Additive observation noise, 242
Affine process, 173
A posteriori error covariance matrix, 178
A posteriori estimate/errors, determination, 173
Arbitrage
 riskless arbitrage, 236
term, usage, 236
Arrival rate, 187, 232, 234
 simulation, example, 193f
Asymptotic approximations, 28
ATMF, 257
At-the-money (ATM) puts/calls,
 implied volatilities, 208f
Augmented state vector, 75
Auto-correlation, 195
Average-estimated parameter-set,
 155, 156t
Back-testing, making, 184
Backward induction, usage, 7
Barrier option, 20
Bayesian approach, 158–172,
 199–201
 illustration, 161–162
Bayes rule, usage, 70
Bensoussan-Crouhy-Galai (BCG) approach, 12–14
model, 1
Bergomi model, 46
Bessel function. See Modified Bessel function of the second kind
Beta function, plots. See Incomplete beta function
Bet option, 20
Bias test, usage, 65
Binomial law, usage, 7
Binomial trees
 centering condition, 18
 framework, 17–18
 notations, usage, 18
 usage, 7
Black-Scholes approach (derivatives market), 5–6
Black-Scholes-Barenblatt equation, 21
Black-Scholes formula, 33
Black-Scholes partial derivatives equation, 1
Black-Scholes pricing equation, usage, 10
 function, 43, 253
 correspondence, 228
Blocking technique, 165
Boundedness, 253
Box-Ljung test, xx
Breeden & Litzenberger identity, 14–15
Breeden & Litzenberger implied distribution, 14
Brownian motion, 2, 174, 230, 246
 addition, 9
 concept, 1
 consideration, 48
 independence, 23, 33, 51
 introduction, 33
Burn-in period, 160, 163
Calibration frequency, 19–20
Calibration methods, 27
Call bid prices, usage, 207
Call options
 implied volatility, deduction, 7
 payoff, 29
Carr-Madan replication, usage, 219
Chaos theory, 4
Chapman-Kolmogorov equation,
 xviii–xix
 application, 70
Characteristic function, usage,
 172–174
Chi-square normality test, xx
Chi-square test, 108, 195
Cholesky factorization, 76, 78
writing, 33
CIR. See Cox-Ingersoll-Ross
Classical parameters, Bayesian
 parameters (contrast), 57
Closed-form solutions, 33
Close-to-the-money strikes, 209
Comparability, loss, 57
Compound option, 20
Conditional density, maximization,
 80
Conditional likelihood, 200
Conjugate directions, usage, 61
Conjugate gradient
 (Fletcher-Reeves-Polak-Ribiere)
 method, 58–59
Conjugate priors, 160
 usage, 171
Consistency problem, 203
Consistency test, 206–214
 cross-sectional method,
 robustness issues, 207–209
 cross-sectional results, 206
 financial interpretation, 210–214
 setting, 206
 time-series method, robustness
 issues, 210
time-series results, 209–210
Constant coefficient, usage, 56
Constant elasticity variance (CEV)
 approach, 11
 models, xvii, 1
Constant parameter-set, 66
Continually recalibrated local-vol
 model, 20
Continual recalibration (CR)
 strategy, 20
Continuous process, 3
Continuous risk-neutral
 GARCH, 27
Continuous SDE, 147
Convergence, issues/solutions, 202
Correlation elevation, 225–230
Correlation parameters
 estimation, 142
 proposal distribution, selection,
 172
Covariance matrix, 75, 83
Covered call, 6
Cox-Ingersoll-Ross (CIR)
 characteristic function, 52
 process, 21
Cox Ross Rubinstein
 approach, 7–8
Cramer-Rao bound, 67
Crash-O-Phobia, xxii
Crash possibility, 8
Credit spread, link, 10–11
Cross-sectional
 time-series, contrast, 57
 time-series VGSA, contrast,
 234–236
Cross-sectional implied parameters,
 206
Cross-sectional method, robustness
 issues, 207–209
Cross-sectional
 volatility-of-volatility, 238
Cross-sectional volatility smiles, comparison, 213f
Cumulative distribution function (CDF), 48–49
comparison, 115
display, 49
Inverse-Gamma (IG) CDF, 167
student CDF, 166
Cumulative standard normal function, 6
Data simulation, true parameter-set, 141t
Degeneracy, 132
Degenerate hypergeometric function, 48
Delta hedging cash flow, 220–221
Derivatives market, 5–8
Black-Scholes approach, 5–6
Cox Ross Rubinstein approach, 7–8
Derivatives security, payoff, 33
Derman Kani approach, 17–18
Descent algorithm, 59
DF. See Dual filter
Diagnostics/sampling distribution, 58, 155
Diffusion
jump diffusion, 8–11
limits, 22–25. See also Two-factor diffusion limit.
models, 184
process. See One-factor diffusion process.
pure diffusion, 8
Diffusion-based models, 232, 235
Dirac delta function, 175
Dirac function, 17, 164
Directional risks, 217–220
Direction set (Powell) algorithm, 118
Direction set (Powell) method, 58, 61–62
usage, 98
Discrete equations, 256
Discrete equivalent, 3
Discrete GARCH process, weak convergence, 22
Discrete NGARCH model, risk-neutral version, 27
Discrete process, limit, 33
Discrete stochastic volatility process, 85–86
Dividend yield, 206–207
Drift parameters, 145
EKF estimation, examples, 87
observations, sensitivity (examples), 212f
Dual filter (DF), 80
Dupire approach, 14–17
Dupire identity, 15–16
Dynamic programming, 19
Early termination, 223
Ergodic averaging theorem, 159
Errors
distribution, 65
dominance, 95
size, 129–132, 149–153
term, 194
Euler approximation, 24
application, 25
Euler scheme, usage, 155
Euro Index, time-series, 238
European call option, 33
European options, usage, 65–66
Exact replication, 217, 219–220
Extended Kalman filter (EKF), xix, 72–74, 256–257
absolute filtering errors, 99f
application, 131f, 189
comparison, 136
estimation, examples, 87–88
Extended Kalman filter (EKF) (Continued)
first-order Taylor approximation, 241
implementation, 103–104
Jacobians, 90–91
length, paths, 157f, 158f
optimum, 147t, 148t
parameter-set, optimum, 150t
Extended particle filter (EPF), xx, 177–181
algorithm, 234
application, C++ code, 179–181
errors, comparison, 137
example, 133f
results, comparison, 183f
term, usage, 116
usage, 188–192
Extended-Vasicek short-rate model, 239

Far-from-the-money options, valuation, 40
Feynman-Kac equation, 5–6
Feynman-Kac PDE, 46–47
Filtered data, variograms, 111f, 112f
Filtering, 69–71
concept, xxiii–xxiv
equations, 242, 255–256
errors, 128f, 129f
comparison, 136–139
purpose, 172–173
state estimation, 80
techniques, 69
Filtering non-normalized weight, 113
Filtering normalized weight, 113
Financial econometrics
consensus, 210–214
Financial econometrics, literature, 204
Financial markets, volatility, 2
Firm assets, log-normal process, 12
First-order Taylor approximation, 241
First-order terms, consideration, 154
First-order WCE, 247–248
Fisher Information matrix, 67
Fixed income, 237, 238–240
cross-section, 240
time-series, 238–239
Fletcher-Reeves-Polak-Ribiere (conjugate gradient) method, 58–59
Fokker-Planck equation, 15
Foreign exchange (FX), 237–238
rate process, 237
Forward joint transition density, 42
Forward variance, 20
stochastic variable, function, 46
Fourier inversion
application, 206
usage, 174
Fourier transform, inversion, 31
Fundamental transform, 30
special cases, 30–32
FX. See Foreign exchange
Gamma arrival rate, usage, 53
Gamma cumulative distribution function (Gamma CDF), 49–50
calculation, 52
parameter values, 49f
Gamma-distributed random variable, usage, 52
Gamma distribution, 48–49, 161, 167
Gamma function, 48
Gauss-Hermite filter (GHF)
applied, 131f
test, 130
Gauss-Hermite integration, inefficiency, 80
Gauss-Hermite quadrature, 80
Gauss-Hermite roots, vector, 78
Gaussian approximation, 188–189
consideration, 150
usage, 116
Gaussian noise, persistence, 241
Gaussian parameter, non-Gaussian
parameter (contrast), 58
Gaussian quadrature, 77–78, 117
Gaussian random value, 100
Gaussian random variables, 81
Gaussian realization, 48, 230
Gaussian sequence, 69
Gaussian simulated number, 117
Gaussian stochastic volatility
models, MH algorithms
(application), 169–172
Gauss Newton method,
interpolation, 59–60
General Auto-Regressive
Conditional Heteroskedasticity
(GARCH)
continuous risk-neutral GARCH, 27
diffusion-limit model, 134
discrete GARCH process, weak
convergence, 22
discrete process, 25
framework/methodology, 84
limits, 22–25
MLE, 152–153
model, 2, 22, 69
filtering errors, comparison, 138
limitation, 23
randomness, source, 23
variance process, 22
Generalized Fourier transform,
28–32
application, 28
General method of moments
(GMM), 68
Generic particle filter (GPF),
176–177
GHF. See Gauss-Hermite filter
Gibbs sampler, xxi, 158
examples, 162f
usage, 159–160, 163
Gibbs sampling, performing, 161
Girsanov theorem, 26, 184, 229
application, 204
discrete version, 27
usage, 237
validity, assumption, 204
GMM. See General method of
moments
GPF. See Generic particle filter
Gradient computation, 61
Gradient descent algorithm,
interpolation, 60
Gradients, Jacobian matrix, 60
Hammersley-Clifford theorem,
158–159
Harvey-Ruiz-Shepard (HRS),
usage, 150
Hat notations, usage, 207
Heaviside function, 17
Hedged portfolio
immunity, 5
satisfaction, 10
Hedge ratio, selection, 224
Hermite polynomials, 245–246
Hermite polynomials, usage, 117
Hessian computation, 61
Hessian matrix, 61
Heston (square-root) model
comparisons, 133–140
equation, 170–171
filtering errors, comparison, 138
Fourier transform, inversion, 31
identification, 201
jumps, addition, 238
likelihood, 174
Heston (square-root) model (Continued)
particle filter, application, 119–127
simulations, 248
Heston parameter-sit, usage, 32
Heston state space model, generalization, 134
Heston stochastic volatility process, 91
High frequency data, 153–154 usage, 202
Histograms, usage, xx
Historic negative correlation, 225–227
Historic option prices, 252–262 numeric tests, 257–262
Historic prices, examples, 226f–228f
Historic skew elevation, example, 229f examples, 226f, 227f
Historic spot prices, 252
Historic volatility, 3–4
HRS. See Harvey-Ruiz-Shepard
Identity matrix representation, 73
usage, 60
Ill-posed inversion, 18–19
Implicit finite difference method, usage, 19
Implied volatility calculation, 208
deduction, 7
SDE, 45, 254
term-structure, 224
Importance sampling technique, 112–113
Incomplete beta function, plots, 168f
Independent Gaussian random variables, 118
Inference-based conclusions, data (usage), 204
Inference parameters, 57
Inference tools accuracy issues, 236
high frequency data, 153–154 observations, frequency, 154–155 optimal parameter-set, 154t parameters, joint estimation, 148–149 performance, 141–158 sampling distribution, 155–158
Information matrix identity, 68
Initial parameter-set, 148t
Instantaneous variance defining, 50
risk-neutral expectation, 16
Instantaneous volatility, 21, 44 local volatility, contrast, 16–17
Interest-rate cash flow, calculation, 221
In-the-money (ITM) options, illiquidity, 207
Intra-day stock price movements, 84
Inverse Fourier transform, 29 application, 39
Inverse-Gamma (IG) CDF, 167
Ito’s lemma application, 175
usage, 2, 12
Jacobian matrices, defining, 73
Jensen (log convexity) inequality, usage, 67
Joint EKF estimation, 92f–94f
Joint filter (JF), xix example, 82f one-dimensional state, 89–91
Joint filtering, examples, 82–88
Joint probability, 66
Jump diffusion, 8–11
model, 215
 particle filter, application, xxi
process, 47, 175
 generalization, 11
volatility, 8–14
Jumps
 addition, 238
 existence, 201
 introduction, 174–183
 model, 174–175
 non-Gaussian case, 230–236
 numeric results, 182
 occurrence, 222
 optimization algorithm, 182–183
 pure-jump models, 47–53
 Srivastava approach, 181–182
 total ruin/default, correspondence, 9
Kalman-based proposal
 distribution, 188
Kalman filter (KF), xix
 extended Kalman filter (EKF), xix, 72–74
 simple Kalman filter, 72–74
 unscented Kalman filter (UKF), xix, 74–76
 writing, 71
Kalman filtering, 177
Kalman gain, 77, 79
 defining, 73
 interpretation, 71, 73–74
Kullback-Leibler (KL) distance, xvii
 defining, 66
 usage, 19
Kurtosis
 calculation, 214
 correspondence, 24
 skewness, contrast, 219
 strategy, example, 218f
 strength, 213
 trades, 217
 Kushner algorithm, details, 78–80
 Kushner nonlinear filter (NLF), 117
 Kushner’s nonlinear filter, 77–80
 Kushner-Stratanovich equation, 244
 Lagrange multiplier, 231
Learning, likelihood-maximization (contrast), 58
Least-square calibration optimal parameters, 63
Least-square estimation (LSE) approach, 32
 Monte-Carlo mixing, 206
 usage, 66
 least square estimator (LSE) performer, 58
 usage, 55
Leptokurticity, 8
Level-dependent volatility, xvii, 8, 11
Levenberg-Marquardt (LM) algorithm, 60
Levenberg-Marquardt (LM) method, 59
 usage, 59–60
Leverage, 10
 effect, 11
 importance, 9
Levy process, usage, 11
Likelihood evaluation/filtering, 68–69
Likelihood function, 65–69
 maximization, 65
 writing, 174
Likelihood maximization, iterations, 81
Linear a posteriori estimate, defining, 72
Linear a priori process estimate, defining, 72
Linear Kalman gain, one-dimensional expression, 74
Linear state-space system, writing, 81–82
Line minimization, 59 routine, requirement, 61
LM. See Levenberg-Marquardt
Local martingale condition (zero drift), 46
Local risk minimization, 28
Local variance, 42
Local volatility, 14–20 calibration frequency, 19–20
Derman Kani approach, 17–18
Dupire approach, 14–17 formula, provision, 15 instantaneous volatility, contrast, 16–17
models, 19 stability issues, 18–19 stochastic volatility models, 42–43
Log-characteristic function, writing, 52
Log convexity (Jensen) inequality, usage, 67
Log-likelihood, first derivative, 67–68
Log-normal-like stock process, 47–48
Log-normal process, 2
Long-term asymptotic case, 35–41
deterministic case, 35–36 stochastic case, 37–38 volatility-on-volatility, series expansion, 39–41
LSE. See Least-square estimation; Least square estimator
Machine learning (parameter estimation), 80
Market completeness, 5 concept, loss, 26
Market data, parameters (calibration), 13
Market-price-of-volatility-risk, usage, 56
Markov Chain, evolution, 166
Markov Chain Monte Carlo (MCMC), xxi–xxii, 158 step, addition, 115 techniques, 140
Markov process, assumption, 114
Markov property, writing, 114
Martingale, 17, 44
local martingale condition (zero drift), 46
semi-martingales, Ito’s lemma (application), 175
Maximization-likelihood method, usage, 204
Maximization of likelihood estimation (MLE), xviii justification, 66–68 minimization, 103 shortcomings, 142–143
Mean adjusted return, calling, 22
Mean price errors (MPEs), xx, 74 computation, 131
usage, 195
Measurement equation, 101
Measurement noise, correlation (absence), 101
Measurement update Bayes rule, usage, 70 equations, 73, 76, 77
Metropolis-Hastings (MH) Accept/Reject technique, 140 test, xx
Metropolis-Hastings (MH) algorithm, xxi–xxii, 162–165
applications, 169–172
distributions, 166–168
examples, 166f, 167f
illustration, 165–166
justification, 163–164
regression analysis, 168–169
Metropolis-Hastings (MH) enhancement, 132–133
Metropolis-Hastings (MH) sampling algorithm, 115
Minimization, performing, 58–59
Mirror trades, 220
MIs. See Multi-Indices
Mixing algorithm, 215–216
Mixing solutions, 25, 28, 32–35
one-factor Monte-Carlo technique, 34–35
Romano Touzi approach, 32–34
Modified Bessel function, 200
Modified Bessel function of the second kind, 48
parameter, defining, 50, 51
Modified model, 94
Moment-generating function, 173
Monte-Carlo approximation, 116
Monte-Carlo-based methods, 2
Monte-Carlo method, mixing, 39–40, 62
Monte-Carlo mixing, 206
model, volatility-of-volatility
series expansion (comparison), 40f, 41f
Monte-Carlo process, obtaining, 24–25
Monte-Carlo proxy, 118
Monte-Carlo sampling, usage, 113–114
Monte-Carlo simulation, 25, 174
mixing, 63–64
particle filter algorithm, 43
square-root model, mixing, 35
two-factor Monte-Carlo simulation, application, 28
usage, 111–112
Monte-Carlo test, 94
Monte-Carlo time-steps, 207
MPEs. See Mean price errors
Multi-dimensionality, assumptions, 243
Multi-dimensional vector function, 243
Multi-Indices (MIs), 244–245
Multiple trades, usage, 225
Negative variance, rejection, 170
No-default case, 10
Noise
additive observation noise, 242
level, parameters, 151–152
measurement noise, correlation (absence), 101
one-dimensional source, 84–85
Non-Gaussian pure-jump models, 230–236
comparability, loss, 57
Non-informative priors, 169
Nonlinear asymmetric GARCH (NGARCH)
MLE, real/optimal parameter-sets, 153
model, 23
discrete NGARCH model, risk-neutral version, 27
Nonlinear filter (NLF), 117
Nonlinear filtering, 242
Nonlinear functions, approximation, 75
Nonlinear observation equation, 72
Nonlinear transition equation, 72
Non-negative integers,
 double-infinite collection, 244
Non-normalized weight, 113
 ratio, interpretation, 132
Non-parametric (NP) methodology, xxii
Non-perfect correlation, 21
Non-uniqueness, 99
Normalization factor, usage, 46
Normalized weight, 113
Numeric tests, 62–65

Observability, 89
 concept, xix
 problems, 202
Observation matrix, 97, 101
Observations
 equation. See Nonlinear observation equation.
 frequency, 154–155
 quality, 251–262
 usage, impact, 3
One-dimensional Heston model
 EKF/GHF, application, 131f
 filters, application, 130f
One-dimensional line minimization
 routine, requirement, 61
One-dimensional notations, 68
One-dimensional state, 102–108
One-factor continuous process, 152
One-factor diffusion process, 152
One-factor GARCH models, xxi
One-factor Monte-Carlo technique,
 34–35
One-step induction expression, 173
Optimal EKF parameters, 147t, 148t
Optimal Heston parameter-set,
 examples, 207t, 210t
Optimal parameter-set, 142t
 discovery, 194
 distribution, determination, 155
Optimal payoff, 231
Optimization
 algorithm, 182–183
 constraints, 99–100
 process, initial parameter-set, 142t
Option-implied skew, 229, 230
Option-implied volatility-drift parameters, 229
Option prices
 calculation, backward induction (usage), 7
 errors, distribution, 65
 historic option prices, 252–262
 numeric tests, 62–65
 traded option price, 44
 usage, 55, 58–65
Option pricing
 one-step simulations, application, 52
 VGSA, usage, 51–52
Options
 bid-ask spread, 223
 close-price, spot close-price (synchronization), 205
 expiration, swap tenors, 240
 implied skew, 221
 comparison, 228
 implied volatilities, usage, 224
Ornstein-Uhlenbeck (OU) process, 21
Orthonormal basis, selection, 246
Out-of-the-money (OTM) calls
 options, xxii–xxiii
 purchase, 222, 225
 usage, decision, 204
Out-of-the-money (OTM) puts
 options, xxii–xxiii
 sale, 225
 usage, decision, 204
Out-of-the-money (OTM) region,
 Black-Scholes value, 40
Parameter estimation (machine learning), 80
diagnostics, 108–111
illustration, 96
maximization of likelihood estimation (MLE), usage, 95–108
particle filtering, 111–133
resampling, 115–117
stochastic volatility, examples, 97–99
Parameter learning, 80–95, 139–140
illustration, 81–82
joint filter, 91–95
one-dimensional state, 89–91
observability, 89
time interval, 91–95
Parameter learning, filtering application, 69
Parameter-set, 68
estimation, 184
examples, 141t–142t
initial parameter-set, 148t
invariant portion, comparison, 203
dtrue parameter-set, examples, 141t, 148t
usage, 257
Parametric SV model, 21
calibration, xxiii–xxiv
Partial differential equations (PDEs), xviii, 1
Feynman-Kac PDE, 46–47
pricing, stochastic volatility, 26–28
recursive PDEs, 246–247
risk-neutral Black-Scholes PDE, 12
stochastic PDE, 243–244
transform, application, 29
two-factor PDE, 27–28
usage, 13
Zakai stochastic partial derivative equation (Zakai SPDE), 244
Particle filter (PF), xix–xx, 111–133
algorithm, 134–135
application, xxi
error size, 129–132
extended PF (EPF), xx
generic particle filter (GPF), 176–177
illustration, 118–119
implementation, 117–118, 176
MH enhancement, 132–133
parameter-set, optimum, 151t
resampling, 115–117
test results, 127–129
underlying theory, 112–114
unscented PF (UPF), xx
usage, xxiv
PDEs. See Partial differential equations
Pearson kurtosis, 24
Peso theory, xxii, 214–216
background, 214–215
numeric results, 215–216
PF. See Particle filter
Plain-vanilla option prices, matching, 55
Plain-vanilla puts/calls, 19
Polynomials, normalization, 245–246
Positivity constraints, 253
Posteriori error covariance, 73–74
Powell algorithm, application, 62
Probability measure, change, 26
Process noise, correlation (absence), 101
Profit or loss (PnL) calculation, 221
final level, calculation, 222
hedging, impact, 223f
Pure diffusion, 8, 174
Pure-jump models, 47–53, 184–201
algorithm, efficiency (increase), 186–188
auto-correlation, 195
characteristic function, 52–53
chi-square test, 195
diagnostics, 194–195
EPF/UPF, usage, 188–192
filtering algorithm, 185–186
MPE, 195
numeric results, 192–194
parameter estimation, 186
RMSE, 195
variogram, 195–196
VGG, 196–199
Put-call parity relationship, 6
Put options, implied volatility (deduction), 7
Quadrature order, 78
Quality, problem, 241
Radon-Nikodym derivative, correspondence, 57
Randomness, source, 26
Random variable, random generation, 163
Real volatility drift, 27
Real-world parameter-set, assumption, 56
Reciprocal Black-Scholes equation, 12
Recursive PDEs, 246–247
Regression analysis, 168–169
Rejection probability, 164
Resampling algorithm, 115
Residual PNL, creation, 42
Residuals, 74
Reverse Black-Scholes equation, 7
Reversibility condition, satisfaction, 164
Risk-aversion coefficient, 57
Risk-aversion factor, 30
Riskless arbitrage, 236
Risk, market price (concept), 2
Risk-neutral Black-Scholes PDE, 12
Risk-neutral densities, 231–232
Risk-neutral dynamics, calculation, 47
Risk-neutral implied distribution, evolution, 209
Risk-neutral implied parameter-set, 207t
Risk-neutral measure, 30
martingale, usage, 17
usage, 51–52
Risk-neutral volatility-drift parameters, 56
Romano Touzi approach, 32–34
Root mean square errors (RMSEs), xx, 74
computation, 131
usage, 195
Sample impoverishment, 115, 132
Sampling distribution, 155–156
Scaling parameters, 77
Scaling transformations, 174
SDEs. See Stochastic differential equations
Second-order WCE, 251
Self-financing portfolio argument, 231
Semi-martingales, Ito’s lemma (application), 175
Semi-non-parametric (SNP) methodology, xxii
Sequential importance sampling weight update, 116
Index

Sigma points
 calculation, unscented
 transformation (usage), 75–76
 set, construction, 75
Signal to noise ratio (SNR), xx
Simple Kalman filter, 72–74
Simulated log stock prices,
 example, 193f
Simulated stock-price path, Heston
 model (usage), 141f
Simulation index, 159, 163
Simulations, 248–250
 Heston model basis, 248
 numeric tests, 248–250
Single calibration (SC)
 methodology, 20
Singular Value Decomposition
 (SVD), 76
Skewness
 increase, 215
 kurtosis, contrast, 219
 strategy, example, 218f
 strength, 213
 trades, 216–217
 carrying, difficulty, 237
 example, 220–224
 opportunity, 228
 possibility, 205
Skew trading opportunity,
 absence, 228
Smoothing, 114
Space vector, concatenation, 75
Spot close-price, option close-price
 (synchronization), 205
Spot level movements, example,
 222f
Spot prices
 historic spot prices, 252
 time-series, 194
 generation, 199
 spot return variances, 20
 Square-root model, 2, 30
 GARCH, impact, 25
 Monte-Carlo simulation, mixing,
 35
 optimization constraints, 99–100
 usage, 34
 Square-root (Heston) model,
 Fourier transform (inversion),
 31
 Square-root process, 21
 discrete GARCH version, 24
 writing, 85–86
 Square-root SDE, 199
 Srivastava approach, 181–182
 Stability issues, 18–19
Standard and Poor’s 500 (S&P500)
 stock index, 4
 time-series, 135
 volatility surface, 62
 Standard and Poor’s 500 Index
 (SPX)
 cross-sectional volatility smiles,
 comparison, 213f
 estimation, performing, 65t
 historic data, 98f
 options, Powell algorithm
 (application), 62
 prices
 arrival rates, 233f
 gamma times, 233f
 log stock prices, 234f
 square-root model, 63–64
 time-series volatility smiles,
 comparison, 213f
 Standard & Poor’s 500 Index (SPX)
 BCG model, 14
 CEV model (2002), 13
 historic rolling volatility
 (2000–2001), 4
 implied surface, 31
 joint SPX/VIX dynamics, 45–47
 State estimation (filtering), 80
 State space
State space (Continued)
models, xix
representation, 58, 82
State transition equation, 90, 134
State variable, defining, 83
State vector, choice, 75, 255
Statistical (historical)
parameters, 232
set, 234
Stochastic arrival, usage, 51–53
Stochastic differential equations
(SDEs), 175
components, 214
continuous SDE, 147
discretization, 237
satisfaction, implied volatility
(impact), 43, 253
square-root SDE, 199
usage, 45
Stochastic implied volatility, 43–45, 252
calling, 43
dynamics, 252–255
Stochastic PDE, 243–244
Stochastic variable, 46
Stochastic volatility (SV), 21–25
discrete stochastic volatility
process, 85–86
estimation problem, 95
examples, 97–99
processes, 21–22
state space models, xix
time-changed processes, contrast,
50–51
usage, 26–28
Stochastic volatility (SV) models,
xxvii, 108. See also Local
volatility
comparison, 20
issues, 151
parameters, estimation, 69–70
Stock forward price, 18
Stock log-return, statistical drift, 230
Stock market, 2–4
Stock prices
Bayesian approach, 158–172
movements, skew, 228
process, 2–3
random variable percentage
change, 9
return
Brownian motion, 1
calculation, 213
unknown transition density, 14
usage, 56, 65
Stock-price time-series, deduction, 184–185
Stock process, 42
Stock return, time dependence, 3
Stock-volatility correlation, xx–xxi
Strike prices, differences, 65–66
Student cumulative distribution
function, 166
Super-replication strategy, 28
SVD. See Singular Value
Decomposition
Swap tenors, 240
Synchronization, 205
System equation, 102
System noise, 97
defining, 83
tuning, 86
Taylor expansion, 39
Taylor second-order expansion,
usage, 149
3/2 model, xx
filtering errors, comparison, 139
performance, 201
Time-changed processes, stochastic
volatility (contrast), 50–51
Time, deterministic function, 6
Time-homogeneity, absence, 39
Time-independent parameters, 34
Time interval, 91–95
Time-series, xxiii–xxiv, 238–239
applications, 133
contrast, 57
embedded parameters, 206
implied parameters, 206
method, robustness issues, 210
parameter-set, 232
results, 209–210
volatility smiles, comparison, 213f
Time update
equations, 73, 77, 173
iteration, writing, 70
usage, xviii–xix
Time-varying volatility models,
necessity, 4
Traded option price, 253–254
Trading strategies, 216–230
Transform
fundamental transform, 30
technique, 28–30
Transition equation. See Nonlinear
transition equation
Transition probability, expression,
164
Trinomial tree framework, 17–18
True parameter-set, examples, 141t,
148t
True variance, interpolation, 20
Truncation procedure, usage, 76
Two-factor diffusion limit, 152
Two-factor Monte-Carlo
simulation, application, 28
Two-factor PDE, 27–28

Uncertain volatility, concept, 21
Univariate regression,
consideration, 168–169
Unnormalized density function, 244
Unnormalized filtering measure, 244
 Unscented filter, implementation,
104–108
 Unscented Kalman filter (UKF), xix,
74–77
absolute filtering errors, 99f
application, 189
errors, comparison, 136
implementation, 91
time update equations,
comparison, 79
 Unscented particle filter (UPF), xx,
177–181
errors, comparison, 137
implementation/test, 128
term, usage, 116
usage, 188–192
Unscented transformation, 75
usage, 75–76
Utility function, 231
Variance gamma (VG), xviii,
47–51, 175, 184–185
gamma arrival rate, inclusion, 53
stochastic arrival, usage, 51–53
stochastic differential equation,
usage, 50
variance gamma with stochastic
arrivals, contrast, 232–234
Variance gamma with gamma
(VGG), 196–199
arrival, 184
rate, 198
VGG-based log stock prices,
simulation, 200f
Variance gamma with stochastic
arrivals (VGSAs), xviii, 51, 184
arrival rate, 187
Bayesian approach, 199–201
models, xxiii, 201
MPE/RMSE, example, 195
observation errors, 196
residuals histogram, example,
197f
Variance gamma with stochastic arrivals (VGSAs) (Continued)
residuals variogram, example, 197f
risk-neutral arrival-rate, 235t
statistical parameters, estimation, 235t
usage, 51–52, 185
variance gamma, 232–234
Variance process, formation, 26
Variograms, 111f, 112f
usage, xx, 195–196
Vector notations, usage, 60
Vega, 217
VGG. See Variance gamma with gamma
VIX dynamics. See Standard and Poor’s 500 Index
VIX futures, discrete maturities, 47
Volatility
estimation, 142
historic volatility, 3–4
local volatility, 14–20
parameters
impact, 209
sensitivity, examples, 211f
path, 215
problem, 1
randomness, 240
risk, market price, 26–27
smile, 8
comparison, 213f
fitting, 63–64
time, deterministic function, 6
uncertain volatility, 21
Volatility-of-volatility
correlation, xx–xxi
cross-sectional
volatility-of-volatility, 238
elevation, 225–230
embedding, 237
parameter
cross-sectional sensitivity, 209
EKF estimation, examples, 88
series expansion, 39–41
Monte-Carlo mixing model, comparison, 40f, 41f
Taylor expansion, 39
WCE. See Wiener chaos expansion
Weights
calculation, 186, 188, 189, 199
defining, 177
normalization, 177, 186, 199
Wick polynomials, 245–246
defining, 246
Wiener chaos expansion (WCE), 244–247
first-order WCE, 247–248
second-order WCE, 251
solution, 247
Zakai stochastic partial derivative
equation (Zakai SPDE), 244
Zero-coupon bond, price, 239
Zero-coupon risky bond, 10
Zero interest rates, case example, 16–17