleotide microarrays, cDNA clones and, 94

OMPs. See Outer membrane proteins

1oxP sites, 244

OnMTGH1, growth hormone construct, localization on telomere of single acrocentric chromosome in transgenic coho strain 5750, 72

Oocyte cryopreservation, 309–310

Oocyte (fish)
molecular portrait of, 185–186
quality in, transcriptomic analysis of, 185–186

Oogenesis, 177

Open antimicrobial peptides, 106
Orange-spotted grouper iridovirus, 86 genus, accession number, and references, 85
ORF018R expression functional analysis of SGIV genes with morpholinos and, 147
viruses and, 88–89
OGIV. See Orange-spotted grouper iridovirus
Ostariophysi Siluriformes, examples of species with genomic resources and number of ESTs in GenBank, 4t
Outbred animals, crosses of clones to, 59
Outbreeding depression, 328 outer membrane proteins, of A. salmonicida, further study of, 93
Ovaries, of triploid masu salmon recipients, into which rainbow trout spermatogonia had been transplanted, 230
Oxidative stress, sperm cryopreservation and, 309
P
Pacific blue shrimp (Litopenaeus stylirostris)
- AMP sequences identified in, 107
Pacific oyster (Crassostrea gigas)
- AMP sequences identified in, 107
- centromeric sequences identified in, 73
Pacific white shrimp (Litopenaeus vannamei)
- AMP sequences identified in, 107
differential expression cloning studies in, 27t, 28t
- genetic maps for, 35, 36
- genomic research by EST analysis for, 22
- microarrays with gene contents and, 25
- panels of genetic markers developed for, 35
- RNAi-based experiments in, 30t, 31t, 32t, 33t
PACs. See PI-derived artificial chromosomes
pAE6-Gvhsv, in vivo testing of, 160
PAHs. See Polycyclic aromatic hydrocarbons
PAMPs. See Pathogen-associated molecular patterns
Pancreases, donor, annual availability of, 281
Paracanthurystegii Gadiformes, examples of species with genomic resources and number of ESTs in GenBank, 4t
Pardaxin, distribution and spectrum of activity of, 109t
Parthenogenetic reproduction, of clonal fishes, 55
Pathogen-associated molecular patterns, 5, 122, 128, 208
- cell culture methods for head kidney and, 211
- trout macrophages studies and, 212, 214
Pathogens identification of, in shellfish, fish, and wastewater generated by aquaculture, 76–77
- resistance to, examples of experimental approaches to identify genes contributing to, 14
- Pathogen-specific microarrays, development of, 15
Pathway analysis programs, 12
Pattern formation, maternal factors involved in, 183–184
Pattern recognition receptors, 122, 128
PCA. See Principal component analysis
pCMV-IEP, 159
pCMV-Luc plasmid, 159
PCR amplicons, from transgenic fish, 295
PCR-based assays, cDNA clones and, 94
PCR techniques, xii
pnd-Neo-DsRed plasmid, diagram of, 200
Pedigree analysis, for Atlantic halibut, 46–47, 48t
Penaeidins, 106
- distribution and spectrum of activity of, 109t
Penaeus monodon differential expression cloning studies in, 26t, 27t, 28t
- feeding or bacteria-mediated RNAi and, 34
- genetic maps for, 35
- genomic research by EST analysis for, 22
- ICAT identification of differentially expressed proteins in WSSV-infected subcuticular epithelium of, 146
- microarrays with gene contents and, 25
- panels of genetic markers developed for, 35
- RNAI-based experiments in, 30t, 31t, 32t, 33t
Penicillium crustosum, AMPs and inhibition of, 108
Pericormes, selected microarray platforms, overview of, 7t
Perkinsus marinus, tachyplesin I active against, 110
- Peroxisome proliferator response element, response of, to environmental pollutants, 276t
- Persistent organic pollutants biomonitoring transgenic fish systems and, 270t
- models of biomonitoring fish and, 272
PERV. See Porcine endogenous retrovirus
Pesticides, aquaculture and increased use of, 349
PGCs. See Primordial germ cells
Phenotypic expression, 324–325
Photobacterium damselai
Phylogenetic footprinting, 239
Piedmontese myostatin gene, 291
Pili, 92
Pink salmon, sex chromosomes and, 75
Piscidin, 106
- Candida albicans inhibited with, 108
- distribution and spectrum of activity of, 109t
- Piscidin 2, antiparasitic activity of, 110
- Piscine muscle growth, TGF-β signaling and regulation of, 300
- Plasmid DNA formulating, 161–162

Index

Penaeus monodon differential expression cloning studies in, 26t, 27t, 28t
feeding or bacteria-mediated RNAi and, 34
- genetic maps for, 35
- genomic research by EST analysis for, 22
- ICAT identification of differentially expressed proteins in WSSV-infected subcuticular epithelium of, 146
- microarrays with gene contents and, 25
- panels of genetic markers developed for, 35
- RNAI-based experiments in, 30t, 31t, 32t, 33t

Penicillium crustosum, AMPs and inhibition of, 108
Pericormes, selected microarray platforms, overview of, 7t
Perkinsus marinus, tachyplesin I active against, 110
- Peroxisome proliferator response element, response of, to environmental pollutants, 276t
- Persistent organic pollutants biomonitoring transgenic fish systems and, 270t
- models of biomonitoring fish and, 272
PERV. See Porcine endogenous retrovirus
Pesticides, aquaculture and increased use of, 349
PGCs. See Primordial germ cells
Phenotypic expression, 324–325
Photobacterium damselai subsp. piscida, vaccines for, 153
Phylogenetic footprinting, 239
Piedmontese myostatin gene, 291
Pili, 92
Pink salmon, sex chromosomes and, 75
Piscidin, 106
- Candida albicans inhibited with, 108
- distribution and spectrum of activity of, 109t
- Piscidin 2, antiparasitic activity of, 110
- Piscine muscle growth, TGF-β signaling and regulation of, 300
- Plasmid DNA formulating, 161–162
Index

Plasmid DNA (Continued)
 long-term persistence of, in injected fish/shellfish, 159
 persistence and distribution of, 166
Plasmid profiling. A. salmonicida studies and, 91
Platelet-derived growth factor, 88
Pleuronectiformes, selected microarray platforms, overview of, 7
pMCV1.4-Gvhsv, in vivo testing of, 160
Poikilothermic animals, heat shock-induced gene expression in, 247
Polar/subpolar oceans, temperature of fish residing in, 253
Pollutant classes, mutational spectra and, 272
Pollutants. See also Environmental pollutants
 aquaculture and increase in, 349
 Polycyclic aromatic hydrocarbons, 272
 Poly-L-lysine, cell culture methods for satellite cells and, 215
Polymerase coding gene, RNAi-based experiments in Penaeid shrimp and, 32
Polyphemusin, 106
 distribution and spectrum of activity of, 109
 fungal growth inhibited by, 108
Polysaccharides, enhanced immune responses and, 129
P1-derived artificial chromosomes, 241
P1 follistatin transgenic fish
 juvenile, inner abdominal wall of, 299
 localized muscle growth in, 296–297
P1 transgenic fish, increased condition factor in, 297
POPs. See Persistent organic pollutants
Porcine endogenous retrovirus, 283, 284
“Position effect,” transgenesis efficiency and, 238
Position/integration effects, phenotypic expression and, 324
Pou5f/Oct4, pluripotency of embryonic stem cells and, 185
PPRE. See Peroxisome proliferator response element
Predation, ecological effects of, 327
“Pre-genotyped” inbred lines, 56
Primary cell cultures advantages with, 207–208
 shrimp and in vitro delivery of, 34
Primary transgenic animals, established transgenic lines and, 236
Primordial germ cells, 180, 181
 cryoreservation of, 312–313
 isolating, difficulty with, 227
 of rainbow trout, transfected with vasa-GFP gene, 224, 225
 specification of, 196, 198
Principal component analysis, 12
Probiotics, 110
 Promotorex, 110
 Promodain, for myostatin peptide, 293
Production waste, aquaculture and increase in, 349
Prohibitins, role of, 186
 Prohibitin 2, unfertilized rainbow trout eggs and, 185
Prolactin, DNA vaccine vector
 Prodomain, for myostatin peptide, 293
 ProVale, 130
Protease coding gene, RNAi-based experiments in Penaeid shrimp and, 32
Prohibitin 2, unfertilized rainbow trout eggs and, 185
Prohibitins, role of, 186
Prohibitin 2, unfertilized rainbow trout eggs and, 185
Proline-rich AMPs, 106
Promoter region in genes, 240
 in inducible gene expression systems, 244
 transgene expression and, 239
 transgenic fish production and, 241
Prophenoloxidases, RNAi-based experiments in Penaeid shrimp and, 32
Putative ion transport peptide, examples of species with genomic resources and number of ESTs in GenBank, 4
Putative ion transport peptide, examples of species with genomic resources and number of ESTs in GenBank, 4
Putative ion transport peptide, examples of species with genomic resources and number of ESTs in GenBank, 4
Protease coding gene, RNAi-based experiments in Penaeid shrimp and, 32
Protease coding gene, RNAi-based experiments in Penaeid shrimp and, 32
Protein quantification, proteomic studies and, 143
Protein(s)
 human nutrition, marine animals and, 348
 transgene-encoded, 235
 2D PAGE and separation of, 84
Protein separation technologies, 141
Proteome, defined, 84
Proteomics
 A. salmonicida bacterial pathogens and, 92–93
description of, 142–143
 fish health studies and application of, 84
 host, fish health and, 96
 vaccine development and, 97–98
 viral pathogens-Iridoviridae and, 87–89
ProVale, 130
PRRs. See Pattern recognition receptors
Pseudomonas fluorescens, transgenic expression and resistance against, 112
pTG-Neo-DsRed-ntl, targeted incorporation of, into zebrafish ES cells, 197
pTG-Neo-DT-ntl, targeted incorporation of, into zebrafish ES cells, 197
pTG-pac-DsRed-DT-hag, diagram of, 198
PubMed, 6
Puromycin (pac) selection, DsRed and, 198
Putative farnesoid acid O-methyltransferase, RNAi-based experiments in Penaeid shrimp and, 30
Putative ion transport peptide, RNAi-based experiments in Penaeid shrimp and, 30
QPCR. See Quantitative reverse transcription-polymerase chain reaction
qPCR
 assessing adaptive immune response, 129
 quantitative PCR integrating pathogen virulence and immune response, 129
 suppression subtractive hybridization and, 129
cytokines as adjuvants for DNA vaccines and, 161
dissection and isolation of head kidney cells from, 209
domesticated, clonal lines from, 64
effects of follistatin overexpression in, 300
embryos (alevins) obtained from male masu salmon parents after transplanting primordial germ cells from, 226
embryos obtained from female masu salmon parents, 227
follistatin construct and, 294–295
freezing point of (without AF(G)P), 255
gene expression-based toxicogenomics approach applied to, 277
germ cell transplantation and, 223, 224
growth of wild and farmed, to
gene expression-based toxicogenomics approach applied to, 277
as model organism, TGF-β
superfamily and, 294
muscle satellite cells, differentiation of, cultured at 18°C with IDMEM containing 10% FBS, 215
muscle satellite cells from, 216
number of ESTs in GenBank, 4t
primordial germ cells of, transfected with vasa-GFP gene, 224, 225
sea water-adapted, efficacy of type I and spruce budworm AFP at improving freeze resistance of, 261
spermatogonia from, transplanted into masu salmon, 227–228
sperm extenders used for, 308
transcriptomic analysis of oocyte quality in, 185, 186
transcriptomic analysis of unfertilized eggs of, 179
transgene expression and transmission in, 236
transgenic, overexpression of follistatin in, 291
transplanted spermatogonia from and embryos obtained by fertilization of egg and sperm from triploid masu salmon, 230
viral DNA vaccines for, 155t, 156t
viral hemorrhagic septicemia in, 156
Rainbow trout spleen, blastula-stage zebrafish embryo, RTS34st cell line derived from, 194
Rainanavirus, 142
full genome sequences available for, 85
Randomly amplified polymorphic DNAs (RAPDs), penaeid species and, 35
Rapid amplification of cDNA ends, bidirectional, 5
RAREs. See Retinoic acid response elements
RBIV. See Rock bream iridovirus
Recombinant DNA, xii
Recombinant inbred lines, 56
Recombinant vaccines, xi
Recombination, Cre-mediated
Recombination, gene-based
Recombination, gene expression-based
Recombination, gene expression-based
Recombination, site-specific, 244
Recombination-activating genes, 123
Recombination-activating genes, 139
Recombination between sexes, halibut
Recombination between sexes, halibut
linkage map and, 49
“Redband” varieties, high temperature tolerance among, 63
Red fluorescent protein, 196, 198, 275
Red Queen hypothesis, 132
Red seabream iridovirus, 86
genus, accession number, and references, 85t
viral DNA vaccines against, 155t
Red seabream iridovirus, 86
genus, accession number, and references, 85t
viral DNA vaccines against, 155t
Rejection of transplanted cells, overcoming, 224–225
Relative percent survival, DNA vaccines and, 157, 158
Renibacterium salmoninarum ATCC 33209, genomic sequencing of, 90t
Reporter genes, 235
Replicase gene, 239
Reproduction control, 347
Reproductive technologies cryobanking combined with, 313
Index
Index

Reproductive technologies (Continued)
oocyte cryopreservation and, 309–310
sperm cryopreservation and, 307–309
Response elements (REs), 275
response of, to environmental pollutants, summary, 276
Restriction endonuclease fingerprinting, *A. salmonicida* studies and, 91
Restriction enzymes, xii
Restriction fragment length polymorphisms pedigree analysis and, 46
penaeid species and, 35
Retinoic acid response elements, response of, to environmental pollutants, 276
Retinoid X response elements, response of, to environmental pollutants, 276
Return on investment, gene biotechnologies for commercial aquaculture and, xii
Reverse transcriptase, xii
RFLPs. See Restriction fragment length polymorphisms
RFP. See Red fluorescent protein
Ribosomal DNA (rDNA) characterizing karyotypes of scallops and fish with probes to, 73
localization of, in particular aquaculture strains, 71–72
repetitive sequences and, 71
RILs. See Recombinant inbred lines
RNA, clones and utilization of, 60–61
RNAi-based applications methods to trigger gene silencing by, in shrimp, 29, 34–35
feeding or bacteria-mediated RNAi, 34
injection of dsRNA, 29, 34
in vitro delivery to primary cell cultures, 34
in shrimp aquaculture, 29, 34–35
RNAi-based experiments, in Penaeid shrimp, 30–33
RNA interference (RNAi), 21
gene function and, 89
gene knockdowns and, 288
as tool to promote antiviral protection in shrimp, 34–35
as tool to unravel gene function in vivo, 34
Roche Genome Sequencer FLX system, 35
Rock bream iridovirus, 86
genus, accession number, and references, 85
rpl64 gene, early embryonic development in zebrafish and, 186
RPS. See Relative percent survival
RSIV. See Red seabream iridovirus
RTS34st feeder cells, pluripotency of zebrafish ES cells maintained by, 195
RXRES. See Retinoid X response elements
S
SAGE. See Serial analysis of gene expression
Salinity tolerance, 347
Salmon freeze-resistant, future directions in production of, 260–262
increasing functional levels of AFP, 260–263
tissue-specific expression, 263
Salmonella, live attenuated bacteria and, 128
Salmonid aquaculture, temperature tolerance and, 62–63
Salmonid clonal lines, utility of, 55
Salmonid fish farms, females preferred by, 74
Salmonid growth enhancement case study, 328, 334–335
comparing growth-selected and GH-enhanced phenotypes, 328, 334–335
Salmonid populations fitness-related trait divergence between wild and farmed, GH transgenic or GH-treated salmonids compared in natural or near-natural lab environments, 331r–333r
fitness-related trait divergence between wild and growth selected, GH transgenic or growth hormone-treated vs. artificial tanks or aquaria, 329r–330r
Salmonids cell lines from ATCC available for, 207
families of centromeric sequences in, 73
humoral immune response in, 121
indirect feminization approach and, 45
microarray platforms available for, 6
sperm cryopreservation studies for, 307
Salmonid species aquaculture diets fed to, 61
generation times for, 56–57
Salmoniformes, selected microarray platforms, overview of, 7t
Salvelinus genus, families of centromeric sequences in species of, 73
SAM. See Significance Analysis of Microarrays
Sampling, limited, clonal lines and, 58
Sandoz Canada, 283
Sandoz USA, 283
Satellite cells primary cell culture methods for, 214–216
tissue growth, primary cell culture methods for, 214–216
SAVR. See Systemic antiviral responses
Scallop, types of karyotypes in, 73
SCF. See Stem cell factor
Scientific research, interests of aquaculture industry aligned with, 347
Scottish hatchery, halibut broodstock pedigree analysis, 48r
Sdfl1a, recombinant, growth of zebrafish PGCs and, 199, 199
Sdfl1b, recombinant, growth of zebrafish PGCs and, 199, 199
SDF1/Sdf1, PGCs and, 199
SD locus, salmonid fish species and, 74–75
SDS-PAGE, 84
Seabass (*Dicentrarchus labrax*), sperm extenders used for, 308
Sea cage aquaculture, low temperature limitations to, 258–259
Seafood products, capacity of fishing industry and annual demand for, 348
Sea perch, ES-like cell lines established for, 195
Sea squirt (*Ciona intestinalis*), AMP ESTs in hemocyte libraries identified in, 107
Self-organizing maps, 12
Senegalese sole (*Solea senegalensis*) microarray platforms for, 7t
oligo-based microarrays for, 94
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td></td>
<td>Sequence data, functional information from, 86–87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence-specific gene silencing, gene function and, 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serial analysis of gene expression, 178</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17alpha-methylidihydrotestosterone, sex control in teleosts and, 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17alpha-methyltestosterone, 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17β-estradiol, sex control in teleosts and, 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex chromosomes, identification and characterization of, 74–75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex determination, for Atlantic halibut, 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sex reversal, in Atlantic halibut, 45–46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sexual dimorphism, clonal fish and, 64–65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SGIV. See Singapore grouper iridovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SGIV genes, morpholinos and functional analysis of, 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SGIV proteins, structural and nonstructural, 144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shellfish. See also DNA vaccines, for viral diseases of farmed fish and shellfish cultured, pathogens identified in, 76–77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short interfering RNA (siRNA), 89, 187</td>
</tr>
<tr>
<td></td>
<td></td>
<td>injections of, in shrimp, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNAi-based experiments in Penaied shrimp and, 33r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shotgun proteomics, 142, 143–144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrimp analytical challenges in genomics and genetics of, 36–37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EST collection as approach to gene discovery in, 21–22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genetic maps and, 35–36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>large insert size genomic libraries and, 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium- to high-throughput studies of differential expression and gene discovery in, 22, 25, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>penaeidins isolated from, 106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>single nucleotide polymorphisms and, 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>viral DNA vaccines for, 156t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white spot syndrome virus in, 141–142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrimp aquaculture feeding or bacteria-mediated RNAi and, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methods to trigger silencing in shrimp, 29, 34–35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>injection of dsRNA, 29, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in vitro delivery to primary cell cultures, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNAi-based applications in, 29, 34–35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrimp epithelia, WSSV-infected cells in, 142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrimp farming, infections and, 34–35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siggenes, 10r, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significance Analysis of Microarrays, 9, 10r, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silencers, 239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short interfering RNA (siRNA), 89, 257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type AFP mRNA expression, skin-type AFP, liver-type AFP vs., 298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Six pack” phenotype, 297, 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in P1 juvenile transgenic fish overexpressing follistatin, 296, 298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-year-old P1 transgenic fish with, 298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin type AFP, liver-type AFP vs., 257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spruce budworm AFP, improving freeze resistance of rainbow trout and, 261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squint, recent work on, 184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSH. See Suppression subtractive hybridization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSH cDNA libraries. See Suppression subtractive hybridization cDNA libraries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical analysis of gene expression differences, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stellata sturgeon (Acipenser stellatus), dispermic androgenesis in, 314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stem cell factor, culture of pluripotent mammalian EG cells and, 195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stem cells, self-renewal of, 193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stem cell technology, application of, 203–204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to marine biotechnology, 203–204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stickleback gene expression-based toxicogenomics approach applied to, 277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus iniae, genomic sequencing of, 90t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spawning channels for chinook salmon, 131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spawning records, errors in, pedigree analysis and, 47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Species invasions, ecology, biodiversity and, 326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm cryopreserved, clonal line approach and, 57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>freezing and thawing protocols, steps in, 307–308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spermatogonia sexual plasticity of, 227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transdifferentiation of, from adult fish into eggs, 227–228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm banks, for conservation purposes, 314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm collection, 307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm cryobanks, 307, 313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm cryopreservation, 203–204, 307–309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm freezing, 308, 309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm loading, 308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm quality analysis, 307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sperm thawing, 309</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring ice conditions, maximum, in Atlantic Canada, 259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring viremia of carp virus, viral DNA vaccines against, 155t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spruce budworm AFP, improving freeze resistance of rainbow trout and, 261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squamata, 184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus iniae, genomic sequencing of, 90t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus iniae, 277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus iniae, genomic sequencing of, 90t</td>
</tr>
</tbody>
</table>
Index

Sturgeon
- germ cell transplantation and, 223
- sperm cryopreservation studies for, 307

Styelin, 106
- distribution and spectrum of activity of, 109r

Subunit vaccines, xi

Succrose, embryo cryopreservation and, 311

Support vector machines, 36, 37

Suppression subtractive hybridization, 22, 25
- antimicrobial peptides and, 107 qPCR and, 129

Suppression subtractive hybridization cDNA libraries, 4, 5, 13

Surrogate parents, germ cell transplantation and, 224

Surrogate parent technology, prospective uses for, 229–230

Survival rates, clonal lines and, 58

Sustainable development principle, 57

SVMs. See Support vector machines

Swanson clonal line, of rainbow trout, 57

Swanson doubled haploid clonal line, in rainbow trout genome project, 61

SWI/SNF chromatin remodeling complex, 185

Systemic antiviral responses, 165

T

Tachycitin, distribution and spectrum of activity of, 109r

Tachyplesin, 106, 108, 110
distribution and spectrum of activity of, 109r
- fungal growth inhibited by, 108

Tachyplesin I, antiparasitic activity of, 110

Tap pili (tapA), bioinformatic analysis of A. salmonicida and, 92

Taxonomy Browser (NCBI), 13

TCDD, 272

TCDD-targeted tissues, identifying, transgenic zebrafish embryos and, 274

T-cell antigen receptors (TCRs), 123

T-cytotoxic lymphocytes, 160

Teleosts
diversity among, 121
- improving transgenesis in, 247

sex control in, 45

species with genomic resources and number of ESTs in GenBank, 4r

transposable elements in, 73

Teleost species, commercial rearing of monosex stocks of, 44

Temperature tolerance, 62–63, 347.
- See also Antifreeze proteins; Freeze resistance; Heat stress resistance

Temporal control of transgene, heat shock system and, 247

Tenebrio AFP, ice-binding motif with, 262

Testis triploid masu salmon, cross sections of, 229

Tetracycline-off system, for induction of transgene expression, 245

Tetracycline regulation system, 262

Tetracycline-off system, for induction of transgene expression, 245

Tetradion, genome sequences available for, xii

Tetradion nigroviridis, transposable elements localized in, 73

Tetraodon nigroviridis, transposable elements localized in, 73

tet regulatory elements, 244

TFs. See Transcription factors

TGF-β inhibition in fish, myostatin and, 294

TGF-β ligands, activin receptor signaling pathway utilized by, 292

TGF-β signaling, regulation of piscine muscle growth and, 300

Tg(tinm1g1gfp) transgenic medaka, 271

Thawing, of sperm, 308

T-helpper cells, 160

Thermal hysteresis, 255, 262

Thermal tolerance, clonal lines and, 62–63

34 dDa AFP, winter flounder and secretion of, 256

Thyroid hormone response element, response of, to environmental pollutants, 276

Tilapia (Oreochromis aureus)

ActRIIB protein injection and increased size of, 294
- clonal lines of, 55
- dechorionating embryos of, 287

Titin-cap, 293

TNF. See Tumor necrosis factor

TNF-alpha

EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r

microscopic changes in rainbow trout mononuclear phagocytes and, 210

studies using trout macrophages and, 212

TNF decoy receptor, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r

To12-mediated transgenesis, generating transgenic zebrafish with use of, 236, 237, 238

To12 transposable element, 236

Tourism, aquaculture and, 349

Toxicogenomics, microarrays and, 276–277

Toxicological screening, fluorescent transgenic embryos/larvae used for, 273, 273–274

Toxicoology, aquatic, small fish models as sentinels in, 268

Trait-relevant gene discovery, targeted, in finfish, 4–6

Transcription factors, 239

Transferrin, DNA vaccine vector construction and, 159

Transforming growth factor beta superfamily, of secreted cytokines, embryogenesis signaling and, 183–184

Transforming growth factor-beta muscle regulatory pathway, description of, 292

Transforming growth factor-beta superfamily members, muscle growth/differentiation and, 291

Transgene expression in fish

Cre recombinase and activation of, 246
- regulation of, 239, 347
- spatial and temporal regulation of, 235–247
- tetracycline-off system for induction of, 245

Transgene insertion site, location of, 235

Transgene integrants, detection of, xii

Transgenes
- defined, 235
- FISH and, 71–74
- hypermethylation of, 238
- phenotypic expression and influence of, 335
Transgenesis, phenotypic enhancement strategy of, vs. intentional selection, 323
Transgenesis efficiency, limitations in, 238–239
Transgene X, 243, 245, 246
Transgenic animals, lower element of predictability in, vs. in farmed animals relative to risk assessment, 335
Transgenic biomonitoring fish advantages of, 274–275 early, development of, 268 multicolor, 275–276 Transgenic expression, AMPs, disease-resistant species for aquaculture and, 112–113 Transgenic fish, 235–236 Transgenic animals, lower element of Transgene X, 235–236 agarose gel showing PCR amplicoms from, 295 creating, most common method of, 323 cryopreservation and, 314 designer promoters in, 275 environmental monitoring and toxicology applications with, 267–277 hyperplasia of muscle fibers in, 298–299 muscle sections (representative) from, 300 Transgenic fish project, history of, funding and patent issues, 282–284 Transgenic lines, established, primary transgenic animals and, 236 Transgenic organisms, phenotypic expression of, 324–325 Transgenic tilapia Transgenic trout follistatin overexpression and production of, 294–296 Transglutaminase, RNAi-based experiments in Penaeid shrimp and, 31r Transposable elements, localization of, in model fish genomes, 73 Transposase-mediated transgenesis, 236–238 Transposon-mediated gene transfer, 247 Transposons defined, 236 FISH and, 71–74 TreeView, 12 TREs. See Thyroid hormone response elements Tribolida sp., piscidin 2 active against, 110 Triploid fish male and female, sterility of, 228 sterile, but with normal somatic cells, 228–229 sterility of, reason for, 229 Triploid musa salmon recipients, oocytes of, into which rainbow trout spermatogonia had been transplanted, 230 TRITC-labeled grey tilapia blastula cells, larvae examined for presence and distribution of labeled cells, 287, 288 Trout, antifreeze proteins and, 256 Trout macrophages, results of studies using, and impact on aquaculture, 212, 214 Trout mononuclear phagocytes, results of studies using, and impact on aquaculture, 212, 214 Trout macrophages, results of studies using, and impact on aquaculture, 212, 214 Trout macrophages, results of studies using, and impact on aquaculture, 212, 214 Trout macrophages, results of studies using, and impact on aquaculture, 212, 214 Trout macrophages, results of studies using, and impact on aquaculture, 212, 214 Trout muscle satellite cells, 214–219 primary cell culture methods for, 214–216 subcellular localization of endogenous GLUT4 in, 218 time course of insulin-stimulated 2-deoxyglucose uptake in, 217 Trout Mx1 promoter, DNA vaccine vector construction and, 160 Trout protein 1, differentially regulated, EST size, accession # of similar protein, species most similar to, BLASTx E-value, and clones in 12 hour and 30 hour ESTs, 213r Trypanosoma brucei, mussel defenses and fragments active against, 110 T7-Pac-DsRed-nanos-3’ UTR construct cDNA encoding with, 201 diagram of, 201 Tumor necrosis factor, 88, 160 Turbot embryo, at tail bud, showing different envelopes and compartments, 310 Turbot (Psetta maxima), microarray platforms for, 7r Turbot (Scophthalmus maximus) oligo-based microarrays for, 94 primary cell culture methods for head kidney from, 212 sperm cryopreservation studies for, 307 sperm extenders used for, 308 viral DNA vaccines for, 156 Two-dimensional gel electrophoresis, 142 Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), 84 Type II ethical problems, defined, 346 Type III secretion system, A. salmonicida and, 91, 94 U UAS. See Upstream activating sequence Unigene human gene symbols, 12 Unintentional selection, 325 Unisex populations, industry preference for, 74 Unsupervised hierarchical clustering, 11 Upstream activating sequence, 242 Utilitarian principle, 351 V V. anguillarum, transgenic expression and resistance against, 112 Vaccine adjuvants, 112 Vaccine development genomics, proteomics and, 97–98 Vaccines, xi. See also DNA vaccines, for viral diseases of farmed fish and shellfish attenuated, 98 knowledge about fish immunity and, 127–129 adjuvants, 128 live attenuated bacteria as carriers, 128–129 method of delivery, 128
Index

Viral promoters, 242
Viral replication, LITAF and, 88
Viral vaccines, basic formulations used for, 153
Virtue ethics, 352
Vitellogenin receptor, RNAi-based experiments in Penaeid shrimp and, 32r
Vitellogenins, xenoestrogens and, 269
Vitrification, 306, 311, 312
VivoRx, 283
VP2, 157
VP3, 157
VP9, structural analysis of, 149–150
Vp15, RNAi-based experiments in Penaeid shrimp and, 32r
Vp19, RNAi-based experiments in Penaeid shrimp and, 32r
VP16 trans-activator, 244
VP26 localization and structure of, 148 structural analysis of, 147, 149
VP28, 158, 159
localization and structure of, 148 RNAi-based experiments in Penaeid shrimp and, 31r, 32r
structural analysis of, 147, 149
VP281, RNAi-based experiments in Penaeid shrimp and, 31r
W
Walk-back method, aquaculture and, 50
Water pollution detection, transgenic fish systems and, 270r
Xenoestrogens, 269
Xenotransplantation, 347
clinical islet, producing ideal donor tissue for, 288
PGC-mediated gene manipulation combined with, 198 regulation of, 283 transgenic tilapia for, 281–289 Xenozootic diseases, islet transplantation and, 282 X-ray crystallography, 141

Wild populations, interbreeding of farmed populations and, 327
Wingless signaling, developmental processes controlled by, 183
Winter flounder, 263
AF(G)P in, 255
discovery of hyperactive AFP from, 263
increasing functional level of AFP and, 260–261
as model for antifreeze protein freeze resistance strategies, 255–258
vitrification study and, 311–312
WSSV. See White spot syndrome virus
WSSV proteins, structural and nonstructural, 144

X
Xenobiotic compounds, biomonitoring transgenic fish systems and, 270r

Y
Yellow fluorescent protein, 275
Yellow perch (Perca flavescens) number of ESTs in GenBank, 4r primary cell culture methods for head kidney from, 212
Yellowtail flounder (Limanda ferruginea), antifreeze proteins and, 256
Yersinia ruckeri genomic sequencing of, 90r vaccines for, 153
YHV-binding protein, RNAi-based experiments in Penaeid shrimp and, 31r
YHV-protease, RNAi-based experiments in Penaeid shrimp and, 32r
Yolk-sac resorption (YSR), developmental success assessed through embryonic survival at eyed stage and percentage of normal alevins at, 186
Index

Z
Zebrafish (*Danio rerio*), 89
 beta-catenin expression and, 183
 Brg1 in, 185
 chemokines in, 127
 chilling sensitivity in, 311
 clonal lines of, 55
 Cre recombinase system tested in, 245
 cytokines as adjuvants for DNA vaccines and, 161
 derivation of cell cultures from, 194–196
 enhancer and gene-trapping strategies and, 242
 establishment of, as vertebrate model, xii
 Gal4 enhancer trap lines active in neural circuits of, 243
 GDF-11 ortholog discovered in, 294
 gene expression-based toxicogenomics approach applied to, 277
 genome sequences available for, xii
 heat shock response tested in, 247
 Irf6 and differentiation of enveloping layer in, 184
 length of time plasmid DNA detected in, 159
 MBT in, 180
 microarray platforms for, 6, 7t
 misty somites and embryonic development in, 185
 most complete microarray platforms for, 13
 multicolor transgenic, 276
 oligo arrays, reducing redundancy of platforms for, 13
 oocyte cryopreservation studies and, 310
 processed microRNAs in, 180
 role of maternal mRNAs in oocyte quality and early embryonic development, 182t
 as sentinels in aquatic toxicology, 268
 Tol2-mediated transgenesis and generation of, 236, 237, 238
 transcriptomic analysis of oocyte and early embryo in, 178–179
 transcriptomic analysis of oocyte quality in, 186
 transgene expression and transmission in, 236
 transgenic, GATA-2 gene and, 241
 vasa RNA expression in, 183
 vertebrate development investigations and, 179
 vtg mRNAs inducible in, 269
 Zebrafish embryonic development, maternal and zygotic gene activities during, 178
 Zebrafish ES cells, targeted incorporation of pTG-Neo-DsRed-ntl or pTG-Neo-DT-ntl into, 197
 Zebrafish PGC cultures, 198–199
 derivation of, 196, 198–202
 germ-line chimera production from, 202–203
 Zebrafish Sdf1, growth of zebrafish PGCs and, 199
 Zhikong scallops, type of karyotype in, 73
 Zinc-finger nucleases, targeted deletions introduced into zebrafish genome with, 203
 Zta6 cells, spermatogonial stem cells in zebrafish and, 195–196
 Zygotic transcription, activation of, 177
 Zymosan, phagocytosis of, 211