Contents

Contributors
Preface

1 Production Systems around the World

Christian F. Gall

1.1 Ecological conditions

1.2 Systems

1.2.1 Small-scale milk production

1.2.2 Specialised milk production in large commercial dairies

1.2.3 Dairy ranching

1.2.4 Urban dairies

1.2.5 Pastoralists

1.3 Feed resources

1.4 Animal species used for milk production

1.4.1 Cattle

1.4.1.1 Milk yield

1.4.1.2 Milk composition

1.4.1.3 Milk production in the tropics

1.4.2 Sheep and goats

1.4.3 Buffalo

1.4.4 Camel

1.4.5 Mare

1.4.6 Yak

1.4.7 Reindeer

1.5 Breed improvement

1.5.1 Pure breeding

1.5.2 Artificial insemination

1.5.3 Embryo transfer

1.5.4 Genomic selection

1.5.5 Crossbreeding

1.6 Nutrition

1.7 Animal health

1.8 Reproduction

1.9 Rearing of youngstock

1.10 Housing

1.11 Milking

1.12 Milk marketing

1.12.1 Marketing by smallholders

1.12.2 Milk collection

1.12.3 Producer organisations
Contents

1.13 Economics of milk production 20
 1.13.1 Productivity 21
 1.13.2 Longevity and lifetime production 21
1.14 Criticism of milk production 22
 1.14.1 Resource use 22
 1.14.2 Impact on the environment 22
1.15 Dairy development 23
 References 24

2 Mammary Secretion and Lactation 31
Young W. Park, Pierre-Guy Marnet, Lucile Yart, and George F.W. Haenlein

 2.1 Introduction 31
 2.2 Origin and anatomy of mammary glands 32
 2.2.1 Types of mammalian species and mammary glands 32
 2.2.2 Anatomy of mammary glands of domestic animals 32
 2.3 Mammogenesis and mammary gland growth 33
 2.4 Milk ejection (lactogenesis) and secretion 35
 2.5 Maintenance of lactation (galactopoiesis) 36
 2.6 Secretion of milk and its constituents 38
 2.6.1 Types of milk secretion 38
 2.6.2 Milk secretion process 39
 2.6.3 Comparative composition of blood and milk nutrients 39
 2.7 Involution of the mammary gland 40
 2.8 Challenges and opportunities in mammary secretion today and tomorrow 41
 References 42

3 Milking Procedures and Facilities 46
Pierre-Guy Marnet

 3.1 Introduction 46
 3.2 Machine milked animals throughout the world 46
 3.3 Milking principles 48
 3.4 Milking machine components and effects on milk harvesting and quality 49
 3.4.1 Vacuum system 50
 3.4.2 Pulsation system 51
 3.4.3 Mechanical effect of machine milking on milk quality 51
 3.4.3.1 Specific action of cluster and liners 52
 3.4.3.2 Specific action at the milk pump level 53
 3.4.4 Optional components 53
 3.4.5 Milking parlors and milking stalls 54
 3.4.6 Storing and cooling devices 57
 3.4.7 Cleaning systems 58
 3.4.8 New kinds of materials and sensing devices for better milk quality 59
 3.5 Milking practices 59
 3.6 Milking management of animals 60
 3.6.1 Lowering milking frequency 60
 3.6.2 Increasing milking frequency (three milkings and more per day) 61
 3.7 Conclusions 61
 References 61
4 Milk Lipids
Michael H. Gordon
4.1 Introduction 65
4.2 Fatty acids 65
4.3 Triacylglycerols 67
4.4 Polar lipids: phospholipids and cholesterol 68
4.5 Conjugated linoleic acids 68
4.6 Genetic influences on milk fat concentrations and fatty acid profiles 70
4.7 Influence of feeds, feeding regimes, pasture and stage of lactation on milk lipids and their levels 71
4.8 Digestion of milk fat 72
4.9 Nutritional effects of milk fatty acids 72
4.10 Evidence for effects of milk fat on CVD from prospective cohort studies 74
4.11 Evidence about the effects of dairy products on non-lipid risk factors 75
4.12 Conclusion 75
References 75

5 Milk Major and Minor Proteins, Polymorphisms and Non-protein Nitrogen
Sándor Kukovics and Tímea Németh
5.1 Milk proteins 80
5.1.1 Factors affecting the protein content of the milk 81
5.2 The major milk proteins 81
5.2.1 Caseins 82
5.2.1.1 \(\alpha_s^1 \)-Casein 84
5.2.1.2 \(\alpha_s^2 \)-Casein 84
5.2.1.3 \(\beta \)-Casein 84
5.2.1.4 \(\kappa \)-Casein 84
5.2.1.5 The question of casein structure 84
5.2.1.6 The importance of casein structure 85
5.2.2 Whey (serum) proteins 86
5.2.2.1 \(\alpha \)-Lactalbumin 86
5.2.2.2 \(\beta \)-Lactoglobulin 86
5.3 The polymorphisms of milk proteins 86
5.3.1 The presence of polymorphisms in cattle populations 87
5.3.2 Effects on milk production 93
5.3.3 Effects on milk composition 94
5.3.4 Interactions 95
5.3.5 Effects on cheesemaking properties 95
5.3.5.1 \(\beta \)-Lactoglobulin 96
5.3.5.2 \(\kappa \)-Casein 96
5.3.5.3 \(\beta \)-Casein 97
5.4 Milk protein variants and human nutrition: the human benefit 97
5.4.1 Hypoallergenic milk 97
5.4.2 Biopeptides 97
5.5 The minor proteins 99
5.5.1 Lactoferrin 99
5.5.2 Serum albumin (bovine serum albumin) 99
5.5.3 Immunoglobulins 99
5.5.4 Hormones 100
5.5.5 Growth factors 100
5.5.6 Milk enzymes 100
 5.5.6.1 Lysozyme 100
 5.5.6.2 Lactoperoxidase 100
5.5.7 Metal-binding proteins 100
5.5.8 Vitamin-binding proteins 100
5.5.9 Glycoproteins 101
5.5.10 Lactollin 101
5.5.11 β2-Microglobulin 101
5.5.12 Osteopontin 101
5.5.13 Proteose peptone 3 101
5.5.14 Milk fat globule membrane proteins 101
5.6 Non-protein nitrogen 101
 5.6.1 Urea 102
References 103

6 Milk Protein Allergy 111
Melanie L. Downs, Jamie L. Kabourek, Joseph L. Baumert, and Steve L. Taylor

6.1 Introduction 111
6.2 IgE-mediated food allergy 111
 6.2.1 Mechanism 111
 6.2.2 Commonly allergenic foods 112
 6.2.3 Sensitization and its prevention 113
 6.2.4 Diagnosis of food allergies 113
 6.2.5 Prevention and treatment of food allergy 114
 6.2.6 Cows’ milk and avoidance diets 115
6.3 Delayed food allergies 116
6.4 Cows’ milk allergy 116
 6.4.1 Whey proteins 117
 6.4.1.1 β-Lactoglobulin 117
 6.4.1.2 α-Lactalbumin 117
 6.4.1.3 Minor whey proteins 118
 6.4.2 Caseins 118
6.5 Cross-reactivity with milk from other species 120
6.6 Effects of processing on allergenicity 121
6.7 Other mechanisms 123
References 124

7 Milk Carbohydrates and Oligosaccharides 129
Alessandra Crisà

7.1 Introduction 129
7.2 Lactose and minor sugar 129
 7.2.1 Composition and concentration of carbohydrate in milk and dairy products
 of different species 130
7.3 Oligosaccharides 134
 7.3.1 Purification and characterization of oligosaccharides from milk 135
 7.3.2 Methods for structural analysis 135
 7.3.3 Composition and concentration of oligosaccharides in milk of different species 136
7.4 Carbohydrates as prebiotics in the gastrointestinal tract 138
7.5 Other oligosaccharide functions 139
7.6 Genetics of carbohydrate metabolism during lactation 140
References 141
8 Milk Bioactive Proteins and Peptides
Hannu J. Korhonen and Pertti Marnila

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>148</td>
</tr>
<tr>
<td>8.2 Caseins</td>
<td>149</td>
</tr>
<tr>
<td>8.3 Whey proteins</td>
<td>149</td>
</tr>
<tr>
<td>8.3.1 α-Lactalbumin</td>
<td>149</td>
</tr>
<tr>
<td>8.3.2 β-Lactoglobulin</td>
<td>150</td>
</tr>
<tr>
<td>8.3.3 Glycomacropeptide</td>
<td>150</td>
</tr>
<tr>
<td>8.3.4 Lactoferrin</td>
<td>151</td>
</tr>
<tr>
<td>8.3.4.1 Antimicrobial effects</td>
<td>152</td>
</tr>
<tr>
<td>8.3.4.2 Immunological effects and cancer prevention</td>
<td>152</td>
</tr>
<tr>
<td>8.3.4.3 Applications and safety aspects</td>
<td>153</td>
</tr>
<tr>
<td>8.3.5 Lactoperoxidase and lysozyme</td>
<td>153</td>
</tr>
<tr>
<td>8.3.5.1 Lactoperoxidase</td>
<td>153</td>
</tr>
<tr>
<td>8.3.5.2 Lysozyme</td>
<td>154</td>
</tr>
<tr>
<td>8.3.6 Growth factors and cytokines</td>
<td>155</td>
</tr>
<tr>
<td>8.3.7 Immunoglobulins</td>
<td>156</td>
</tr>
<tr>
<td>8.3.7.1 Functions of immunoglobulins</td>
<td>156</td>
</tr>
<tr>
<td>8.3.7.2 Immunoglobulins and immune milk preparations</td>
<td>157</td>
</tr>
<tr>
<td>8.4 Bioactive peptides</td>
<td>158</td>
</tr>
<tr>
<td>8.4.1 Production systems</td>
<td>158</td>
</tr>
<tr>
<td>8.4.2 Functionality</td>
<td>159</td>
</tr>
<tr>
<td>8.4.2.1 Antihypertensive</td>
<td>159</td>
</tr>
<tr>
<td>8.4.2.2 Antimicrobial</td>
<td>159</td>
</tr>
<tr>
<td>8.4.2.3 Immunomodulatory</td>
<td>160</td>
</tr>
<tr>
<td>8.4.2.4 Mineral binding</td>
<td>161</td>
</tr>
<tr>
<td>8.4.3 Occurrence in dairy products</td>
<td>161</td>
</tr>
<tr>
<td>8.4.4 Applications</td>
<td>161</td>
</tr>
<tr>
<td>8.5 Other minor proteins</td>
<td>163</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>163</td>
</tr>
</tbody>
</table>

References 164

9 Milk Minerals, Trace Elements, and Macroelements
Frédéric Gaucheron

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>172</td>
</tr>
<tr>
<td>9.2 Macroelements in milk and dairy products from the cow</td>
<td>172</td>
</tr>
<tr>
<td>9.2.1 Calcium (Ca)</td>
<td>172</td>
</tr>
<tr>
<td>9.2.1.1 Calcium in the human organism and biological roles</td>
<td>172</td>
</tr>
<tr>
<td>9.2.1.2 Contents and chemical forms of Ca in milk and dairy products</td>
<td>172</td>
</tr>
<tr>
<td>9.2.1.3 Dairy contribution to the total Ca intake and Ca absorption</td>
<td>178</td>
</tr>
<tr>
<td>9.2.1.4 Physiological roles of Ca from milk and dairy products</td>
<td>178</td>
</tr>
<tr>
<td>9.2.1.5 Calcium supplementation of dairy products</td>
<td>180</td>
</tr>
<tr>
<td>9.2.2 Phosphorus (P)</td>
<td>180</td>
</tr>
<tr>
<td>9.2.2.1 Phosphorus in the human organism and biological roles</td>
<td>180</td>
</tr>
<tr>
<td>9.2.2.2 Contents and chemical forms of P in milk and dairy products</td>
<td>180</td>
</tr>
<tr>
<td>9.2.2.3 Dairy contribution to the total P intake and P absorption</td>
<td>181</td>
</tr>
<tr>
<td>9.2.3 Magnesium (Mg)</td>
<td>181</td>
</tr>
<tr>
<td>9.2.3.1 Magnesium in the human organism and biological roles</td>
<td>181</td>
</tr>
<tr>
<td>9.2.3.2 Contents and chemical forms of Mg in milk and dairy products</td>
<td>181</td>
</tr>
<tr>
<td>9.2.3.3 Dairy contribution to the total Mg intake and Mg absorption</td>
<td>181</td>
</tr>
</tbody>
</table>
9.2.4 Sodium (Na), chloride (Cl), and potassium (K) 181
 9.2.4.1 Sodium, chloride, and potassium in the human organism and biological roles 181
 9.2.4.2 Contents and chemical forms of Na, Cl, and K in milk and dairy products 182
 9.2.4.3 Dairy contribution to the total Na, Cl, and K intakes and Na, Cl, and K absorptions 182

9.3 Trace elements in milk and dairy products from the cow 182
 9.3.1 Iron (Fe) 182
 9.3.1.1 Iron in the human organism and biological roles 182
 9.3.1.2 Contents and chemical forms of Fe in milk and dairy products 182
 9.3.1.3 Dairy contribution to the total Fe intake and Fe absorption 183
 9.3.1.4 Iron supplementation of dairy products 183
 9.3.2 Copper (Cu) 183
 9.3.2.1 Copper in the human organism and biological roles 183
 9.3.2.2 Contents and chemical forms of Cu in milk and dairy products 183
 9.3.2.3 Dairy contribution to the total Cu intake and Cu absorption 184
 9.3.3 Zinc (Zn) 184
 9.3.3.1 Zinc in the human organism and biological roles 184
 9.3.3.2 Contents and chemical forms of Zn in milk and dairy products 184
 9.3.3.3 Dairy contribution to the total Zn intake and Zn absorption 184
 9.3.4 Selenium (Se) 185
 9.3.4.1 Selenium in the human organism and biological roles 185
 9.3.4.2 Contents and chemical forms of Se in milk and dairy products 185
 9.3.4.3 Dairy contribution to the total Se intake 185
 9.3.4.4 Selenium supplementation of dairy products 185
 9.3.5 The other trace elements in milk and dairy products from the cow 185
 9.3.5.1 Manganese (Mn) 185
 9.3.5.2 Iodine (I) 186
 9.3.5.3 Fluoride (F) 186
 9.3.5.4 Chromium (Cr) 187
 9.3.5.5 Lead (Pb) and cadmium (Cd) 187
 9.3.5.6 Cobalt (Co) 187
 9.3.5.7 Molybdenum (Mo) 187
 9.3.5.8 Arsenic (As) 187
 9.3.5.9 Nickel (Ni) 188
 9.3.5.10 Silicon (Si) 188
 9.3.5.11 Boron (B) 188

9.4 Minerals in milk and dairy products of other species 188
 9.4.1 Sheep 188
 9.4.2 Goat 188
 9.4.3 Buffalo 190
 9.4.4 Yak 190
 9.4.5 Camel 190
 9.4.6 Mare 191

9.5 Conclusion 191
 References 191

10 Vitamins in Milks 200
 Benoît Graulet, Bruno Martin, Claire Agabriel and Christiane L. Girard 200
 10.1 Introduction 200
 10.2 Availability of vitamins in milk in relation to human health 201
Contents

10.2.1 Fat-soluble vitamins 201
 10.2.1.1 Vitamin A 201
 10.2.1.2 Vitamin D 203
 10.2.1.3 Vitamin E 204
 10.2.1.4 Vitamin K 205
10.2.2 Water-soluble vitamins 206
 10.2.2.1 B-complex vitamins 206
 10.2.2.2 Vitamin C 211
10.2.3 Differences in milk vitamin content between bovine and other dairy species 211
10.3 Animal and nutritional factors modulating vitamin content in bovine milk 212
 10.3.1 Effects of feeding practices on vitamin concentrations in milk 212
 10.3.2 Non-dietary factors affecting milk concentrations of vitamins 214
10.4 Vitamin content in cheeses 214
10.5 Conclusions 215
References 215

11 Milk Minor Constituents, Enzymes, Hormones, Growth Factors, and Organic Acids 220

Lígia R. Rodrigues

11.1 Introduction 220
11.2 Milk minor constituents 221
 11.2.1 Salts and minerals 221
 11.2.2 Vitamins 221
 11.2.3 Immune components 224
 11.2.4 Bioactive peptides 224
 11.2.5 Polyamines 225
 11.2.6 Nucleotides 225
 11.2.7 Proteose peptones 226
 11.2.8 Branched-chain amino acids and other amino acids 226
 11.2.9 Taurine 226
 11.2.10 Glutathione 227
11.3 Milk enzymes 227
 11.3.1 Lactoperoxidase 229
 11.3.2 Catalase 229
 11.3.3 Xanthine oxidoreductase 229
 11.3.4 Proteinases 230
 11.3.4.1 Plasmin 230
 11.3.4.2 Cathepsin D 230
 11.3.5 Lipases and esterases 230
 11.3.6 Amylase 231
 11.3.7 Alkaline phosphatase 231
 11.3.8 Acid phosphatase 231
 11.3.9 Ribonuclease 231
 11.3.10 N-Acetyl-β-d-glucosaminidase 232
 11.3.11 Lysozyme 232
 11.3.12 γ-Glutamyl transferase 232
 11.3.13 Superoxide dismutase 232
 11.3.14 Sulphydryl oxidase 233
 11.3.15 Aldolase 233
 11.3.16 Glutathione peroxidase 233
Contents

11.4 Milk hormones and growth factors 233
11.4.1 Hormones 234
11.4.1.1 Gonadal hormones 234
11.4.1.2 Adrenal gland hormones 234
11.4.1.3 Pituitary hormones 234
11.4.1.4 Hypothalamic hormones 235
11.4.1.5 Other hormones 235
11.4.2 Growth factors 235
11.5 Milk organic acids 237
11.6 Future perspectives and concerns 238
References 239

12 Lactose Intolerance 246
Salam A. Ibrahim and Rabin Gyawali

12.1 Introduction 246
12.1.1 Lactose and lactase 246
12.1.2 Types of lactose intolerance 248
12.1.3 Symptoms of lactose intolerance 249
12.1.4 Methods to quantify lactose maldigestion 249
12.1.4.1 Direct measurements 249
12.1.4.2 Indirect measurements 250
12.1.5 Prevalence, age, gender, and genetics 250
12.1.6 Non-probiotic dietary approach to alleviate lactose intolerance 251
12.1.7 Intestinal microflora, fermentation, and fermented foods 252
12.1.8 Use of probiotics to alleviate lactose intolerance 253
12.2 Conclusions 256
References 256

13 Milk Quality Standards and Controls 261
Young W. Park, Marzia Albenzio, Agostino Sevi, and George F.W. Haenlein

13.1 Introduction 261
13.2 General principles for production of quality milk 262
13.3 Regulatory standards of quality milk and dairy products for different species 262
13.4 Quality control principles for milk production on dairy farms 264
13.5 HACCP plans and hazard components in the production of quality dairy products 265
13.6 Recommended control systems for production of quality milk products 271
13.7 Etiology of mastitis and milk hygiene 272
13.8 Cell types and composition of milk in response to mammary gland inflammation 273
13.9 Flow cytometric method for leukocyte differential count 275
13.10 Factors affecting milk composition and yield in relation to milk quality 277
13.10.1 Diet 277
13.10.2 Breed 277
13.10.3 Stage of lactation 278
13.10.4 Season 278
13.10.5 Environmental temperature 278
13.10.6 Ventilation 279
13.10.7 Milking machine 279
13.10.8 Stocking density 280
13.10.9 Diseases 280
13.10.10 Colostrum 281
13.10.11 Others 281
13.11 Factors affecting quality of raw milk before and after milking 281
 13.11.1 Factors affecting quality of raw milk before and during milking 281
 13.11.2 Factors affecting quality of raw milk after milking 282
13.12 Pasteurization and post-pasteurization treatments for production
 of quality milk 282
 13.12.1 Pasteurization 282
 13.12.2 Vat pasteurization 282
 13.12.3 Post-pasteurization contamination 283
References 284

14 Sanitary Procedures, Heat Treatments and Packaging 288
 Golfo Moatsou
 14.1 Introduction 288
 14.2 Sanitary aspects related to raw milk 288
 14.2.1 Important microbiological aspects 288
 14.2.2 Pathogenic microorganisms 290
 14.2.3 Psychrotrophic microorganisms 291
 14.2.4 Non-microbial contaminants in milk 291
 14.2.5 Handling of raw milk: measures for controlling its keeping
 quality prior to processing 292
 14.2.5.1 Biofilm control 292
 14.2.5.2 Cooling and thermisation 292
 14.2.5.3 Lactoperoxidase system 292
 14.2.5.4 Carbon dioxide addition 292
 14.2.5.5 Centrifugation, clarification and bactofugation 292
 14.2.5.6 Microfiltration 293
 14.3 Strategies for producing heat-treated milk for human consumption 293
 14.3.1 Pasteurisation 293
 14.3.2 UHT treatment 294
 14.3.3 Extended shelf-life technology 295
 14.3.4 Types of heat treatment 295
 14.3.5 Packaging 297
 14.4 Effects of heat treatments on milk 298
 14.4.1 Effect on milk constituents 299
 14.4.1.1 Proteins 299
 14.4.1.2 Enzymes 300
 14.4.1.3 Vitamins 302
 14.4.2 Formation of new substances 303
 14.4.2.1 Isomerisation of lactose to lactulose 303
 14.4.2.2 Maillard reaction products 304
 14.4.3 Others 305
 14.5 Conclusions 305
References 305

15 Sensory and Flavor Characteristics of Milk
 Irma V. Wolf, Carina V. Bergamini, Maria C. Perotti, and Erica R. Hynes
 15.1 Introduction 310
 15.2 Significance of flavor and off-flavor on milk quality: sensory and
 instrumental methods 311
 15.3 Milk from ruminant species 312
 15.3.1 Volatile profile and sensory characteristics of fresh milk 312

References
15.3.2 Variations in flavor of fresh milk from ruminant species 317
 15.3.2.1 Variations in milk flavor associated with farm management 317
 15.3.2.2 Variations in milk flavor associated with factory management 320
15.3.3 Volatile profile and sensory characteristics of heat-treated milk 322
 15.3.3.1 Ultrapasteurized milk and ultra-high-temperature treated milk 322
 15.3.3.2 Milk powder, sterilized, and concentrated milk 323
 15.3.3.3 Infant formula 323
15.3.4 Variations in flavor of heat-treated milk 324
 15.3.4.1 Ultrapasteurized milk and ultra-high-temperature treated milk 324
 15.3.4.2 Milk powder, sterilized, and concentrated milk 325
 15.3.4.3 Infant formula 326
15.3.5 Volatile profile and sensory characteristics of non-thermally treated milk 326
 15.3.5.1 Microfiltration 326
 15.3.5.2 Ultrasound 327
 15.3.5.3 Pulsed electric field 327
 15.3.5.4 Microwave 327
 15.3.5.5 High hydrostatic pressure 327
 15.3.5.6 Ultra-high-pressure homogenization 328
15.4 Milk from monogastric species 328
References 329

16 Fermented Milk and Yogurt 338
 Sae-Hun Kim and Sejong Oh 338
 16.1 General aspects of fermented milk 338
 16.1.1 Yogurts 338
 16.1.1.1 Types of yogurt 338
 16.1.1.2 Production and consumption 339
 16.1.1.3 Recent new product trends 339
 16.1.2 Other fermented bovine milk products 340
 16.1.2.1 Cultured buttermilk 340
 16.1.2.2 Cultured cream 341
 16.1.2.3 Acidophilus milk 341
 16.1.2.4 Kefir 341
 16.1.2.5 Other fermented milk products 341
 16.1.3 Fermented milk and yogurt products from other dairy species 341
 16.1.3.1 Fermented goat milk products 341
 16.1.3.2 Fermented sheep milk products 342
 16.1.3.3 Fermented buffalo milk products 342
 16.1.3.4 Fermented mare milk products 342
 16.2 Standards and regulations 343
 16.2.1 International Codex Standard 343
 16.2.1.1 Description 343
 16.2.1.2 Composition 343
 16.2.2 USA, Australia and New Zealand, and Europe 343
 16.2.2.1 Description 343
 16.2.2.2 Composition 345
 16.2.3 China 345
 16.2.3.1 Description 345
 16.2.3.2 Composition 345
 16.2.4 Japan 345
 16.2.4.1 Description 345
 16.2.4.2 Composition 345
16.2.5 Korea 345
 16.2.5.1 Description 345
 16.2.5.2 Composition 345

16.3 Health benefits of fermented milk products 346
 16.3.1 Nutritional benefits 346
 16.3.2 Diarrheal disease 347
 16.3.3 Immune regulation 347
 16.3.4 Prevention of osteoporosis 347
 16.3.5 Cholesterol reduction 348
 16.3.6 Cancer prevention 349

16.4 Future aspects 353
References 353

17 Cheese Science and Technology 357
Patrick F. Fox and Timothy P. Guinee 357

17.1 Introduction 357

17.2 Selection and treatment of milk 357
 17.2.1 Milk of different species 359
 17.2.2 Standardisation of milk composition 360
 17.2.3 Heat treatment of milk 360
 17.2.4 Cheese colour 361

17.3 Conversion of milk to cheese curd 361
 17.3.1 Acidification and starter cultures 361
 17.3.2 Secondary cultures 363
 17.3.3 Coagulation 363
 17.3.4 Rennet-coagulated cheeses 363

17.4 Post-coagulation operations 365
 17.4.1 Cutting the gel 365
 17.4.2 Cooking the curds 365
 17.4.3 Syneresis 365
 17.4.4 Draining the curd 367
 17.4.5 Cheddaring of the curd 367
 17.4.6 Curd washing 368
 17.4.7 Moulding and pressing 369
 17.4.8 Salting 369
 17.4.8.1 Nutritional significance of salt in cheese 370
 17.4.9 Packaging 370

17.5 Membrane processing in cheese technology 371

17.6 Ripening 372
 17.6.1 Ripening agents 373
 17.6.2 Ripening reactions 373
 17.6.2.1 Glycolysis and related events 373
 17.6.2.2 Lipolysis 374
 17.6.2.3 Proteolysis 374
 17.6.3 Accelerated ripening of cheese 375

17.7 Factors that affect the quality of cheese 375

17.8 Cheese flavour 377

17.9 Cheese texture 377
 17.9.1 Measurement of cheese texture 377
 17.9.2 Textural characteristics of different cheeses 377
 17.9.3 Texture at the macrostructural level 378
17.10 Processed cheese products
17.10.1 Principles of manufacture
17.10.2 Uses and characteristics of PCPs
17.10.3 Cheese analogues
17.11 Cheese as a food ingredient
17.12 Cheese production and consumption
17.13 Classification of cheese
17.14 Cheese as a source of nutrients
 17.14.1 Fat in cheese
 17.14.2 Protein in cheese
 17.14.3 Lactose
 17.14.4 Inorganic elements
 17.14.5 Vitamins
17.15 Conclusions
References

18 Butter, Ghee, and Cream Products
 Hae-Soo Kwak, Palanivel Ganesan, and Mohammad Al Mijan

18.1 Introduction
18.2 Manufacture of butter, ghee, and cream products
 18.2.1 Butter
 18.2.2 Ghee
 18.2.3 Cream
 18.2.3.1 Coffee cream
 18.2.3.2 Cultured cream
 18.2.3.3 Whipping cream
18.3 Nutritive values of butter, ghee, and cream
 18.3.1 Butter
 18.3.2 Ghee
 18.3.3 Cream
18.4 Human health benefit components in butter, ghee, and cream
 18.4.1 Milk fat globule membrane
 18.4.2 Health benefits of MFGM polar lipids
 18.4.3 Sphingolipids: anticholesterol effect and heart disease
 18.4.4 Sphingolipids and cancer
 18.4.5 Sphingolipids: bactericidal effect
 18.4.6 Sphingolipids: effects on diabetes mellitus and Alzheimer disease
 18.4.7 Sphingolipids and multiple sclerosis
 18.4.8 Phospholipids
 18.4.9 Protein fractions of MFGM
 18.4.9.1 Anticancer effects
 18.4.9.2 MFGM proteins, autism, and multiple sclerosis
 18.4.9.3 Antibacterial and antiadhesive effects of MFGM proteins
18.5 Conjugated linoleic acid
 18.5.1 Carcinogenesis
 18.5.2 Colonic and colorectal cancer
 18.5.3 Breast cancer
 18.5.4 Gastrointestinal cancer
 18.5.5 Diabetes
 18.5.6 Obesity
 18.5.7 Atherosclerosis
20.2.3.5 Flavors 444
20.2.3.6 Freezing 446
20.2.3.7 Overrun 446
20.2.3.8 Types of ice cream freezers 446
20.2.3.9 Hardening 447
20.2.4 Frozen yogurt 448
20.2.5 Packaging 448
20.3 Nutritional profile of ice cream 448
20.3.1 Contribution of milk 448
20.3.1.1 Milk proteins 449
20.3.1.2 Milk fat 449
20.3.1.3 Lactose 451
20.3.1.4 Minerals 452
20.3.1.5 Vitamins and some other minor constituents 452
20.3.2 Nutrient profile of ice cream and frozen desserts 453
20.3.3 Frozen dairy products from milk of species other than cow 455
References 456
21 Nutritional Formulae for Infants and Young Children 458
Séamus McSweeney, Jonathan O’Regan and Dan O’Callaghan 458
21.1 Introduction 458
21.2 History of infant formula 458
21.3 Classification and regulation of formulae for infants and young children 459
21.4 Safety and quality 459
21.5 Product range and formulation 459
21.5.1 General formulation principles 459
21.5.2 Milk protein-based first-age infant formulae 459
21.5.2.1 Energy 462
21.5.2.2 Protein 462
21.5.2.3 Lipids 465
21.5.2.4 Carbohydrate 466
21.5.2.5 Minerals 467
21.5.2.6 Vitamins 467
21.5.2.7 Probiotics, prebiotics and synbiotics 468
21.5.2.8 Other nutrients 468
21.5.2.9 Processing aids and food additives 469
21.5.3 Specialised first-age infant formulae 469
21.5.4 Formulae for low-birthweight and premature infants 470
21.5.5 Follow-on formulae 471
21.5.6 Growing-up milks 471
21.5.7 Formulae for pregnant and lactating women 471
21.6 Processing and manufacture of formulae for infants and young children 471
21.7 Packaging of formulae for infants and young children 473
21.8 Future developments 473
References 473
22 Whey and Whey Products 477
Sanjeev Anand, Som Nath Khanal, and Chenchaiah Marella 477
22.1 Introduction 477
22.2 Sources and types of whey 477
22.2.1 Acid and sweet whey 477
22.2.2 Whey from other species 478
Contents

22.3 Whey production and utilization 480
22.4 Major commercialized whey products 480
 22.4.1 Whey powder 480
 22.4.2 Whey protein concentrates 481
 22.4.3 Whey protein isolate 481
 22.4.4 Whey protein fractions
 22.4.4.1 α-Lactalbumin 483
 22.4.4.2 β-Lactoglobulin 484
 22.4.4.3 Glycomacropeptide 484
 22.4.4.4 Bovine serum albumin 484
 22.4.4.5 Lactoferrin 484
 22.4.4.6 Lactoperoxidase 485
 22.4.4.7 Immunoglobulins 485
 22.4.5 Non-protein whey products 485
 22.4.5.1 Lactose 485
 22.4.5.2 Milk minerals 485
 22.4.6 Products from non-bovine whey
 22.4.6.1 Whey cheeses 486
 22.4.6.2 Other whey products 486
 22.5 Nutritional value of whey components 487
 22.5.1 Protein and bioactive peptides
 22.5.1.1 Whey protein quality 487
 22.5.1.2 Whey protein digestion and absorption 488
 22.5.1.3 Biological functions of whey proteins 488
 22.5.1.4 Antimicrobial activity of whey proteins 488
 22.5.1.5 Therapeutic values of whey proteins 489
 22.5.1.6 Whey proteins in specialized nutrition 489
 22.5.2 Lactose 491
 22.5.2.1 Whey products for lactose intolerance 491
 22.5.3 Vitamins and minerals in whey 492
 22.6 Future prospects for dietary applications of whey 492
References 492

23 Goat Milk 498
George Zervas and Eleni Tsiplakou

23.1 Introduction 498
23.2 Composition of goat milk
 23.2.1 Fat 499
 23.2.2 Fatty acids 500
 23.2.3 Proteins 500
 23.2.4 Whey proteins 501
 23.2.5 Amino acids 501
 23.2.6 Non-protein nitrogen 502
 23.2.7 Minor proteins 502
 23.2.8 Carbohydrates 502
 23.2.9 Minerals and vitamins 502
 23.3 Effects of feeding and management on goat milk composition 502
 23.4 The contribution of goat milk to human nutrition and health
 23.4.1 The effects of milk fat 504
 23.4.2 The effects of milk proteins 506
 23.4.3 The effects of milk bioactive peptides
 23.4.3.1 Angiotensin I-converting enzyme 508
References 508
23.4.3.2 Nucleotides 508
23.4.3.3 Polyamines 509
23.4.3.4 Sialic acid 509
23.4.3.5 Taurine 509
23.4.3.6 Growth factors 509
23.4.4 The effects of milk oligosaccharides 509
23.4.5 The effects of milk minerals and vitamins 509
23.4.6 Goat milk products 509
 23.4.6.1 Fermented milk, yogurt 510
 23.4.6.2 Cheeses 510
 23.4.6.3 Powder and condensed milk 511
 23.4.6.4 Butter 511
 23.4.6.5 Other goat milk products 511

23.5 Conclusions 512
References 512

24 Buffalo Milk 519

Sarfraz Ahmad 519

24.1 Introduction 519
 24.1.1 Buffalo populations and breeds 519
 24.1.2 Buffalo milk production and consumption 519
 24.1.3 Socioeconomic importance of buffaloes 521
 24.1.4 Buffalo milk commercial products 521

24.2 Major milk constituents and their nutritional importance 522
 24.2.1 Fat 522
 24.2.1.1 Fat globules 525
 24.2.1.2 Triglycerides 526
 24.2.1.3 Fatty acids 526
 24.2.1.4 Conjugated linoleic acid 526
 24.2.1.5 Minor fat constituents (cholesterol, phospholipids, gangliosides) 526
 24.2.2 Proteins 527
 24.2.2.1 Caseins 527
 24.2.2.2 Whey proteins 530
 24.2.2.3 Minor proteins 530
 24.2.3 Carbohydrates 534
 24.2.3.1 Oligosaccharides 534
 24.2.3.2 Minor sugar fractions 534
 24.2.4 Minerals 535
 24.2.4.1 Major minerals 535
 24.2.4.2 Trace elements 535
 24.2.5 Enzymes 536
 24.2.5.1 Lysozyme 536
 24.2.5.2 Lactoperoxidase 537
 24.2.5.3 Xanthine oxidase 537
 24.2.6 Vitamins 537
 24.2.6.1 Fat-soluble vitamins 538
 24.2.6.2 Water-soluble vitamins 538

24.3 Nutritional and health benefits of buffalo milk and its products 538
 24.3.1 Buffalo health 539
 24.3.2 Effect of buffalo milk on particular diseases 540
 24.3.2.1 Osteoporosis 540
 24.3.2.2 Allergy 540
Contents

24.3.2.3 Dental caries 541
24.3.2.4 Cancer 541

24.3 Role of constituents of buffalo milk and products in human nutrition and health 542
24.3.3.1 Fatty acids and glycerides 542
24.3.3.2 Conjugated linoleic acid 543
24.3.3.3 Minerals 543
24.3.3.4 Bioactive peptides from caseins and whey proteins 543

24.4 Conclusions 545

References 546

25 Sheep Milk 554
Miguel Angel de la Fuente, Mercedes Ramos, Isidra Recio and Manuela Juárez

25.1 Introduction 554

25.2 Lipids 555
25.2.1 Triacylglycerides 555
25.2.2 Fatty acid composition 556
25.2.2.1 Saturated fatty acids 556
25.2.2.2 Unsaturated fatty acids 557
25.2.2.3 *Trans* fatty acids 558
25.2.2.4 Conjugated linoleic acid 558
25.2.3 Other minor lipid compounds 560

25.3 Proteins and their biological functions 561
25.3.1 Bioactive peptides derived from sheep milk proteins 563
25.3.1.1 Antihypertensive peptides 563
25.3.1.2 Antimicrobial peptides 565
25.3.1.3 Other biological activities of peptides from ovine proteins 567

25.4 Carbohydrates 567

25.5 Minerals 568

25.6 Vitamins 569

25.7 Sheep milk products 569

References 570

26 Camel Milk 578
Kenji Fukuda

26.1 Introduction 578

26.2 Camel milk production and utilization worldwide 579
26.2.1 Camel milk production 579
26.2.2 Utilization of Bactrian camel milk 579
26.2.3 Utilization of dromedary camel milk 580
26.2.4 Utilization of camel milk in Australia 580

26.3 Camel milk components and their nutritional aspects 582
26.3.1 Mineral salts and vitamins 582
26.3.2 Lipids 582
26.3.3 Carbohydrates 583
26.3.4 Proteins 583
26.3.4.1 Caseins 585
26.3.4.2 Whey proteins 585

26.4 Milk allergy 586

26.5 Health-beneficial microorganisms in camel milk and its products 587
26.5.1 Lactic acid bacteria 587
26.5.2 Yeasts 587

References 589