Contents

Contributors

1. **Hari Deo Upadhyaya: Plant Breeder, Geneticist and Genetic Resources Specialist**

 Sangam L Dwivedi

 Abbreviations

 I. Introduction

 II. Biographical Sketch

 III. Contributions

 A. Genetic Resources Management and Use

 1. Representative Subsets

 2. Climate-resilient Germplasm

 3. Seed Nutrient-dense Germplasm

 4. Bioenergy

 5. Germplasm Use in Breeding

 6. On-farm Conservation and Use of Diversity

 7. Wild Relatives and Cultigen Genepool

 8. Gaps in Collections

 B. Molecular Biology and Biometrics

 1. Population Structure and Diversity

 2. Genome-wide Association Mapping

 3. Candidate Genes Associated with Agronomically Useful Traits

 4. Ethnolinguistic Groups Shaped Sorghum Diversity in Africa

 5. Genome Sequencing

 C. Groundnut Breeding

 1. Early Maturity

 2. Drought Tolerance

 3. Aflatoxin Resistance

 4. Farmers Participatory Varietal Selection

 D. Chickpea Breeding

 IV. Upadhyaya, the Man
1. A₁ CMS System from *Cajanus sericeus* (Benth. ex Bak.) van der Maesen 128
2. A₂ CMS System from *Cajanus scarabaeoides* (L.) Thou 128
3. A₃ CMS System from *Cajanus volubilis* (Blanco) Blanco. 128
4. A₄ CMS System from *Cajanus cajanifolius* (Haines) Maesen 129
5. A₅ CMS System from *Cajanus cajan* (L.) Millsp 129
6. A₆ CMS System from *Cajanus lineatus* (W & A) van der Maesen 130
7. A₇ CMS System from *Cajanus platycarpus* (Benth.) van der Maesen 130
8. A₈ CMS System from *Cajanus reticulatus* (Aiton) F. Muell 130
9. A₉ CMS System from *Cajanus cajan* (L.) Millsp 131

D. Effect of Pigeonpea Cytoplasm on Yield 131
E. Fertility Restoration of A₄ CMS System 132

VIII. Breeding New Hybrid Parents 133
A. Fixing Priorities 133
B. Selection of Hybrid Parents from Germplasm and Breeding Populations 134
C. Isolation of Fertility-Restoring Inbred Lines from Heterotic Hybrids 136
D. Breeding Dwarf Parental Lines 137
E. Breeding Determinate/Non-determinate Parental Lines 137
F. Disease-resistant Parental Lines 138
G. Use of a Naked-Eye Polymorphic Marker in Hybrid Breeding 139
H. Formation of Heterotic Groups 140
I. Inbreeding Depression 141

IX. Application of Genomics in Breeding Hybrids 142
A. Understanding the Molecular Genetics Basis of the A₄ CMS System 143
B. Tagging Fertility-restoring Genes 143
C. Assessment of Genetic Purity 144
D. Potential Role in Breeding Two-line Hybrids 145

X. Commercialization of Hybrid Pigeonpea Technology 146
A. Standard Heterosis 146
1. Early-maturing Hybrids 146
2. Medium- and Late-maturing Hybrids 147
4. The Evolution of Potato Breeding

Shelley H Jansky and David M Spooner

Abbreviations

I. Introduction
II. Classification of Cultivated Potato
III. Origin of the Cultivated Potato
IV. Dynamics of Potato Landrace Evolution
V. Origin of the European Potato
VI. Nineteenth Century Potato Breeding
VII. Early Twentieth Century Potato Breeding
VIII. Conventional Potato Breeding
IX. Late Twentieth Century Potato Breeding
X. Twenty-first Century Potato Breeding
 A. Is Tetraploidy Necessary for High Tuber Yield in Potato?
 B. What are the Advantages of Moving to the Diploid Level and Developing Inbred Lines?
 C. Is It Possible to Develop Diploid Inbred Lines in Potato?
XI. Conclusions

Literature Cited

5. Flavour Evaluation for Plant Breeders

JC Dawson and GK Healy

Abbreviations

I. Introduction
 A. Scope of the Chapter
 B. Justification for Rapid Sensory Methods
 C. History
II. Types of Rapid Sensory Analysis Methods
 A. Performance Relative to Conventional Methods
 B. Methods of Rapid Sensory Evaluation
1. Evaluation of Individual Product Attributes 224
 Method 1: Intensity Scales 224
 Method 2: Flash Profiling 225
 Method 3: Check All That Apply (CATA) 226
2. Evaluation of Global Differences 227
 Method 4: Sorting 227
 Method 5: Projective Mapping 228
3. Evaluation in Comparison to a Reference 230
 Method 6: Paired Comparisons 230
 Method 7: Polarized Sensory Positioning 231
 Method 8: Open-ended Evaluations 232
4. Use of Professional Experts in Evaluation 232
 C. Numbers of Assessors and Numbers of Samples for Trained, Untrained and Expert Panels 235
 III. Data Analysis for Rapid Sensory Methods 236
 A. Principal Component Analysis 237
 B. Multi-dimensional Scaling 237
 C. Multiple Correspondence Analysis 238
 D. Generalized Procrustes Analysis 239
 E. Multiple Factor Analysis 239
4. Example of Using Sensory Analysis for Breeding 241
 A. Background, Goals and Partners 241
 1. Participant Recruitment and Priority Setting 241
 2. Cultivar Trials 243
 B. Flavour Evaluation Methods Used 243
 1. Evolution of Flavour Evaluation Methods 243
 2. Intensity Scaling Methods Used with Crew Members 244
 3. Chef Projective Mapping Evaluation 245
 C. Statistical Methodology 246
 1. ANOVA with Intensity Scaling Methods 246
 2. Principal Component Analysis of Field Crew Flavour Evaluation Means 246
 3. Multiple Factor Analysis of Chef Projective Mapping Data 247
 D. Results 247
 1. Field Crew Flavour Evaluation with Intensity Scaling 247
 2. Chef Flavour Evaluations 250
 3. Participant Feedback and Next Steps 253
 V. Outlook 254
6. The Genetic Improvement of Black Walnut for Timber Production 263

James R McKenna and Mark V Coggeshall

Abbreviations 264

I. Introduction 265
II. Biology of Black Walnut 268
 A. Leafing Date 268
 B. Flowering 268
 1. Female Flowers 269
 2. Male Flowers 270
 C. Pollen Collection 270
 D. Artificial Pollination 271
III. Breeding 272
 A. Breeding Strategies 272
 B. Selection 272
 C. Age-to-Age Correlations 273
 D. Improvement 274
 E. Analysis 274
IV. Evaluation of Heritable Traits 274
 A. Geographic Variation 274
 B. Growth 275
 C. Timber Quality 275
 D. Wood Quality 276
V. Host Plant Resistance to Pathogens and Insect Pests 277
 A. Insect Resistance 277
 B. Anthracnose 277
 C. Thousand Cankers Disease 278
 D. Bunch Disease – Witches Broom 278
VI. Propagation 279
 A. Seed Propagation 279
 B. Grafting 280
 C. Rooting 281
VII. Plot Management 281
 A. Progeny Tests 281
 B. Clone Banks 282
 C. Seed Orchards 283
VIII. Future Directions 283
Literature Cited 283