Contents

About the Authors xiii
Series Preface xv
Preface xvii

1 Introduction 1
1.1 Numerical simulation 2
1.1.1 Conceptualization 2
1.1.2 Validation 5
1.1.3 Discretization 7
1.1.4 Verification 8
1.1.5 Decision-making 9
1.2 Why is numerical accuracy important? 11
1.2.1 Application of design rules 11
1.2.2 Formulation of design rules 12
1.3 Chapter summary 14

2 An outline of the finite element method 17
2.1 Mathematical models in one dimension 17
2.1.1 The elastic bar 17
2.1.2 Conceptualization 24
2.1.3 Validation 27
2.1.4 The scalar elliptic boundary value problem in one dimension 28
2.2 Approximate solution 29
2.2.1 Basis functions 32
2.3 Generalized formulation in one dimension 33
2.3.1 Essential boundary conditions 35
2.3.2 Neumann boundary conditions 37
2.3.3 Robin boundary conditions 37
2.4 Finite element approximations 38
2.4.1 Error measures and norms 41
2.4.2 The error of approximation in the energy norm 43
CONTENTS

2.5 FEM in one dimension 44
 2.5.1 The standard element 44
 2.5.2 The standard polynomial space 45
 2.5.3 Finite element spaces 47
 2.5.4 Computation of the coefficient matrices 49
 2.5.5 Computation of the right hand side vector 52
 2.5.6 Assembly 55
 2.5.7 Treatment of the essential boundary conditions 58
 2.5.8 Solution 61
 2.5.9 Post-solution operations 62

2.6 Properties of the generalized formulation 67
 2.6.1 Uniqueness 67
 2.6.2 Potential energy 68
 2.6.3 Error in the energy norm 68
 2.6.4 Continuity 69
 2.6.5 Convergence in the energy norm 70

2.7 Error estimation based on extrapolation 73
 2.7.1 The root-mean-square measure of stress 74

2.8 Extraction methods 75

2.9 Laboratory exercises 77

2.10 Chapter summary 77

3 Formulation of mathematical models 79
 3.1 Notation 79
 3.2 Heat conduction 81
 3.2.1 The differential equation 83
 3.2.2 Boundary and initial conditions 83
 3.2.3 Symmetry, antisymmetry and periodicity 85
 3.2.4 Dimensional reduction 86
 3.3 The scalar elliptic boundary value problem 92
 3.4 Linear elasticity 93
 3.4.1 The Navier equations 97
 3.4.2 Boundary and initial conditions 97
 3.4.3 Symmetry, antisymmetry and periodicity 99
 3.4.4 Dimensional reduction 100
 3.5 Incompressible elastic materials 103
 3.6 Stokes’ flow 105
 3.7 The hierarchic view of mathematical models 106
 3.8 Chapter summary 106

4 Generalized formulations 109
 4.1 The scalar elliptic problem 109
 4.1.1 Continuity 111
 4.1.2 Existence 112
 4.1.3 Approximation by the finite element method 112
 4.2 The principle of virtual work 115
 4.3 Elastostatic problems 117
4.3.1 Uniqueness
4.3.2 The principle of minimum potential energy
4.4 Elastodynamic models
4.4.1 Undamped free vibration
4.5 Incompressible materials
4.5.1 The saddle point problem
4.5.2 Poisson’s ratio locking
4.5.3 Solvability
4.6 Chapter summary

5 Finite element spaces
5.1 Standard elements in two dimensions
5.2 Standard polynomial spaces
5.2.1 Trunk spaces
5.2.2 Product spaces
5.3 Shape functions
5.3.1 Lagrange shape functions
5.3.2 Hierarchic shape functions
5.4 Mapping functions in two dimensions
5.4.1 Isoparametric mapping
5.4.2 Mapping by the blending function method
5.4.3 Mapping of high-order elements
5.4.4 Rigid body rotations
5.5 Elements in three dimensions
5.6 Integration and differentiation
5.6.1 Volume and area integrals
5.6.2 Surface and contour integrals
5.6.3 Differentiation
5.7 Stiffness matrices and load vectors
5.7.1 Stiffness matrices
5.7.2 Load vectors
5.8 Chapter summary

6 Regularity and rates of convergence
6.1 Regularity
6.2 Classification
6.3 The neighborhood of singular points
6.3.1 The Laplace equation
6.3.2 The Navier equations
6.3.3 Material interfaces
6.3.4 Forcing functions acting on boundaries
6.3.5 Strong and weak singular points
6.4 Rates of convergence
6.4.1 The choice of finite element spaces
6.4.2 Uses of a priori information
6.4.3 A posteriori error estimation in the energy norm
6.4.4 Adaptive and feedback methods
6.5 Chapter summary
7 Computation and verification of data 215
 7.1 Computation of the solution and its first derivatives 215
 7.2 Nodal forces 217
 7.2.1 Nodal forces in the h-version 217
 7.2.2 Nodal forces in the p-version 220
 7.2.3 Nodal forces and stress resultants 221
 7.3 Verification of computed data 222
 7.4 Flux and stress intensity factors 228
 7.4.1 The Laplace equation 228
 7.4.2 Planar elasticity 232
 7.5 Chapter summary 235

8 What should be computed and why? 237
 8.1 Basic assumptions 238
 8.2 Conceptualization: drivers of damage accumulation 238
 8.3 Classical models of metal fatigue 240
 8.3.1 Models of damage accumulation 243
 8.3.2 Notch sensitivity 246
 8.3.3 The theory of critical distances 248
 8.4 Linear elastic fracture mechanics 250
 8.5 On the existence of a critical distance 252
 8.6 Driving forces for damage accumulation 253
 8.7 Cycle counting 254
 8.8 Validation 255
 8.9 Chapter summary 257

9 Beams, plates and shells 261
 9.1 Beams 261
 9.1.1 The Timoshenko beam 264
 9.1.2 The Bernoulli–Euler beam 269
 9.2 Plates 274
 9.2.1 The Reissner–Mindlin plate 276
 9.2.2 The Kirchhoff plate 280
 9.2.3 Enforcement of continuity: the HCT element 282
 9.3 Shells 283
 9.3.1 Hierarchic “thin-solid” models 286
 9.4 The Oak Ridge experiments 288
 9.4.1 Description 288
 9.4.2 Conceptualization 290
 9.4.3 Verification 291
 9.4.4 Validation: comparison of predicted and observed data 293
 9.4.5 Discussion 295
 9.5 Chapter summary 296

10 Nonlinear models 297
 10.1 Heat conduction 297
 10.1.1 Radiation 297
 10.1.2 Nonlinear material properties 298
CONTENTS

10.2 Solid mechanics
10.2.1 Large strain and rotation
10.2.2 Structural stability and stress stiffening
10.2.3 Plasticity
10.2.4 Mechanical contact

10.3 Chapter summary

A Definitions
A.1 Norms and seminorms
A.2 Normed linear spaces
A.3 Linear functionals
A.4 Bilinear forms
A.5 Convergence
A.6 Legendre polynomials
A.7 Analytic functions
A.7.1 Analytic functions in \mathbb{R}^2
A.7.2 Analytic curves in \mathbb{R}^2
A.8 The Schwarz inequality for integrals

B Numerical quadrature
B.1 Gaussian quadrature
B.2 Gauss–Lobatto quadrature

C Properties of the stress tensor
C.1 The traction vector
C.2 Principal stresses
C.3 Transformation of vectors
C.4 Transformation of stresses

D Computation of stress intensity factors
D.1 The contour integral method
D.2 The energy release rate
D.2.1 Symmetric (Mode I) loading
D.2.2 Antisymmetric (Mode II) loading
D.2.3 Combined (Mode I and Mode II) loading
D.2.4 Computation by the stiffness derivative method

E Saint-Venant’s principle
E.1 Green’s function for the Laplace equation
E.2 Model problem

F Solutions for selected exercises

Bibliography

Index