Champions, 170, 201–202, 213
Change management, 161
Change orders, 185, 194–195
Chevalier, Roger, 154
Cisco, 10
Collaboration tools, 23, 24, 59–61
Collins, Jim, 137–138
Collisions, 185, 187–188, 194–195
Communication, 23–24
Compliance, 78, 180–181
Computer-aided design (CAD) software, 1, 4–5, 45
Computer-aided facility management (CAFM), 13
Computerized maintenance management system (CMMS), 13, 15
Configuration management, 219–220
Constraints, 211
Constructability analysis, 7–8
Constructability models, 48
Construction administration (CA), 185
Construction costs, 30–31, 52–58
Construction documentation (CD), 5, 26–27
Construction documents phase, 44, 118
Construction drawings, 46–47
Construction process, 28–31
accuracy of, 28–29
advantages of BIM for, 17–20
simulation of, 48
Construction Specifications Institute (CSI), 70
Content and specification library, 78, 173–176
Content management, 79
Contingency fee, 183, 188
Contractor's BIM, 48–49, 65–66
Crossing the Chasm (Moore), 133–134
Crowdsourcing, 21–22, 70
CSI MasterFormat, 76
Culture, technology and, 131–132

Data management, 67
Data mining and analysis, 6–7
Data standards, 75–79, 211
Delays, 187, 188, 195
Deliverables requirements:
in owner's BIM, 72–75
process requirements vs., 68–70
Department of Defense (DOD), 165
Design:
CAD in, 5
identifying issues with, 48
impact of paradigm shift on, 118
phases of, 43–44
Design-bid-build projects, 52–54
Design development phase, 44, 118
Design guidelines, 26–28
Design intent model, 6
Discrepancy log, 185, 186
Discrepancy Reports, 69

Education:
in 4E methodology, 127–128
leadership in, 170–173
E-mail, 124–125
Energy analysis, 31–33
Energy Independence and Security Act (EISA), 32
Enterprise approach, 179
Enterprise resource planning (ERP), 132, 149–150
EU Energy Performance of Buildings Directive, 32
Evaluation (4E methodology), 129
Execution, 177–182
boiling the ocean approach, 178–179
compliance approach, 180–181
enterprise approach, 179
in 4E methodology, 129
point solution approach, 179–180
Executive summary, 208
Experience (4E methodology), 130

Fabrication intent model, 6
Facility maintenance, 11
CMMS for, 13, 15
predictive, 7
preventive, 35–37
software for, 15–16
Facility management model, 6, 119
Facility management (FM) software, 13, 66
Facility management (FM) systems, 10–16
Fee set-aside, 183, 188
Finance, impact of paradigm shift on, 118–119
Findings and conclusions, 213–214
4-D BIM models, 30–31
4E methodology, 127–128

Gap analysis, 153–159
General Services Administration (GSA), 17, 41–42, 165
Good to Great (Collins), 137–138
Google, 21
Government agencies, 41–42, 67–68, 165
Graphisoft, 45, 143
Green analysis and simulation, 62–65
Green Building Act (New York City), 32
Group purchasing organizations (GPOs), 26
Hard collisions, 187
Hardware (for BIM), 119–120, 160
Heery, 131
Human resources, impact of paradigm shift on, 121–123
iBIM Constructability Index (CI), 7–8, 72
IBM, 10
Implementation:
challenges with, 2–3
data standards, 77–78
degree of failure in, 217
owners’ incentives for, 17–20
playbooks for, 159–170
stakeholder engagement in, 199
Information, 42–43
Information technology (IT) systems, 10
Input (playbook), 160
Integrated project delivery (IPD), 18–19, 68, 162, 164–165
International Facility Management Association (IFMA), 13
Internet use, 125
Interoperability, 156
IT department, 119–121
Key performance indicators (KPIs), 75, 129, 193–198
Knowledge base, 170–171, 195–198
Kuhn, Thomas, 117–118
Leadership, educational, 170–173
Lean construction, 19
LEED certification, 31, 33, 34, 64
Legal department, 121
Legal issues, 26, 42
Liability issues, 26, 42
Life cycle green costing, 62
Macro standards, 76–77
Mail, 124, 125
Marketplace, surveying, 202
Massachusetts Institute of Technology (MIT), 124
MasterFormat, 211
Methodologies, 71–72
Model checkers, 27
Moore, Geoffrey, 133–134, 136
Move management, 12, 14
Naming conventions, 76
National Building Information Modeling Standard (NBIMS), 42, 76
Naval Facilities Engineering Command (NAVFAC), 41–42, 165
Navisworks, 156
Omniclass, 76
Output (playbook), 161
Owner, 1, 17–20, 220
Owner’s BIM, 65–75
BIM requirements document, 79–114
deliverables requirements, 72–75
process guidelines development, 70–72
for process vs. deliverables, 68–70
The Owner’s Dilemma (Bryson and Yetmes), 148
Paradigm shift(s), 2, 4, 117–138
in culture and technology, 131
historical, 124–126
organizational impact of, 130–131
responding to, 126–130
and speed of technology adoption, 133–138
People (in three Ps), 72, 147–149
Plan of action, 151
Platforms (in three Ps), 72, 150
Playbooks, 159–170
and change management, 161
components of, 159–161
field staff in, 164–165
objectives/requirements in, 165–170
training plan in, 162–164
vocabulary in, 161–162
Point solution approach, 179–180
Predictive maintenance, 7
Preferred vendor programs, 172–173
Preventive maintenance, 35–37
Process(es):
standard, 160
in three Ps, 72, 149–150
Process guidelines, 70–72
Process requirements, 68–70
Procurement, 24–26
Product catalogs, 59–62
Product cost estimates, 25
Product information models (PIMs), 8
Product manufacturer analysis, 8
Programming phase (design), 44
Project delivery, 18–20
Project palette, 78
Project Resource Manual (CSI), 70
Proof of concepts (POCs), 129
Prototyping, 173–175
Quality of data, 211, 212
Quantity surveys, 52–58, 62–64

Requests for information (RFIs), 129, 183–186, 194
Research, 196, 199–207, 209
Return-on-investment (ROI), 145–146, 189–193, 217–218
Revit, 135–136, 143, 144, 156
Revolutionary science, see Paradigm shift
Risk assessment, 73, 183
Risk management, 183–189

Schematic design phase, 44
Seminars, 206
Shadowing users, 207
Simulation, 48, 62–65
Smaller projects, BIM for, 22–23
SMARTBIM Library, 52, 61
Social media, 131
Soft collisions, 187
Software (for BIM), 119–120, 156–158
Solibri model, 27, 156
Space management, 12, 14
Spearin Doctrine, 26
Stakeholders, 199
Standards:
 BIM, 42, 43, 70
data, 75–79, 211
 facility life cycle management, 70
 macro, 76–77
Standard processes, 160
Strategic planning, 139–152
 for facility management, 12–13
 plan of action developed from, 151
 software for, 15
 SWOT analysis, 140–147
 three Ps in, 147–151
The Structure of Scientific Revolutions (Kuhn), 117–118
Submittal process, 58–59, 69, 70
Summary of information, 207–212
Surveys:
 of marketplace, 202
 quantity, 52–58, 62–64
 of user community, 202–206
Sustainability, 31–35
SWOT analysis, 127, 137, 140–147
System collisions, 185, 187–188, 194–195
Tactics, 153–176
 BIM content and specification library, 173–176
 educational leadership, 170–173
 gap analysis, 153–159
 playbooks, 159–170
Technology, 3
 adoption of, 133–138
 culture and, 131–132
 paradigm shift vs., 4
 user experience with, 20–23
Telephones, 125, 126, 133
3-D models, 5, 59–60, 123
3-D movies, 61–62
Three Ps, 72, 147–151, 211
To-Be condition, 155–157
Training, 77, 158–160, 162–164
Trane, 50
2-D platform, 4
UNIFORMAT standard, 67–68, 76, 211, 212
U.S. Army Corps of Engineers (USACE), 17, 41–42, 156, 165, 168–170
Use cases, 209–211
User community, surveying, 202
User experience, 20–23
User interviews, 206–207
User roles, 199–201, 209
Videoconferencing, 126
Visualization, 23, 37, 63
Vocabulary (playbook), 161–162
Water usage analysis, 34
“What-if” scenarios, 63
Workshops, 206