Contents

Preface xvii

1 Overview of Vibrational Optical Activity 1
1.1 Introduction to Vibrational Optical Activity 1
 1.1.1 Field of Vibrational Optical Activity 1
 1.1.2 Definition of Vibrational Circular Dichroism 3
 1.1.3 Definition of Vibrational Raman Optical Activity 5
 1.1.4 Unique Attributes of Vibrational Optical Activity 7
 1.1.4.1 VOA is the Richest Structural Probe of Molecular
 Chirality 7
 1.1.4.2 VOA is the Most Structurally Sensitive Form of
 Vibrational Spectroscopy 8
 1.1.4.3 VOA Can be Used to Determine Unambiguously the
 Absolute Configuration of a Chiral Molecule 8
 1.1.4.4 VOA Spectra Can be Used to Determine the Solution-State
 Conformer Populations 8
 1.1.4.5 VOA Can be Used to Determine the ee of Multiple
 Chiral Species of Changing Absolute and Relative
 Concentration 8

1.2 Origin and Discovery of Vibrational Optical Activity 9
1.2.1 Early Attempts to Measure VOA 9
1.2.2 Theoretical Predictions of VCD 10
1.2.3 Theoretical Predictions of ROA 11
1.2.4 Discovery and Confirmation of ROA 11
1.2.5 Discovery and Confirmation of VCD 13

1.3 VCD Instrumentation Development 14
1.3.1 First VCD Measurements – Dispersive, Hydrogen-Stretching
 Region 14
1.3.2 Near-IR VCD Measurements 14
1.3.3 Mid-IR VCD Measurements 15
1.3.4 Fourier Transform VCD Instrumentation 15
1.3.5 Commercially Available VCD Instrumentation 15

1.4 ROA Instrumentation Development 16
1.4.1 First ROA Measurements – Single Channel ICP-ROA 16
1.4.2 Multi-Channel ROA Measurements 17
1.4.3 Backscattering ROA Measurements 17
1.4.4 SCP-ROA Measurements 17
1.4.5 DCP-ROA Measurements 18
1.4.6 Commercially Available ROA Instruments 18
1.5 Development of VCD Theory and Calculations
1.5.1 Models of VCD Spectra
 1.5.1.1 Coupled Oscillator Model
 1.5.1.2 Fixed Partial Charge Model
 1.5.1.3 Localized Molecular Orbital Model
 1.5.1.4 Charge Flow Model
 1.5.1.5 Ring Current Model
1.5.2 Vibronic Coupling Theory of VCD
1.5.3 Magnetic Field Perturbation Formulation of VCD
1.5.4 Nuclear Velocity Perturbation Formulation of VCD
1.5.5 Ab Initio Calculations of VCD Spectra
1.5.6 Commercially Available Software for VCD Calculations

1.6 Development of ROA Theory and Calculations
1.6.1 Original Theory of ROA
1.6.2 Models of ROA Spectra
1.6.3 General Unrestricted Theory of Circular Polarization ROA
1.6.4 Linear Polarization ROA
1.6.5 Theory of Resonance ROA in the SES Limit
1.6.6 Near Resonance Theory of ROA
1.6.7 Ab Initio Calculations of ROA Spectra
1.6.8 Quantum Chemistry Programs for ROA Calculations

1.7 Applications of Vibrational Optical Activity

1.8 Comparison of Infrared and Raman Vibrational Optical Activity
1.8.1 Frequency Ranges and Structural Sensitivities
1.8.2 Instrumental Advantages and Disadvantages
1.8.3 Sampling Methods and Solvents
1.8.4 Computational Advantages and Disadvantages

1.9 Conclusions

References

2 Vibrational Frequencies and Intensities
2.1 Separation of Electronic and Vibrational Motion
 2.1.1 Born–Oppenheimer Approximation
 2.1.2 Electronic Structure Problem
 2.1.3 Nuclear Structure Problem
 2.1.4 Nuclear Potential Energy Surface
 2.1.5 Transitions Between Electronic States
 2.1.6 Electronic Transition Current Density
2.2 Normal Modes of Vibrational Motion
 2.2.1 Vibrational Degrees of Freedom
 2.2.2 Normal Modes of Vibrational Motion
 2.2.3 Visualization of Normal Modes
 2.2.4 Vibrational Energy Levels and States
 2.2.5 Transitions Between Vibrational States
 2.2.6 Complete Adiabatic Approximation
 2.2.7 Vibrational Probability Density and Vibrational Transition Current Density
3.4.2 Vacuum Ultraviolet and Synchrotron Circular Dichroism 89
3.4.3 Rayleigh and Raman Optical Activity, RayOA and ROA 90
3.4.3.1 ROA Overlaps 90
3.4.4 Magnetic Vibrational Optical Activity 90
3.4.5 Fluorescence Optical Activity, FDCD and CPL 91
3.4.5.1 FOA and ROA Overlap 91
3.4.6 Other Forms of Optical Activity 91
3.4.6.1 X-Ray Circular Dichroism 92
3.4.6.2 Neutron Optical Activity 92
3.4.6.3 Far-Infrared and Rotational CD 92
3.4.6.4 NMR Chiral Discrimination 92

References 92

4 Theory of Vibrational Circular Dichroism 95
4.1 General Theory of VCD 96
4.1.1 Definitions of VCD Intensity and Rotational Strength 97
4.1.2 Complete Adiabatic Correction to the Born–Oppenheimer Approximation 98
4.1.3 Derivation of the Complete Adiabatic Wavefunction 100
4.1.4 Vibronic Coupling Theory of VCD and IR Intensity 102
4.1.5 Origin Dependence of the Rotational Strength 105
4.1.5.1 General Description of Origin Dependence 105
4.1.5.2 Distributed Origin Gauge and Effective Origin Independence 106
4.2 Formulations of VCD Theory 108
4.2.1 Average Excited-State Energy Approximation 108
4.2.2 Magnetic Field Perturbation Theory 108
4.2.3 Sum-Over-States Vibronic Coupling Theory 110
4.2.4 Nuclear Velocity Perturbation Theory 110
4.2.5 Energy Second-Derivative Theory 111
4.2.6 Other Formulations of VCD Theory 113
4.3 Atomic Orbital Level Formulations of VCD Intensity 114
4.3.1 Atomic Orbital Basis Descriptions of Transition Moments 114
4.3.1.1 Position Form of the Electronic APT 114
4.3.1.2 Velocity Form of the Electronic APT 116
4.3.1.3 Electronic AAT 118
4.3.2 Velocity Dependent Atomic Orbitals 118
4.3.2.1 Field Adiabatic Velocity Gauge 119
4.3.2.2 Complete Adiabatic Nuclear Velocity Gauge 119
4.3.3 Field Adiabatic Velocity Gauge Transition Moments 120
4.3.4 Gauge Invariant Atomic Orbitals and AATs 120
4.3.5 Complete Adiabatic Nuclear Velocity Gauge Transition Moments 122
4.3.5.1 Velocity APT with Nuclear Velocity Gauge Atomic Orbitals 122
4.4 Transition Current Density and VCD Intensities 124
4.4.1 Relationship Between Vibrational TCD and VA Intensity 125
4.4.2 Relationship Between Vibrational TCD and VCD Intensity 128

References 130
5 Theory of Raman Optical Activity 131
5.1 Comparison of ROA to VCD Theory 131
5.2 Far-From Resonance Theory (FFR) of ROA 133
 5.2.1 Right-Angle ROA Scattering 133
 5.2.2 Backscattering ROA 135
 5.2.3 Forward and Magic Angle Scattering ROA 136
5.3 General Unrestricted (GU) Theory of ROA 137
 5.3.1 ROA Tensors 137
 5.3.2 Forms of ROA 141
 5.3.3 CP-ROA Invariants 141
 5.3.4 CP-ROA Observables and Invariant Combinations 143
 5.3.5 Backscattering CP-ROA Observables 145
 5.3.6 LP-ROA Invariants 146
 5.3.7 LP-ROA Observables and Invariant Combinations 148
5.4 Vibronic Theories of ROA 148
 5.4.1 General Unrestricted Vibronic ROA Theory 149
 5.4.2 Vibronic Levels of Approximation 150
 5.4.3 Near Resonance Vibronic Raman Theory 150
 5.4.4 Levels of the Near Resonance Raman Theory 153
 5.4.5 Near Resonance Theory of ROA 157
 5.4.6 Reduction of the Near Resonance Theory to the Far-From Resonance Theory of ROA 157
5.5 Resonance ROA Theory 159
 5.5.1 Strong Resonance in the Single Electronic State (SES) Limit 159
 5.5.2 Strong Resonance Involving Two Excited Electronic States 163
 5.5.2.1 TES Theory With a Single B-Term Contributing State (TES-B) 163
 5.5.2.2 TES Theory with two A-Term Contributing States (TES-A) 166
5.6 References 167

6 Instrumentation for Vibrational Circular Dichroism 169
6.1 Polarization Modulation Circular Dichroism 169
 6.1.1 Instrumental Measurement of Circular Dichroism 170
 6.1.2 Calibration of CD Intensities 173
 6.1.3 Photoelastic Modulator Optimization 176
6.2 Stokes–Mueller Optical Analysis 177
 6.2.1 Basic Stokes–Mueller Formalism 177
 6.2.2 Stokes–Mueller Derivation of Circular Dichroism Measurement 183
 6.2.3 Stokes–Mueller Derivation of the CD Calibration 184
 6.2.4 Measurement of Circular Birefringence 185
6.3 Fourier Transform VCD Measurement 187
 6.3.1 Double-Modulation Instrumental Setup and Block Diagram 188
 6.3.2 DC Interferogram and Phase Correction 188
 6.3.3 AC Interferogram and Phase Correction 190
 6.3.4 Polarization Division FT-VCD Measurement 192
 6.3.5 Step-Scan FT-VCD Measurement 192
6.4 Commercial Instrumentation for VCD Measurement 193
 6.4.1 VCD Side-Bench Accessories 193
 6.4.2 Dedicated VCD Spectrometers 194
6.5 Advanced VCD Instrumentation 194
 6.5.1 Dual Source Intensity Enhancement and Detector Saturation Suppression 194
7 Instrumentation for Raman Optical Activity

7.1 Incident Circular Polarization ROA
7.1.1 Optical Block Diagram for ICP-Raman and ROA Scattering
7.1.2 Intensity Expressions
7.1.3 Advantages of Backscattering
7.1.4 Artifact Suppression

7.2 Scattered Circular Polarization ROA
7.2.1 Measurement of SCP-ROA and Raman Scattering
7.2.2 Optical Block Diagram for SCP-Raman and ROA Measurement
7.2.3 Comparison of ICP- and SCP-ROA
7.2.4 Artifact Reduction in SCP-ROA Measurement

7.3 Dual Circular Polarization ROA
7.3.1 Optical Setups for DCP-ROA Measurement
7.3.2 Comparison of ICP-, SCP-, and DCP$_1$-ROA
7.3.3 Isolation of ROA Invariants
7.3.4 DCP$_{IR}$-ROA and the Onset of Pre-resonance Raman Scattering

7.4 Commercial Instrumentation for ROA Measurement
7.4.1 High Spectral Throughput
7.4.2 Artifact Suppression and the Virtual Enantiomer

7.5 Advanced ROA Instrumentation
7.5.1 Resonance ROA (RROA)
7.5.2 Near-Infrared Excitation ROA
7.5.3 Ultraviolet Excitation ROA
7.5.4 Linear Polarization ROA
7.5.5 Non-Linear and Time-Resolved ROA
7.5.6 Surfaced-Enhanced ROA
7.5.7 Rayleigh Optical Activity

8 Measurement of Vibrational Optical Activity

8.1 VOA Spectral Measurement
8.2 Measurement of IR and VCD Spectra
8.2.1 Selection of Frequency Range, Detector and Optical Components
8.2.1.1 Mid-Infrared Spectral Region
8.2.1.2 Hydrogen-Stretching Region
8.2.1.3 First Overtone and Combination-Band Region
8.2.1.4 Second Overtone and Second Combination Band Region
8.2.1.5 Third Overtone and Combination Band Region and Beyond
8.2.2 Choice of IR Solvents
8.2.3 Optimization of Concentration, Pathlength, and Spectral Resolution
8.2.4 Measurement and Optimization of VCD Spectra
8.2.4.1 Fourier Phase Correction for the VCD Interferogram
8.2.4.2 Setting the Retardation Value of the First PEM

References
8.2.4.3 Calibration of the Intensity and Sign of the VCD Spectrum 239
8.2.4.4 Check of Signal-Averaging Improvement 241
8.2.4.5 VCD Baseline Correction and Artifact Elimination 241
8.2.4.6 Dual PEM with Rotating Sample Cell and Artifact Reduction 242
8.2.5 Solid-Phase VCD Sampling 243
8.2.6 Presentation of IR and VCD Spectra with Noise Spectra 249
8.3 Measurement of Raman and ROA Spectra 251
8.3.1 Choice of Form of ROA and Scattering Geometry 251
8.3.2 Raman and ROA Sampling Methods 252
8.3.2.1 Sample Cells and Accessories 252
8.3.2.2 Sample Purification and Fluorescence Reduction 252
8.3.3 Instrument Laser Alignment 252
8.3.4 ROA Artifact Suppression 253
8.3.4.1 Artifact Reduction Scheme of Hug 253
8.3.4.2 Artifact Suppression for Backscattered SCP Measurement 254
8.3.5 Forms of Backscattering ROA and their Artifacts 254
8.3.5.1 Direct Measurement of all Four Forms of ROA Intensities 255
8.3.5.2 Artifacts from Imbalance in Incident CP Intensities 256
8.3.5.3 Artifacts from Imbalance in the Detection of Scattered CP Intensities 256
8.3.5.4 Artifacts from Imbalance in both Incident and Scattered CP Intensities 257
8.3.6 Presentation of Raman and ROA Spectra 258

9 Calculation of Vibrational Optical Activity 261
9.1 Quantum Chemistry Formulations of VOA 261
9.1.1 Formulation of VA Intensities 262
9.1.2 Formulation of VCD Intensities 266
9.1.3 Formulation of Raman Scattering 268
9.1.4 Formulation of ROA Intensities 270
9.1.5 Additional Aspects of VOA Intensity Formulation 272
9.1.5.1 Analytic Derivatives Versus Finite Difference Derivatives 273
9.1.5.2 Gauge-Origin Independent Formulations 273
9.1.5.3 Incident Frequency Dependence for ROA 273
9.2 Fundamental Steps of VOA Calculations 274
9.2.1 Choice of Model Quantum Chemistry 274
9.2.2 Conformational Search 274
9.2.3 Optimization of Geometries 275
9.2.4 Solvent Corrections and Modeling 275
9.2.5 Force Fields and Vibrational Frequencies 276
9.2.6 Vibrational Intensities 276
9.2.7 Bandshape Presentation of Spectra 276
9.2.8 Weighting Spectra of Conformers 277
9.2.9 Comparison of Calculated and Experimental Spectra 278
9.3 Methods and Visualization of VOA Calculations 282
9.3.1 Recommended Methods for VCD Calculations 283
9.3.2 Recommended Methods for ROA Calculations 284
9.3.3 Visualization of VCD and VA Spectra 285
9.3.4 Visualization of ROA and Raman Spectra 288
9.4 Calculation of Electronic Optical Activity 289
 9.4.1 Calculation of Optical Rotation 290
 9.4.2 Calculation of Electronic Circular Dichroism 290
 9.4.3 Calculation of Rayleigh Optical Activity 291

References 291

10 Applications of Vibrational Optical Activity 293
 10.1 Classes of Chiral Molecules 293
 10.1.1 Simple Organic Molecules 293
 10.1.2 Pharmaceutical Molecules 294
 10.1.3 Natural Product Molecules 294
 10.1.4 Metal Complexes 294
 10.1.5 Oligomers and Polymers 295
 10.1.6 Biological Molecules 295
 10.1.7 Supramolecular Chiral Assemblies 295
 10.2 Determination of Absolute Configuration 296
 10.2.1 Importance of Absolute Configuration Determination 296
 10.2.2 Comparison with X-Ray Crystallography 297
 10.2.3 Comparison with Electronic Optical Activity 298
 10.2.4 Efficiency of VCD Determination of AC 299
 10.2.5 Determination of Solution-State Conformation 299
 10.2.6 Coupled Oscillator Model AC Determination 302
 10.3 Determination of Enantiomeric Excess and Reaction Monitoring 302
 10.3.1 Single Molecule %ee Determination 303
 10.3.2 Two-Molecule Simulated Reaction Monitoring 303
 10.3.3 Near-IR FT-VCD %ee and Simulated Reaction Monitoring 304
 10.3.4 Near-IR Reaction Monitoring of an Epimerization Reaction 306
 10.4 Biological Applications of VOA 307
 10.4.1 VCD and ROA Amino Acids 308
 10.4.2 VOA of Peptides and Polypeptides 309
 10.4.3 ROA of Proteins 316
 10.4.4 VCD of Proteins 318
 10.4.5 ROA of Viruses 320
 10.4.6 VCD Calculations of Peptides 321
 10.4.7 VCD Calculations of Nucleic Acids 322
 10.4.8 ROA Calculations of Peptides and Proteins 322
 10.4.9 VOA of Supramolecular Biological Structures 325
 10.4.9.1 VOA of Bacteria Flagella 326
 10.4.9.2 VCD of Protein Fibrils and Other Supramolecular Assemblies 327
 10.4.9.3 VCD of Spray-Dried Films 329
 10.4.9.4 VCD of Other Biological Structures 329
 10.5 Future Applications of VOA 329

References 330

Appendices
A Models of VOA Intensity 335
 A.1 Estimate of CD Intensity Relative to Absorption Intensity 335
 A.2 Degenerate Coupled Oscillator Model of Circular Dichroism 336
 A.3 Fixed Partial Charge Model of VCD 338