Contents

Preface xiii

Chapter 1. Introduction to Dynamic-system Simulation 1

DYNAMIC-SYSTEM MODELS AND COMPUTER PROGRAMS 1

1-1. Computer Modeling and Simulation 1
1-2. Differential-equation Models 2
1-3. Interactive Modeling—Experiment Protocol and Simulation Studies 3
1-4. Simulation Software 4
1-5. OPEN DESIRE and DESIRE 4

HOW A SIMULATION RUN WORKS 5

1-6. Sampling the DYNAMIC Segment Variables 5
1-7. Numerical Integration 10
 (a) Euler Integration 10
 (b) Improved Integration Rules 10
1-8. Sampling Times and Integration Steps 11
1-9. Sorting Defined-variable Assignments 12

EXAMPLES OF SIMPLE APPLICATIONS 12

1-10. Oscillators and Computer Displays 12
 (a) A Linear Harmonic Oscillator 12
 (b) A Nonlinear Oscillator and Duffing’s Differential Equation 15
1-11. Space Vehicle Orbits—Variable-step Integration 15
1-12. A Population-dynamics Model 18
1-13. Splicing Multiple Simulation Runs: Billiard-ball Simulation 20
Chapter 3. Programs with Vector/Matrix Operations and Submodels

VECTOR ASSIGNMENTS AND VECTOR DIFFERENTIAL EQUATIONS

3-1. Arrays, Subscripted Variables, and State-variable Declarations
3-2. Vector Operations in DYNAMIC Program Segments—
 The Vectorizing Compiler
 (a) Vector Assignments and Vector Expressions
 (b) Vector Differential Equations
 (c) Vectorization and Model Replication—Significant Applications
3-3. Matrix-vector Products in Vector Expressions
 (a) Definition
 (b) A Simple Example: Resonating Oscillators
3-4. Vector Sampled-data Assignments and Vector Difference Equations
3-5. Sorting Vector and Subscripted-variable Assignments

MORE VECTOR OPERATIONS

3-6. Index-shifted Vectors
3-7. Sums, DOT Products, and Vector Norms
 (a) Sums and DOT Products
 (b) Euclidean, Taxicab, and Hamming Norms
3-8. Maximum/Minimum Selection and Masking
 (a) Maximum/Minimum Selection
 (b) Masking Vector Expressions

MATRIX OPERATIONS

3-9. Matrix Operations in Experiment-protocol Scripts
3-10. Matrix Assignments and Difference Equations in
 DYNAMIC Program Segments
3-11. Vector and Matrix Operations using Equivalent Vectors

VECTORS IN PHYSICS AND CONTROL-SYSTEM PROBLEMS

3-12. Vectors in Physics Problems
3-13. Simulation of a Nuclear Reactor
3-14. Linear Transformations and Rotation Matrices
3-15. State-equation Models for Linear Control Systems

USER-DEFINED FUNCTIONS AND SUBMODELS

3-16. User-defined Functions
3-17. Submodels
 (a) Submodel Declaration and Invocation
 (b) Submodels with Differential Equations
3-18. Dealing with Sampled-data Assignments, Limiters, and Switches

REFERENCES

Chapter 4. Parameter-influence Studies, Model Replication, and Monte Carlo Simulation

PARAMETER-INFLUENCE STUDIES AND VECTORIZATION
4-1. Exploring the Effects of Parameter Changes
4-2. Repeated Runs and Model-Replication (Vectorization)
 (a) A Simple Repeated-run Study
 (b) Model Replication
 (c) Dealing with Multiple Parameters
4-3. Programming Parameter-influence Studies
 (a) Introduction
 (b) Measures of System Effectiveness
 (c) Crossplotting Results
 (d) Maximum/Minimum Selection
 (e) Iterative Parameter Optimization

RANDOM PROCESSES AND RANDOM PARAMETERS
4-4. Random Processes and Monte Carlo Simulation
4-5. Generating Random Parameters and Random Initial Values

MONTE CARLO SIMULATION OF DYNAMIC SYSTEMS
4-6. Repeated-run Monte Carlo Simulation
 (a) Taking Statistics on Repeated Simulation Runs
 (b) Sequential Monte Carlo Studies
 (c) Example: Effects of Gun-elevation Errors on the 1776 Cannon
4-7. Vectorized (Model-replicating) Monte Carlo Simulation
 (a) Vectorized Monte Carlo Study of the 1776 Cannon Shot
 (b) Interactive Monte Carlo Simulation: Computing Time Histories of Statistics with Compiled DOT Operations
4-8. Statistical Relative Frequencies, Sample Ranges, and Other Statistics
4-9. Post-run Probability-density Estimation
 (a) A Simple Probability-density Estimate
 (b) Triangle and Parzen Windows
 (c) Computation and Display of Parzen Window Estimates
4-10. Combining Vectorized and Repeated-run Monte Carlo Simulation

REFERENCES
Chapter 5. Random-process Simulation and Monte Carlo Studies with Noisy Signals

COMPUTER MODELS OF NOISE PROCESSES 105
5-1. Noise in DYNAMIC Program Segments 105
5-2. Sampled-data Random Processes 105
 (a) A Platform for Sampled-data Experiments 105
 (b) A Sampled-data Random Process Model: Coin Tossing 106
 (c) Recursive Sampled-data Addition and Time Averaging 106
5-3. Modeling Continuous Noise 107
 (a) Deriving “Continuous” Noise from Periodic Pseudorandom Samples 107
 (b) “Continuous” Time Averages 109
5-4. Problems with Simulated Noise 109

MONTE CARLO SIMULATION WITH NOISY SIGNALS 109
5-5. Gambling Returns 109
5-6. A Continuous Random Walk 112
5-7. The 1776 Cannonball with Air Turbulence 113

SIMULATION OF NOISY CONTROL SYSTEMS 116
5-8. Monte Carlo Simulation of a Nonlinear Servomechanism: A Noise-input Test 116
5-9. Monte Carlo Study of Control-system Errors Caused by Noise 119

ADDITIONAL TOPICS 119
5-10. Monte Carlo Optimization 119
5-12. An Alternative to Monte Carlo Simulation 121
 (a) Introduction 121
 (b) Dynamic Systems with Random Perturbations 122
 (c) Mean Square Errors in Linearized Systems 122

REFERENCES 123

Chapter 6. Vector Models of Neural Networks 125

NEURAL-NETWORK SIMULATION 125
6-1. Neural-network Models and Pattern Vectors 125
6-2. Simple Vector Operations Model Neural-network Layers 126
6-3. Normalizing and Contrast-enhancing Neuron Layers 127
6-4. Multilayer Networks 128
6-5. Exercising a Neural-network Model 129
 (a) Computing Successive Neuron Layer Outputs 129
 (b) Using Pattern-row Matrices 129
 (c) Pattern Input from Files 130
REGRESSION AND PATTERN CLASSIFICATION 130
 6-6. Mean-square Regression 131
 6-7. Pattern Classification 131

NEURAL-NETWORK TRAINING: PATTERN CLASSIFICATION
AND ASSOCIATIVE MEMORY 132
 6-8. Linear Pattern Classifiers 132
 6-9. The LMS Algorithm 132
 6-10. A Softmax Image Classifier 133
 (a) Problem Statement and Experiment-protocol Script 133
 (b) Network Model and Training 134
 (c) Test Runs and A Posteriori Probabilities 137

6-11. Associative Memory 138

NONLINEAR MULTILAYER NETWORKS 138
 6-12. Backpropagation Networks 138
 (a) The Backpropagation Algorithm 138
 (b) Discussion 140
 (c) Examples and Neural-network Submodels 141

6-13. Radial-basis-function Networks 141
 (a) Basis-function Expansion and Linear Optimization 141
 (b) Radial Basis Functions 144

COMPETITIVE-LAYER PATTERN CLASSIFICATION 146
 6-14. Template-pattern Matching 146
 6-15. Unsupervised Pattern Classifiers 147
 (a) Simple Competitive Learning 147
 (b) Learning with Conscience 148

6-16. Experiments with Pattern Classification
 and Vector Quantization 149
 (a) Pattern Classification 149
 (b) Vector Quantization 150

6-17. Simplified Adaptive-resonance Emulation 151
6-18. Biologically Plausible Competition: Correlation Matching 153

SUPERVISED COMPETITIVE LEARNING 154
 6-19. Supervised Competitive Classifiers: The LVQ Algorithm 154
 6-20. Counterpropagation Networks 155

NEURAL NETWORKS WITH MEMORY 155
 6-21. Neural Networks and Memory 155
 6-22. Networks with a Delay-line Input Layer 157
 (a) Vector Model of a Tapped Delay Line 157
 (b) Simple Linear Filters 158
Chapter 7. More Applications of Vector Models 171

A VECTORIZED SIMULATION WITH LOGARITHMIC PLOTS 171
7-1. The EUROSIM No. 1 Benchmark Problem 171
7-2. Vectorized Simulation with Logarithmic Plots 171

MODELING FUZZY-LOGIC FUNCTION GENERATORS 172
7-3. Rule Tables Specify Heuristic Functions 172
7-4. Fuzzy-set Logic 174
 (a) Fuzzy Sets and Membership Functions 174
 (b) Fuzzy Intersections and Unions 175
 (c) Joint Membership Functions 175
 (d) Normalized Fuzzy-set Partitions 175

7-5. Fuzzy-set Rule Tables and Function Generators 178
7-6. Simplified Function Generation with Fuzzy Basis Functions 179
7-7. Vector Models of Fuzzy-set Partitions 179
 (a) Gaussian Bumps—Effects of Normalization 179
 (b) Triangle Functions 180
 (c) Smooth Fuzzy Basis Functions 181

7-9. Example: Fuzzy-logic Control of a Servomechanism 182
 (a) Problem Statement 182
 (b) Experiment Protocol and Rule Table 183
 (c) DYNAMIC Program Segment and Results 184

PARTIAL DIFFERENTIAL EQUATIONS 186
7-10. The Method of Lines 186
7-11. The Vectorized Method of Lines 188
 (a) Introduction 188
 (b) Using Differentiation Operators 188
 (c) Numerical Problems 191

7-12. The Heat-conduction Equation in Cylindrical Coordinates 192
xii Contents

7-13. Generalizations 192
7-14. A Simple Heat-exchanger Model 194

REPLICATION OF AGROECOLOGICAL MODELS ON MAP GRIDS 197
7-15. A Geographical Information System 197
7-16. Modeling the Evolution of Landscape Features 197

REFERENCES 199

Appendix 201

ADDITIONAL REFERENCE MATERIAL 201
A-1. Example of a Radial-basis-function Network 201
A-2. A Fuzzy-basis-function Network 203
A-3. The CLEARN Algorithm 205

REFERENCES 206

PROGRAMS IN THE BOOK CD 210

STREAMLINED OPERATION OF DESIRE PROJECTS UNDER LINUX 210

Index 213