Contents

Preface ix
List of Abbreviations xi

1 Introduction 1
 1.1 Introduction to Telecommunications 1
 1.1.1 Transmitter 1
 1.1.2 Wireless Channels 3
 1.1.3 Receiver 7
 1.2 The Quality of Service (QoS) Parameters 8
 1.3 Multiple Access Techniques 11

2 Feedback Control Basics 13
 2.1 Introduction 13
 2.2 Feedback Control 15
 2.3 Relay Control (ON–OFF Control) 16
 2.4 Proportional-Integral-Derivative (PID) Control 19
 2.5 Proportional (P) Control 20
 2.6 Integral (I) Controller 23
 2.7 Proportional-Integral (PI) Controller 24
 2.8 Proportional Derivative (PD) Controller 26
 2.9 Proportional-Integral-Derivative (PID) Controller 29
 2.10 Practical Issues 30
 2.11 Tuning of PID Controllers 32
 2.12 Digital Implementation of a PID Controller 33
 2.13 Phase-Locked Loop 36
 2.14 State-Space Representation 45
 2.15 Kalman Filter 50
 2.16 Linear Kalman Filter 52
 2.17 Fuzzy Control 58
 2.17.1 Fuzzification 58
 2.17.2 Rule Base 60
 2.17.3 Fuzzy Reasoning 60
 2.18 Summary 64
 Exercises 64
3 Channel Modeling

3.1 Introduction

3.2 Large-Scale Propagation Models
3.2.1 Line-of-Sight Path Model
3.2.2 Reflection Model
3.2.3 Statistical Path-Loss Models
3.2.4 Data-Fitting Methods in Path-Loss Modeling
3.2.5 Shadow or Log-Normal Fading

3.3 Small-Scale Propagation Models and Statistical Multipath Channel Models
3.3.1 Multipath Fading
3.3.2 Rayleigh Fading Channel

3.4 Summary

4 Channel Estimation and Prediction

4.1 Introduction

4.2 Linear Time-Variant (LTV) Channel Model
4.2.1 Time-Selective Channel
4.2.2 Frequency-Selective Channel

4.3 Multivariable Case

4.4 Simulation of LTV Systems

4.5 Discrete-Time Models

4.6 Discrete-Time Models with Noise

4.7 Least Squares Identification

4.8 Minimum Variance Prediction

4.9 Self-Tuning Predictor

4.10 System Identification with Neural Networks

4.11 Summary

Exercises

5 Power Control, Part I: Linear Algebra Perspective

5.1 Introduction

5.2 Centralized Power Control

5.3 Graphical Description of Power Control

5.4 Distributed Power Control Algorithms
5.4.1 The Linear Iterative Method
5.4.2 The Distributed Balancing Algorithm (DBA)
5.4.3 The Distributed Power Control (DPC) Scheme
5.4.4 The Distributed Constrained Power Control (DCPC) Algorithm
5.4.5 The Foschini and Miljanic Algorithm (FMA)
5.4.6 The Constrained Second-Order Power Control (CSOPC) Algorithm
5.4.7 The Estimated Step Power Control (ESPC) Algorithm
5.4.8 The Multi-Objective Distributed Power Control (MODPC) Algorithm
5.4.9 The Kalman Filter Distributed Power Control Algorithm

References
6 Power Control II: Control Engineering Perspective
6.1 Introduction 167
6.2 Issues in Uplink Power Control 169
 6.2.1 Information Feedback 171
 6.2.2 Decision Feedback 171
6.3 Upper Link Power Control with a Relay Controller 171
6.4 PID Control 178
6.5 The Self-Tuning Predictive Power Control Algorithm 183
 6.5.1 Predictor Structure 184
6.6 Self-Tuning Power Control 190
6.7 Fuzzy Power Control 202
6.8 Handover 209
6.9 Summary 215
 Exercises 216

7 Admission and Load Control
7.1 Introduction to Admission Control (AC) 217
7.2 Theoretical Analysis of Centralized Admission Control 219
7.3 Non-Interactive Distributed Admission Control (NIDAC) Algorithm 224
7.4 Interactive Distributed Admission Control (IDAC) Algorithm 224
7.5 Admission Control in UMTS 226
7.6 Admission Control for Non-Real-Time Applications 232
7.7 Load Control (LC) 233
 References 235

8 Combining Different Radio Resources
8.1 Some Radio Resources Interrelations 237
8.2 Power and Rate Control 246
 8.2.1 Optimal Centralized Power and Rate Control 247
 8.2.2 Centralized Minimum Total Transmitted Power (CMTTP) Algorithm 250
 8.2.3 Maximum Throughput Power Control (MTPC) Algorithm 252
 8.2.4 Statistical Distributed Multi-rate Power Control (SDMPC) Algorithm 253
 8.2.5 Lagrangian Multiplier Power Control (LRPC) Algorithm 254
 8.2.6 Selective Power Control (SPC) Algorithm 255
8.3 Mathematical Formulation of the RRM Problem in the MO Framework 256
 8.3.1 Multi-Objective Optimization 257
 8.3.2 General Multi-Objective Formulation of RRM 259
 References 259

9 Smart Antennas
9.1 Smart Antennas and Adaptation 261
 9.1.1 Conventional Beamformer 263
 9.1.2 Null-Steering Beamformer 268
9.1.3 Minimum Variance Distortionless Response (MVDR) Beamformer 275
9.1.4 Minimum Mean Square Error (MMSE) Beamformer 282
9.1.5 Recursive Least Squares (RLS) Algorithm 284
9.1.6 Subspace Methods for Beamforming 285
9.1.7 Adaptive Beamforming using the Kalman Filter 288
9.1.8 Blind Beamforming 289
9.2 Spatial-Temporal Processing 292
9.3 Joining Radio Resources with Beamforming 293
9.4 Multiple-Input Multiple-Output (MIMO) Antennas 298
References 301

10 Cognitive Radios and Networks 303
10.1 Concepts of Cognitive Radios 306
10.2 Spectrum Attention of Cognitive Radios 308
10.3 Direct Spectrum Sensing 308
10.3.1 Energy-Based Detection 313
10.3.2 Feature-Based Detection 317
10.4 Cognitive Radio Networks and Game Theory 322
10.5 Systems Engineering and Cognitive Radios 328
References 330

Bibliography 333

Index 335