Index

Page references followed by f indicate figures, references followed by t indicate material in tables.

Absoluted refractory period, 67
Absorbed CW, transient effects of, 110
Absorbed power density, 141
Absorbers. See also Electromagnetic wave absorbers
integrated-circuit-type, 239–241
with surface-printed conductive line patterns, 235–239
Absorbing perfectly matched layer (PML), 140
Absorption, 94. See also Resonance absorption
of EM energy, 108
EM power and, 30–31
Absorption spectra, of crystalline solids, 47
Absorptive material, 32
Accessory-pathway-mediated tachycardia (APMT), 271
Acoustic pressure waves, 120
Action potential, 65–66, 68
Activating functions, computation of, 111
Adenosine triphosphate (ATP) levels, microwave exposure and, 103–104
Adipose tissues, dielectric properties of, 77
Afferent neurons, 64
Afterglow integral luminance, 196
Agar phantom, 166–167
Agar phantom cube, 174
Albedo, 34
Alpha dispersion, 75
Alternating magnetic field, 179
Amperes, 18
Ampere’s law, 17
Amperes per meter, 18
Amperes per square meter, 18, 19
Amplitude-modulated wave (AMW), 33
Anastomosis
microwave-assisted, 251
previous approaches to, 296
Anechoic chambers, 221–223
Angina attacks, use of millimeter waves to reduce, 294
Animals, microwave-exposed, 100–101
Animal studies, in cancer risk assessment, 131
Anisotropic energy, 22
Anisotropic materials, 12, 19
Antennas, 52–53, 261–264
configurations of, 262–264
gain of, 32
near field and, 28–30
radiation diagrams of, 32
Antenna temperature, 37
Antiferrimagnetism, 21
Antiferroelectric materials, 17
Antiferromagnetism, 21
Application-type wave absorber, 204
Applicators, 153–154
 for body cavity, 162f
 inductive heating, 166–174
 matching to a biological surface, 52–53
 microwave, 164
 microwave dielectric heating, 163–164
Applicator systems
 for breast hyperthermia, 170–174
 capacitive coupling, 157, 159
Argand diagram, 48
Arteries, lumen measurement of, 290–294
Atherosclerotic plaque, treatments for, 303–304
Atoms, polarization of, 155f
Atrial fibrillation, 272f, 277
 chronic, 285
Atrioventricular nodule reentrant tachycardia (AVNRT), 271
Attenuation constant, 252
Autonomic nervous system, 64, 101
 functions of, 102
Auxiliary electrode, 169, 170
Axon, 65
Balloon angioplasty, coaxial cable in, 251–252, 256–258
Balloon angioplasty catheter, microwave-aided, 290–294
Balloon catheter angioplasty, percutaneous transluminal, 304
Balloon catheters
 positioning of, 278f
 therapeutic temperatures using, 303
Balloon microwave catheter, in cancer treatment, 303
Barrett’s esophagus (BE), 286
Basic exposure limitations, 53
Bead type thermistor sensor, 195
Beef blood, complex permittivity of, 79, 81f
Bei function, 165, 180
Bench-top tests, of biological solder, 297
Benign prostatic hyperplasia (BPH), 5, 267
Benzodiazepine receptors, 118–119
Ber function, 165, 180
Bessel differential equation, 179
Bessel functions, 179–180
 modified, 165
Beta dispersion, 75, 76, 77
Biodegradable thermoplastic hollow stent, 304
Bioelectric effects/phenomena/processes, 69
 natural, 64
Bioelectricity
 fundamentals of, 63–64
 importance of, 69
Bioheat equation, 98, 99
Biological cells, 65
 genotoxic effects on, 132
 period and hyperthermia sensitivity of, 185
Biological effects
 evaluating, 53
 frequency-dependent, 126
 of microwaves, 93–94
 of nonionizing radiation, 8
 of pulse-modulated radiation, 121
Biological liquids, measured data for, 77–80.
 See also Biological water
Biological materials
 as conductors, 40
 inhomogeneous, 84
Biological media, permittivity of, 75
Biological membranes, 127
Biological response, differences in, 93–94
Biological solder, 295, 296
 bench-top tests of, 297
 doping of, 297–299
 temperature measurement in, 299
Biological systems
 complex field distributions related to, 94
 energy availability in, 126–127
 RF/microwave effect on, 32
Biological tissues. See also Tissue(s)
 effect of RF/microwave radiation on, 63
 electric parameters of, 53
 interaction of EM fields with, 9
 penetration in, 39–44
 permittivity of, 49, 51
Biological water, 73–74
Biomembrane, inductive heating and, 167–168
Biosystems, properties of, 126. See also Biological systems
Blackbody, defined, 84
Blackbody radiation, 33–39, 38, 83–84
Blackbody spectral intensity (brightness), 35, 36, 38. See also Total brightness
Blackbody temperature, 34
Blood–brain barrier (BBB), 102
 cerebral vascular system and, 105
 effects of microwave exposure on, 104–107, 117
 effects of microwave fields on, 106
 opening of, 106–107
 permeability at high SAR, 106
 permeability of, 105–106
Blood flow rate, measuring within tissues, 289–290
Blood perfusion
 measuring in the heart muscle, 289–290
 of muscle, 291f
Blood sample, temperature of, 199
Body cavity tumor, heating system for
treatment of, 161–163
Body exposure, cell phone and base station,
140–142
Body movements, microwave evoked,
107–108
Bolometer-type noncooled detector, 198
Boltzmann’s constant, 83
Bone, dielectric properties of, 77
Boundary conditions, 24
Boundary field-driving functions, 113
Brain. See also Blood–brain barrier (BBB)
dielectric properties of, 82
effect of microwave radiation on, 103–104
Brain cancer, 131. See also Cancer
Brain energy metabolism, effects of
microwave exposure on, 107
Brain-equivalent phantom, composition of,
137
Breast hyperthermia, applicator systems for,
170–174
Brightness (blackbody spectral intensity), 35,
36, 38. See also Total brightness
Brightness temperature, 35–36
Burnout circuit, 191
Cable–antenna assembly design/testing,
253–255
Cable losses, 253t
Cable specifications, for medical applications,
251–258
Calcium (Ca\(^{2+}\)) ions, 114–115
Calcium transport, 109
Calibration, of vector analyzers, 50–51
Calorimetric methods, 97, 138
Cancer
 environmental exposure and, 131
 epidemiology studies on, 132
 hyperthermia and, 182–186
 radio-frequency ablation for, 269
Cancer-promoting phorbol esters, 114
Cancer risk assessment, animal studies in,
131
Cancer risks, detecting, 131
Cancer treatment(s)
 balloon microwave catheter in, 303
 hyperthermia for, 99–100
 by RF and microwaves, 267
 Capacitive applicator, double-electrode, 160
 Capacitive coupling applicator, 159
 Capacitive coupling applicator system, 157
 Capacitive heating device, RF, 159–160
Cardiac ablation, 5, 270–279
 successful, 285
Cardiac ablation techniques, goal of, 271
Cardiac arrhythmias, microwave ablation
technique for, 270–271
Cardiac-based close chest treatment, of
cardiac arrhythmia, 270–271
Cardiac blood flow, effect on surface
temperature, 284
Cardiac tissue, types of, 270
Cardiac tissue ablation, percutaneous,
271–273. See also Cardiac ablation
Cardiology, use of RF/microwaves in, 266–267
Carslaw’s equation, 289
Catheter(s)
 as circular waveguides, 258
 for microwave ablation, 279
 microwave-aided balloon angioplasty,
 290–294
 used for nerve ablation, 283f
Cell cycle, 185
Cell-dividing phase, 185
Cell membranes, 65, 66
 interaction with low frequency fields, 114
Cell nucleus, dielectric properties of, 117
Cell response, to low-intensity EM fields, 116
Cells, 65
 hyperthermia sensitivity of, 183–186
Cell surface chemical events, field modulation
of, 114
Cell survival rate, 183–184
Cellular (cell) phones. See also Mobile phones
electromagnetic interference induced by,
133
 exposure of body to, 140–142
 interference with ionizing radiation dose-
 monitoring equipment, 133
Cellular telephone base stations, exposure of
body to, 140–142
Cellular toxicity, temperature and, 264–266
Central nervous system (CNS), 64, 101
 effects of microwave radiation on, 100–114
Cerebral tissue, nonlinear effect of modulated
waves on, 109
Cerebral vascular system, blood–brain barrier
and, 105
Cgs units, 182
Chemical constituents, 84
Chemical potentials, 89
Chip type thermistor sensor, 195
Cholinergic fibers, 102
Chronic atrial fibrillation, 285
Circuit structure
 of thermocouples, 189–191
 for thermometer using thermocouple, 192f
Circular polarization, 25–26
Circular waveguide, 258–261
 field configurations of modes in, 259f
 notation applied to, 260
 power capacity of, 261
 power density distribution for, 259f
Circular waveguide antennas, 262
Closed systems, 83, 129
Coaxial cable design, skin effect and, 255–256
Coaxial cables, 251–258
 low-loss fully flexible, 255
 for microwave balloon angioplasty, 256–258
 power loss in, 252–255
 semirigid, 254t
Coaxial transmission line, design
 considerations for, 252
Coaxial waveguide, 233f
Coherent excitation, 127, 128
Coil current, relation to static magnetic field, 234f
Cole–Cole display/plot, 47–49
Cole–Cole relaxation function, 72
Compensation circuit, 191
Complex-locus diagram, 48
Complex parameters, 15
Complex permittivity, 156–157, 178
Computed tomography using nuclear magnetic resonance (NMR-CT), 198–199
Computer simulation, of neural reactions, 110–111
Conduction, continuous, 68
Conduction current density, 23
Conductivity, 15
 of bone, 77
 of phantoms, 138
 of tissue, 74
Continuous conduction, 68
Continuous-wave (CW) microwaves, 33. See also CW exposure
 transient effects of, 110
Convection current density, 23
Cooling, optical, 128
Coulomb's law, 10
 generalized, 11
Coulombs per cubic meter, 11
Coulombs per meter, 11
Coulombs per square meter, 11
Counterion polarization effects, 72–73
Coupling impedance, 251
Creatine phosphate (CP), 103
Critical-temperature resistor (CTR) thermistor, 193
Crystalline solids, absorption spectra of, 47
Curie temperature, 17, 21
Current, skin depth of, 182
Current density, 23
CW exposure, 122. See also Continuous-wave (CW) microwaves
Cylindrical wave, 26
DC ablation, 273
 mechanism of, 277f
Debye behavior, dielectrics with approximate, 45
Debye dispersion expression, 178
Debye peaks, 45
Debye’s equation, 44, 45, 48, 52
Debye’s law, 14, 79
Debye’s polarization, 177–178
Decimeter luminescence, 130f
Decimeter-wave (DM) radiation, 129, 130
Deterministic model, 115
Diamagnetism, 20
Diathermy, 153
Dielectric characteristics, classes of, 45
Dielectric characterization, 70–73
Dielectric constant, 13
 effective, 263–264
 of living material, 42–44
 of water, 44
Dielectric dispersion, in tissues, 73–75
Dielectric heating
 microwave, 177–178
 principle of, 154–157
 RF, 174–177
Dielectric heating applicator, 153–154
 RF, 157–163
 systems, 159–163
Dielectric loss, of small polar molecules and polar side chains, 74
Dielectric measurements, 49–53
 data provided by, 47
Dielectric medium, single-layer, 176
Dielectric polarization, 12
Dielectric properties
 of the cell nucleus, 117
 of liquids, 51–52
 of soft tissues, 76
 of tissues, 71
Dielectric relaxation, 73–74
 of water, 74
Dielectrics
cell membranes as, 66
 perfect, 52
 relaxation in, 44–45
Dielectric-type absorber, 205
Differential forms, of equations, 24
Diffusion equation, 40
Dioxane, 78–79
as a perfect dielectric, 52
Dipolar orientation, 71
Dipolar relaxation, of water, 71
Dipole antennas, 262
Dipole impedance, 263
Dipole theory, Debye’s, 177
Direction lines, 9
Disk-type thermistor, 194
Disk-type thermistor sensor, 195
Dispersion
alpha, beta, and gamma, 75
dielectric, 73–75
Dispersion equations, 71
Dispersive medium, 32
Displacement current, 22, 41
Displacement current density, 23
Displacement flux density, 11
Dissipation, 73
Dissipative material, 73
Division preparatory phase, 185
DNA synthesis phase, 185
Doping, of biological solder, 297–299
Doping materials, 299
Dose–response curve, 282
Dosimetric studies, xi–xii, 93
Dosimetry, 33, 131
Electric charge, forms of, 11
Electric current density, 23
Electric dipole, 154
Electric dipole antennas, 262–264
Electric dipole moment per unit volume, 11
Electric (E) field(s), 8, 23, 180–181
flux density and, 10–17
intensity of, 10
variability in space and time of, 54
Electric field density, 265f
Electric field distributions, 247f
examples of, 246f
Electric flux density, 11
Electric flux density distribution, 243f
Electric parameters, influence of temperature on, 80–82
Electric power loss, 181
Electric power loss per unit volume, 158
Electric vibrations, coherent excitation of, 127
Electrocardiogram (ECG), 69
Electroencephalogram (EEG), 69
Electromagnetic compatibility (EMC), improving, 242
Electromagnetic field (EMF), 22–25
Electromagnetic field exposure, guidelines for limiting, 124
Electromagnetic interference (EMI), 132–133
evaluating, 134
induced by cellular phones, 133
Electromagnetic phenomena, in living tissues, 24
Electromagnetic power, 30
Electromagnetic (EM) radiation, 7. See also EM entries
effects of, 1
Electromagnetics, 7–62. See also EM entries
laws of, 22–23
Electromagnetic wave absorbers
application of, 216–223
based on equivalent transformation method of material constant, 223–241
classification of, 204–206
configuration of, 240f
construction of, 209–210
fundamental theory of, 210–216
principle of, 208f
with surface-printed conductive line patterns, 235–239
Electromyogram (EMG), 69
Electronic devices, EM wave interference and, 4
Electronic polarization, 16, 46, 154
Electrophysiology (EP) study, vascular approaches for, 278f
Electrostatic field, 156
ELF components, 119–120
Elliptic polarization, 26
EM energy. See also Electromagnetic entries
effects of absorption of, 108
thermodynamic significance of, 85
EM exposure, transient effects and functional changes induced by, 110
EM field exposure, guidelines for limiting, 135
EM fields (EMFs), 9, 94. See also
Electromagnetic field entries
biological effects of, 69
EM fields (EMFs) (Continued)
 hypersensitivity to, 142
 interaction with biological tissues, 2–3
 nonthermal exposure to, 142
EM field theory, 64. See also EM theory
EM induction, neural excitation by, 112
EM induction law, 165
EMI tests, 132–133. See also Electromagnetic interference (EMI)
EM problems, methods for analyzing, 139–140
EM radiation, 64
EM theory, 124–125. See also EM field theory
EM wave absorbers, xii, 203–204
 defined, 204
EM wave interference problems, 203
EM waves, 25–28
 propagation of, 25
Endogenous opioids, 123
Endometrial ablation, 285–286, 287–288
Endoscopic light source, for photodynamic therapy, 301–302
Endoscopic techniques, experimental studies using, 294–301
Energy, 85–89. See also EM energy
 dissipation of, 85
 versus power, 30–32
Energy absorption
 pattern of, 107
 rates of, 94
Energy efficiency, 128
Energy functions, 87
Energy levels, in molecules, 46–47
Energy types, ferromagnetism and, 22
Energy velocity, 28
Enthalpy, 87
Entropy, 83, 86, 128–131
Environmental exposure, cancer and, 131
Epidemiology, genomic, 132
Epidemiology studies, 131–132
 on cancer, 132
Equilibrium, 89
Equivalent admittance, 174, 176
Equivalent complex permittivity, 177
Equivalent transformation, method of
 material constant, 223–241
Escherichia coli, 116, 128
Ether, 27
European GSM mobile telephony standards, 136
Evoked potentials, 66
Exchange energy, 22
Experimental approaches, difficulties of, 93
Experimental heating characteristics, 166–168
Experimental reflection coefficient, 241
Experimental studies, using endoscopic techniques, 294–301
Experimental tissue welding, 295
Exposure, 53–54
Exposure limits, recommendations for, 135
Exposure standards, 134–142
Extensive variables, 86
Extremely low frequency (ELF) effects, 8, 42–44
Eye, effects of pulse-modulated radiation on, 121–122
Faraday’s law, 165
Farads per meter, 10
Far-field (Fraunhofer) region, 28, 29
Far-field situations, 29
FDTD analysis/method, 139–140, 236. See also
 Finite-difference time-domain (FDTD)
 techniques
Ferric oxide, as a doping material, 299
Ferrimagnetism, 21, 22
Ferrite absorbers, 4
 weakly magnetized, 232–234
Ferrites, 21–22
Ferrite thickness effect, 228, 230f
Ferrodielectric material, relative permittivity of, 245
Ferrodielectric semicylinders, 243–245
Ferroelectric materials, 17
Ferromagnetism, 21, 22
Fibers
 cholinergic, 102
 termination conditions of, 113
Field distribution(s). See also EM fields
 (EMFs)
 analysis of, 243
 as a quasi-static field, 242
 related to biological systems, 94
Field focusing (FF) NMR, 199
Field potentials, computation of, 111
Finite-difference time-domain (FDTD)
 techniques, 99. See also FDTD
 analysis/method
Finite-element method (FEM), 243
Finite-length neuronal structures, magnetic stimulation of, 113
Flow effects, on surface temperature, 281f, 284
Flow phantom model, 277–279, 280f, 285
 limitations of, 285–286
Flux density
 electric field and, 10–17
 magnetic field and, 17–22
Fluxes of ions, 114–115
Flux lines, 9
INDEX

Fraunhofer region, 28, 29
Free energy, 89
Free space, 25
Free-space impedance, 209
Frequency \((f)\), 26–27
dielectric constant of living material and, 43–44
shielding and, 41
thermal therapy and, 154f
Frequency dependence, 103, 104
Frequency-dependent biological effects, 126
Frequency dispersion, equation of permeability, 224–224f
Frequency dispersion equation of permeability, 226
Frequency domain, 8
Frequency-domain descriptions, 24
Frequency-domain method of moments (MoM), 139. See also MoM-FDTD hybrid method
Frequency-domain theorem, 31
Frequency ranges, RF and microwave, 7–9
Frequency scaling, 95–96
Frequency windows, 109
Fresnel region, 28, 29
Fröhlich’s distribution, 49
Functional changes, induced by EM exposure, 110
Gain of an antenna, 32
Gamma dispersion, 75
Gap antenna, 261
configuration of, 254f
Gases
nonpolar and polar, 44
resonance in, 46
in thermal equilibrium, 46
Gastroesophageal reflux disease (GERD), 285–287
Gaussian distribution, 49
Generalized Coulomb’s law, 11
Generator potential, 65
Genetic effects, of microwaves, 116
Genome, role in cell response to EM fields, 116
Genomic epidemiology, 132
Genotoxic effects, on biological cells, 132
Gibbs, F. A., 289
Gibbs free energy, 87
Gibbs phase rule, 89
Graphite, as a doping material, 299
Grayson, J., 289
Grey bodies, 34
Group velocity, 28
Harmonic oscillator, 46
Hazards
due to mobilophony, 100
of RF/microwave exposure, 29–30
Head tissues, influence of ELF components on, 119
Heart
effects of RFs and microwaves on, 120, 122
low-level microwave effects on, 293–294
Heartbeat, effect of low-intensity pulse-modulated microwave energy on, 294
Heart muscle, measuring blood perfusion (flow) in, 289–290
Heat, use in therapeutic medicine, 264–267. See also Temperature entries; Thermal entries
Heated probes/thermocouples, 289
Heating
as a biological effect of microwaves, 135
depth and rate of, 282–284
inductive, 164–166, 179–182
microwave dielectric, 163–164
using shield plates, 171–174
Heating applicator, RF dielectric, 157–163
Heating characteristics, experimental, 166–168
Heating devices, evaluating, 100
Heating principle, 153–182
dielectric, 154–157
Heating processes, limits related to, 142
Heating technique, localized, 160
Heat input, 86
Heisenberg uncertainty principle, 46
Helical antenna, 261
configuration, 254f
Helix aspersa, 119
Hellow stent, biodegradable thermoplastic, 304. See also Stent
Helmholtz equation, 25
Helmholtz free energy, 88
Hertz, Heinrich Rudolph, 206–207
High-efficiency implant, 173
High-power pulsed microwave systems, 121
Hodgkin–Huxley membrane model, 66, 67f
Human heads, phantom models of, 137
Human heart tissues, influence of ELF components on, 119
Human thermal effects, 97
Human tissue, skin depths in, 42t
Hyperplasia, 5. See also Benign prostatic hyperplasia
Hypertension, effect of microwave prostatic hyperplasia
on, 293
Hyperthermia, 4, 153
biological background of, 183–186
Hyperthermia (Continued)
cancer and, 182–186
combined with radiotherapy, 183
combining with irradiation, 185–186
for cancer treatments, 99–100
Hyperthermia sensitivity
of cells, 183–184
oxygen partial pressure and pH and, 184–185
Hypothalamus, 102

Impedance, 42. See also Coupling impedance
dipole, 263
intrinsic (wave), 27
Implant material, heating, 173
Implants, high-efficiency, 173
Inductance (Q), 50
Induction noise, 190
Inductive deep local heating, 173
Inductive heating
biomembrane and, 167–168
methods for, 168
principle of, 164–166
theory of, 179–182
Inductive heating applicator, 154, 166–174
Infinite homogeneous model, 111
Infrared focal plane array (IRFPA), 198
Infrared ray detectors, classification of, 199t.
See also IR photodetector
Inhomogeneous biological materials, 84
Inhomogeneous systems, phases of, 88
Insulated dipole/monopole antennas, 262
Integral forms, of equations, 24
Integrated-circuit-type absorber, 239–241
Intensity windows, 109
Intensive variables, 86, 87
Intentional radiators, 133
Interaction, xi, 63
Interfacial relaxation, 71
Interferences, produced by RF/microwave
devices, 132–134
Intermediate far field, 266f
Intermediate field, 263
Internal energy, 85, 86
Internal impedance, 42
International Commission on Non-Ionizing
Radiation Protection (ICNIRP), 135
Interphase, 185
Interstitial fluid, 65
Interstitial tissue ablation, applicator used for,
163
Intrinsic impedance, 27, 42, 213, 214
Invasive thermometry, 186–197
In vitro vessel anastomosis, 299–300
In vivo biological properties, 126
In vivo tissue anastomosis, 300–301
Ionic channels, 66
Ionic diffusion, 72–73
Ionic polarization, 16
Ionization, 70
Ionization potentials, 70
Ionizing radiation, 8, 70
Ionizing radiation dose-monitoring
equipment, interference with, 133
Ions, fluxes of, 114–115
IR photodetector, thermometer using,
197–198. See also Infrared ray detectors
Irradiation, combining with hyperthermia,
185–186
Isolated systems, 83, 129
Isothermal effects, 125
Isotropic materials, 19
Jauman absorber, 203, 206f
Johnson–Nyquist expression, 37, 38
Joules, 31
Joule’s heat, 158–159
Kramer and Kronig equations, 47, 73
Kramer and Kronig formulas, 14, 15
Laser perforation method, 228
Laser welding, 296
LES/CARDIA, 286–287
Lesion position, implanting materials in,
172–173
Lesion size, calculation of, 284–285
Lesion volume, 284–285
Light, speed of, 26
Linearization circuit, 191
Linear materials, 19
Linear polarization, 25
Line–line (LL) calibration method, 51–52, 78
Liquids
measured data for, 77–80
measuring the dielectric properties of,
51–52
permittivity of, 78
Liver cancer, RF treatment for, 267, 268
Living material, dielectric constant of,
42–44
Local heating, 172
Localized heating technique, 160
Long-term biological consequences, of
repeated microwave exposure, 123
Lorentz broadening, 47
Loss angle, 13, 20–21
Lossless liquid dielectric, 78–79
Lossless materials, 19
Lossy materials, 12, 19, 73
Low efficiency radiation, 263
Lower esophageal sphincter (LES), 286
Low frequency (LF) effects, 8, 42–44
Low frequency fields, cell membrane interaction with, 114
Low-intensity EM fields, cell response to, 116
Low-intensity pulse-modulated microwave energy, effect on heartbeat, 294
Low-level effects, 109
Low-level exposure, 117–119
Low-level microwave, effects on hearts, 293–294
Low-level pulsed exposure, 118–119
Low-loss fully flexible coaxial cable, 255
Lumen measurement, utilizing microwave apparatus, 290–294
Luminescence radiation, 128
Luminescent systems, 129
Macroscopic organization, 126
Magnetic dipole moment per unit volume, 19
Magnetic (H) field(s), 8, 23, 180
amplitude of, 180
effect on neuronal bioelectric activity, 119
flux density and, 17–22
Magnetic field equation, 179
Magnetic flux density, 19
Magnetic moment, 19, 20
Magnetic resistive film, 209–210
Magnetic stimulation, of finite-length neuronal structures, 113
Magnetic susceptibility, 20
Magnetic-type absorber, 205
Magnetization vector, 18
Magnetostatic energy, 22
Magnetostriiction energy, 22
Matching thickness, 232
Material constant, equivalent transformation method of, 223–241
Maximum permissible exposure (MPE), 124
Maxwell–Fricke mixture theory, 72
Maxwell’s equations, 22–24, 25, 96, 10, 15, 179
Maxwell–Wagner effects, 82
due to interfacial polarization of tissue solids, 74
Maxwell–Wagner theory, 71, 72
Measurements, tissue, 75–82
Media, EM properties of, 32
Medical applications
cable specifications for, 251–258
RF/microwave delivery systems in, 250–251
of thermally molded stent, 303–304
transmission lines and waveguides for, 251–261
Medicine
use of heat in, 264–267
use of RF in, 267–270
Membrane potential, 67f
Membranes, 114–115
cell, 65, 66
Memory deficit, microwave-induced, 108
Menorrhagia, 287
Metabolic processes, inhibition by RF exposure, 104
Metal impedance, 42
Metallized catheter, 258
Meter-kilogram-second (MKS) system, 10, 18
Methanol, relative permittivity of, 79, 80f
Method of moments (MoM), 139. See also MoM-FDTD hybrid method
Microthermal effects, 98–99, 114, 124, 125
Microwave ablation
for cardiac arrhythmias, 270
catheter for, 279
techniques, 277
Microwave absorbers
with multiholes, 223–232
with surface-printed conductive line patterns, 235–238
Microwave-aided balloon angioplasty
catheter, 290–294
Microwave anastomoses, 295
tear strength of, 299, 300
Microwave antennas, 303
types of, 261
Microwave apparatus, lumen measurement of arteries utilizing, 290–294
Microwave applicators, 164
Microwave-assisted anastomosis, 251
Microwave attenuation, measurement of, 288
Microwave auditory phenomenon, 120–121
Microwave balloon angioplasty (MBA), 251, 302
coaxial cable in, 251–252, 256–258
Microwave balloon catheter, 302–303
Microwave catheter, 276
Microwave dielectric heating, 163–164
theory of, 177–178
Microwave effects
influence of drugs on, 123–124
at the molecular level, 116–117
Microwave endometrial ablation, 287
Microwave energy, absorption of, 298–299
Microwave evoked body movements, 107–108
Microwave-exposed animals, 100–101
Microwave exposure
ATP levels and, 103–104
benzodiazepine receptors and, 118–119
biological consequences of, 119, 123, 141
effect on blood–brain barrier, 104–107, 117
effect on brain energy metabolism, 107
teratological effects of, 116
Microwave exposure parameters, influence of, 107–110
Microwave fields, effects on the blood–brain barrier, 106
Microwave heating, temperature elevation of, 136
Microwave-induced spatial memory deficit, 108
Microwave integrated-circuit absorber, 239–241
Microwave measurements, 50–51
techniques for, 288–294
Microwave radiation
effect on brain and spinal cord, 103–104
effect on nervous system, 100–114
Microwave radiometry, 288
Microwaves. See also Radio-frequency (RF)/microwave entries; RF/microwave entries
biological effects of, 93–94
cancer treatment using, 267
effect on ear, eye, and heart, 120–122
effect on living systems, 2
future research on, 294–304
genetic effects of, 116
low-level pulsed, 118
nonthermal action of, 127–128
for photodynamic therapy, 301–302
trigger action by, 125–128
Microwave standards, 134–135
Microwave syndrome, 102, 114, 117–118, 140–141
Microwave Theory and Techniques (MTT) Society, 183
Microwave tissue welding, 294–301
Microwave treatment, effect on hypertension, 293
Millimeter-wave exposure, 116
Millimeter waves, 113–114
use in reducing angina attacks, 294
Mobile communication fields, 99
Mobile phones. See also Cellular (cell) phones
consequences of using, 131
electromagnetic interference with pacemakers, 133–134
thermal effects due to GSM exposure from, 141–142
Mobilophony, hazards due to, 100
Mobilophony signals, effect of, 115
Modeling. See also Flow phantom model;
Phantom models; Physical models of a fiber terminal, 113
of magnetic stimulation of an unmyelinated nerve fiber, 112
of membranes, 66, 67f
nervous system, 110–114
of neuronal membrane electrical activity, 115
spinal cord, 111–112
time-domain, 97–98
Modulated waves, nonlinear effect on cerebral tissue, 109
Molecular level, effects of microwaves on, 116–117
Molecules, energy levels in, 46–47
MoM-FDTD hybrid method, 140. See also Method of moments (MoM)
Monitoring devices, noninvasive, 288
Monopole antennas, 262
Morphine-induced catalepsy, 123
Multihole microwave absorber, 223–232
matching characteristics in, 224–232
Multilayer wave absorber, 205, 213–215
collection of, 219–221
Muscle
dielectric properties of, 82
measuring blood perfusion of, 291f
Muscle-equivalent phantoms, 279
Muscle stimulation, 64
Muscle tissues, low-frequency conductivity of, 76
Myelin, 65
Myocardial lesion, creating, 276
Near-field region, 263
antennas and, 28–30
Necrosis, tumor, 76
Needle ablation, RF, 267
Needle electrodes, 163
Negative-temperature-coefficient thermistor (NTC), 193–194
Neoplastic tissues, dielectric properties of, 76–77
Nernst potential, 65, 66
Nerve ablation, catheter used for, 283f
Nerve excitation, 68
Nerve impulses, 102
Nerves, 65–68. See also Neural entries
propagation velocity of, 68

Nervous system
 · effect of microwave radiation on, 100–114
general description of, 101–103
modeling and simulation of, 110–114
Neural activity, propagation of, 111
Neural excitation, by EM induction, 112
Neural reactions, computer simulation of,
 110–111
Neuroglial cells, 102
Neurological cell cultures, complex
 permittivity of, 79–80
Neuronal bioelectric activity, effect of
 magnetic fields on, 119
Neuronal membrane electrical activity,
 modeling of, 115
Neurons, 64, 65
 recovery of spontaneous activity, 120
 reversibility of alterations on, 120
Neurotransmitter release, pain and, 104
Neurotransmitters, 102
Nicotinamide adenine dinucleotide (NADH),
 103
NMR technique, noninvasive thermometry
 using, 198–199
Nodes of Ranvier, 65
Noise
 Johnson–Nyquist expression for, 37, 38
 man-made, 34
Noise countermeasure, for induction noise,
 190
Noise temperature, of a signal, 37
Nonhuman primate eye, ophthalmic
 pretreatment of, 122, 123–124
Noninvasive monitoring devices, 288
Noninvasive thermometry, 197–199
 using NMR technique, 198–199
Nonionizing radiation, 8, 70
Nonlinear materials, 12
Nonpolar gases, 12, 44
Nonsteady processes, 85
Nonthermal effects, 98–99, 124, 125
Nonthermal exposure, 142
Nonuniform plane wave, 26
Notation, applied to a circular waveguide, 260
Numerical simulation studies, 139

Ocular tissue, exposure standards for, 134
Ohmic loss, 181
Ohms per square, 42
Open systems, 83, 129
Opioids, 123
Optical cooling, 128

Optical dielectric constant, 13
Optical fiber thermometer, 195–197
Optical polarization, 46
Organic liquids, measured data for, 77–80
Oxygen availability, during photodynamic
 therapy, 301–302
Oxygen partial pressure, hyperthermia
 sensitivity and, 184–185

Pacemaker protective cloth, 293
Pacemakers, electromagnetic interference
 with, 133–134
Pain, neurotransmitter release and, 104
Pain management, radio-frequency ablation
 for, 269
Parafilm, 78
Parallel electrode plates, admittance between,
 176
Parallel-plate electrodes, 174, 175
Paramagnetism, 20
Parasympathetic systems, 101–102
Paroxysmal tachycardia, 270
Pathological compensation, 63
Percutaneous cardiac tissue ablation,
 271–273
Percutaneous transluminal balloon catheter
 angioplasty, 304
Permanent dipole, 155–156
Permeability, 20, 21
 of the blood–brain barrier, 105–106
 effect of, 226–228
 frequency characteristics of, 227f
Permittivity, 14–15, 17, 45, 52, 73, 178
 of biological tissues, 49, 51
 complex, 156–157
 equivalent complex, 177
 of ferrodielectric material, 245
 of liquids, 78
 of phantoms, 138
 of tissues, 75
Permittivity effect, 228, 229f
pH, hyperthermia sensitivity and, 184–185
Phantom models, 137
Phantoms. See also Agar phantom entries
average parameter values of, 138t
disadvantages of, 139
muscle-equivalent, 279
permittivity and conductivity of, 138
thermal characteristic of, 138–139
tissue, 136–139
Phase diagrams, Gibbs phase rule and, 89
Phase velocity, 26, 28
Phorbol esters, cancer-promoting, 114
Photodynamic therapy (PDT), 251
endoscopic light source and microwaves for, 301–302
Physical models, nonlinear characteristics of, 127
Physiological compensation, 63
Physiological modalities, involvement during local and/or systemic exposure, 110
Pierson, J. C., 289
Planar wave, 26
Planck’s constant \((h)\), 46
Planck’s radiation law, 34–38, 84
Planck’s radiation law curves, 36f
Plane-type wave absorber, 205
Plane wave, propagation of, 207–209
Plasma, 65
Polar gases, 12, 44
Polarizability, 13
Polarization, 25–26
of atoms, 155f
dipolar, 44
relationship to electrostatic field, 156
Polarization effects, counterion, 72–73
Polarization vector, 11
Polar molecules, 155
Polar side chains, dielectric loss of, 74
Positive-temperature-coefficient thermistor \((PTC)\), 193
Potassium \((K^+)\) channels, 65–68
Power, versus energy, 30–32
Power absorption, 27–28
Power capacity, of a circular waveguide, 261
Power density, 94
Power density distribution, circular waveguide, 259f
Power dissipation, 42
Power loss, 165–166
in a coaxial cable, 252–255
Power loss per unit volume, 157, 158
Power window, 109
Poynting’s theorem, 30, 31, 125
Poynting vector, 30, 31
Pre-DNA synthesis phase, 185
Probes, heated, 289
Propagation of EM waves, 25
Poynting vector and, 30
Propagation constant, 213
Propagation velocity, of a nerve, 68
Prostatic hyperplasia, 5
Protected-tube thermocouple, 189
Proteins, dielectric loss of small polar molecules and polar side chains on, 74
Pulsed exposure, low-level, 118–119
Pulsed microwave systems, high-power, 121
Pulsed modulated wave (PMW), 33
Pulsed wave (PW), 33
Pulse-modulated radiation biological effects of, 121
effect on the eye, 121–122
Pyramidal wave absorbers, 204, 206, 215, 221–223
Q-meters, 50
Quarter-wavelength-type wave absorber, 216–218
Quasi-static field, 242
Radiating near-field (Fresnel) region, 28, 29
Radiation, blackbody, 33–39
Radiation diagram, 32
Radiation hazards, 134–142
Radiation laws
Planck’s, 34–38, 84
Rayleigh–Jeans, 35–39, 84
Wien, 39
Radiation resistance, 263
Radio-frequency (RF)/microwave fields, applications and effects of, 1–2
Radio-frequency (RF)/microwaves, xi. See also Microwave entries; RF entries; RF/microwave entries
Radio-frequency (RF)/microwave technology, advances in, 1
Radio-frequency ablation, 270–279. See also RF ablation for pain management, 269
Radioactive tracers, 105
Radiometry, microwave, 288
Radiotherapy, combined with hyperthermia, 183
Rayleigh–Jeans radiation law, 35–39, 84
Reactive near-field region, 28, 29f
Reciprocal device, 28
Recurrence formula, 213, 214
Reference exposure levels, 53–54
Reflection, 25
Reflection coefficient, 212
calculating, 213–215
experimental, 241
Refraction, 25
Refractory period, 66–67
Regional heating system, for breast hyperthermia, 172f
Relative permittivity, of ferrodielectric material, 245
Relative permittivity effect, 231f
Relative refractory period, 67
Relativity theory, Maxwell’s equations and, 23–24
Relaxation, 47
in dielectrics, 44–45, 73–74
Relaxation effect, 14f
Relaxation phenomena/processes, 17, 44, 70–73
Relaxation time (τ), 14t, 44, 156, 178
Renal cancer, RF needle ablation for, 267
Resistive-type absorber, 204–205
Resonance, 31
Resonance absorption, 45–47
Resonance phenomena, 17
Resonant circuit, 174
Resting potential, 66
Retarded learning, microwave-induced, 108
RF. See also Radio-frequency (RF)/microwave entries
cancer treatment using, 267
for trigeminal neuralgia, 268–269
utilization in medicine, 267–270
RF ablation, success of, 273–276. See also
Radio-frequency ablation; RF cardiac ablation; RF catheter ablation; RF endometrial ablation; RF/microwave ablation; RF needle ablation
RF capacitive heating, 160
RF capacitive heating device, 159–160
RF cardiac ablation, 270–279
electrode positions used in, 274f
RF dielectric heating, theory of, 174–177
RF dielectric heating applicator, 157–163
RF endometrial ablation, 287–288
RF exposure, inhibition of metabolic processes by, 104
RF field distribution, improving in a small room, 241–246
RF gastroesophageal reflux disease, 286–287
RF generator, 267
RF measurements, 49–50
RF/microwave ablation, 264–279
RF/microwave delivery systems, xii
components used in, 4–5
for medical applications, 250–251
RF/microwave devices, interferences produced by, 132–134
RF/microwave exposure, biological effects of, 29–30
RF/microwave interaction mechanisms, xi in biological materials, 3
RF/microwaves. See also Radio-frequency (RF)/microwave entries
frequency ranges of, 7–9
ionization potentials and, 70
safety standards for, 100
RF/microwave transmitters, consequences of using, 131
RF needle ablation, for renal cancer, 267
RF radiation, biological effects of, 2
RF system heat generation, in tissues, 271
Rheoencephalogram amplitude, 108–109
Rubber ferrite, 219
EM wave absorber using, 223t
permittivity and, 228
Rubber ferrite absorber, 231f
Salisbury screen absorber, 204, 206f
Saphenous varicose vein reflux, RF technique to eliminate, 269
Saratov phenomenon, 129–130
SAR distribution, 141. See also Specific absorption rate (SAR)
SAR evaluation, computational methods for, 139–140
SAR measurements, 136–139
Sawtooth-type wave absorber, 205–206, 215
Scalar field, 9
Scattering matrix parameters, 51
Scattering parameters, of waveguide two-ports, 78
Schmid, C. F., 289
Second law of thermodynamics, 83, 85
Seebeck effect, 187–189
Selective permeability, of the blood–brain barrier, 105
Semirigid coaxial cables, characteristics of, 254t
Sensory system, 101
Series circuits, Q value in, 50
Sheath type thermocouple, 189
Shielding, choice of frequency and, 41
Shield plates, heating using, 171–174
Ship radar absorber, 217–218
Signal, noise temperature of, 37
Simulation, nervous system, 110–114
Single-fiber surface potential (SFSP), 111
Single-layer dielectric medium, 176
Single-layer-type wave absorber, 205, 210–212
materials in, 219
Single relaxation time, dielectrics with, 45
Singlet oxygen, 301
Sintered ferrite, EM wave absorber using, 220t
Sintering ferrite, 219
Skin depth(s), 40–41
of current, 182
determining, 164
in human tissue, 42t
Skin effect, 41–44
coaxial cable design and, 255–256
Skull-equivalent phantom, composition of, 138t
Skull phantom, 137
Small-hole absorbers, effect of hole size in, 224–226
Small polar molecules, dielectric loss of, 74
Small room, improving RF field distribution in, 241–246
Snell’s law, 212
Snoek’s principle, 232
Sodium (Na+) channels, 65–68
Soft tissues, dielectric properties of, 76
Solar constant, 34
Solar energy, 34
Somatosensory system, 65
Source current density, 23
Soviet Union, CNS-microwave research in, 100–101. See also USSR microwave standards
Spatial memory deficit, microwave-induced, 108
Specific absorption (SA), whole-body, 108
Specific absorption rate (SAR), 53, 125. See also SAR entries
blood–brain barrier permeability and, 106
defined, 95
dosimetry and, 94–96
influence on thermal effects, 99
methods of determining, 97–98
Specific heat
at constant temperature, 88
at constant volume, 88
Specific heat capacity, 98t
Speed of light, 26
Spherical wave, 26
Spinal cord, 102
effect of microwave radiation on, 103–104
modeling, 111–112
Static fields, 9
Static magnetic field, 232
controlling intensity of, 234f
matching characteristics by applying, 233f
relation to coil current, 234f
Stefan–Boltzmann law, 38, 84, 198
Stent, thermally molded, 251. See also Hellow stent
Stochastic analysis, 115
Stream lines, 9
Stress, low-intensity pulsed microwave exposure as a source of, 118
Subcutaneous adipose layer, insulation by, 168
Subelectrodes, 160–161
Subgridding approach, 140
Sun, total power output of, 34
Supraventricular arrhythmias, 271
Supraventricular tachycardia (SVT), 5, 271, 275f
Surface resistance, 42
Surface temperature
effects of cardiac blood flow on, 284
effects of flow on, 281f
Survival rate curve, 183
Sympathetic nervous system, 64
System-environment interaction, 129
Tachycardia, 5, 270–271, 277, 285
Taper-type wave absorber, 215–216
TE11 transmission mode, 258, 260
Temperature. See also Antenna temperature;
Brightness temperature; Heat entries;
Heating entries; Noise temperature;
Therapeutic temperatures; Thermal entries
blackbody, 34
calibration of, 139
cellular toxicity and, 264–266
influence on electric parameters, 80–82
relationship to thermoelectromotive force, 188f
Temperature coefficients, 82
Temperature gradient, 86
Temperature measurement method, 194
Teratological effects, of microwave exposure, 116
Therapeutic applications, RF/microwave delivery systems for, 250–251
Therapeutic medicine, 5
benefits of using heat in, 264–267
Therapeutic temperatures, using balloon catheters, 303
Thermal effects, 96–100. See also Temperature entries
due to GSM exposure, 141-142
SAR influence on, 99
specific, 99
Thermal equilibrium, 86-87
gases in, 46
Thermally molded stent, 251
medical applications for, 303-304
Thermal-sensitive resistor, 193
Thermistors
classification of, 193t
thermometer using, 191-194
Thermistor sensors, 194
types of, 195
Thermocouple materials, 188t
Thermocouples
circuit structure of, 189-191
construction of, 189
heated, 289
types of, 189
wiring technique of, 190f
Thermocouple sensor, measurement by, 186-191
Thermocouple wire breakdown, 191
Thermodynamic potentials, 87
Thermodynamics, 82-84, 125
second law of, 83, 85
Thermodynamic system
phases of, 84
total energy of, 86
Thermoelectromotive force, 190-191
relationship to temperature, 188f
Thermographic techniques, 97, 138
Thermometer
optical fiber, 195-197
using IR photodetector, 197-198
Thermometric methods, 97, 138
Thermometry
invasive, 186-197
method of, 186-199
noninvasive, 197-199
Thermometry system, 160
Thermometry technology, accurate, 186
Therapy, 8
Time-dependent fields, 9
Time domain, 8
Time-domain descriptions, 24
Time-domain modeling, 97-98
Tipped thermistor, 194
Tissue(s).
See also Biological tissues;
 Experimental tissue welding
 biological parameters for, 77t
 conductivity of, 74
dielectric dispersion in, 73-75
dielectric properties of, 71, 75-76
electromagnetic phenomena in, 24
 fluid perfusion of, 289-290
 measuring rate of blood flow within, 289-289
 RF system heat generation in, 271
temperature elevation in, 290
 thermal damage to, 81
Tissue ablation, selective, 266-267
Tissue anastomosis, microwave system for, 298f
Tissue characterization, 69-82
Tissue closure, 295-296
Tissue conductivity, temperature and, 81-82
Tissue phantoms, 136-139
Tissue solids, interfacial polarization of, 74
Tissue welding, biological solder in, 295
Total brightness, 38
Total current density, 176, 177
Total electric field, 11
Total energy, 86, 88
Total power loss, 181
Transseptal ablation catheter approach, 276f
Transient lower esophageal relaxation (TLESR), 286
Transmission lines, for medical applications, 251-261
Transparency ranges, 85
Transparent medium, 32
Transurethral microwave needle ablation (TUMNA), 267
Transverse electric (TE) mode, 211
Transverse electric wave, 26
input impedance and propagation constant of, 214
reflection coefficient for, 212, 214
Transverse electromagnetic (TEM) mode, 207, 208f, 209
Transverse electromagnetic wave, 26
Transverse magnetic (TM) mode, 211
Transverse magnetic (TM) wave, 26
input impedance and propagation constant of, 214
reflection coefficient for, 212, 214
Trigeminal neuralgia, RF procedures for, 268-269
Truncated circular waveguide antennas, 262
Tumor, body cavity, 161-163
Tumor tissues, dielectric properties of, 76-77
Two-layer wave absorber, 205
Ultraviolet (UV) rays, 8
Uniform plane wave, 26
Unit-circuit elements, 240f, 241
United States, CNS-microwave research in, 100–101
Unit wavelength, 39
Unmyelinated nerve fiber, model of magnetic stimulation of, 112
USSR microwave standards, 134–135. See also Soviet Union
Vacuum permittivity, 175
Variability in space, of electric fields, 54
Variability in time, of electric fields, 54
Variables, intensive and extensive, 86
Varicose vein reflux, RF technique to eliminate, 269
Vascular approaches, for electrophysiology study, 278f
Vascularization, of the ear, 120–121
Vector analyzers, 50
Vector field, 9
Vein occlusion, RF technique for, 269
Ventricular tachycardia, 277, 285
Vertebrates, nervous system of, 101
Vessel anastomosis, in vitro, 299–300
Visual dye markers, 105
Voltage-gated channels, 115
Voltage-gated ion channel, 68
Voltage standing-wave resistance (VSWR), 232
Volts per meter, 10

Water
biological, 73–74
dielectric constant of, 44
dielectric relaxation of, 74
dipolar relaxation of, 71
Water media, 130
Watts, 30
Watt-seconds, 30
Wave absorbers, xii, 4
classification of, 204–206
design of, 207
fundamental principle of, 206–210
types of, 204
Wave equation, 25
Waveform, influence of, 33
Waveguides, for medical applications, 251–261
Waveguide transmission method, 51–52
Waveguide two-ports, scattering parameters of, 78
Wave impedance, 27
Wavelength (λ), 26–27, 39
Wave number, 27, 263
Weakly magnetized ferrite absorber, 232–234
Webers per square meter, 19
Wheatstone bridge, 194
Whip antenna, 261
Whip antenna configuration, 254f
White body, 34, 84
Wien displacement law, 38–39, 84
Wien radiation law, 39
Wireless communications, 25
Wolff–Parkinson–White (WPW) syndrome, 271, 272f, 275f
World Health Organization (WHO), exposure limit recommendations, 135–136
X rays, 8