SUBSURFACE MICROBIOLOGY AND BIOGEOCHEMISTRY
WILEY SERIES IN
ECOLOGICAL AND APPLIED MICROBIOLOGY

EDITED BY
Ralph Mitchell
Division of Applied Sciences
Harvard University

ADVISORY BOARD
Ilan Chet
Faculty of Agriculture
Hebrew University of Jerusalem

Madilyn Fletcher
Belle W. Baruch Institute for Marine
 Biology and Coastal Research
University of South Carolina

Peter Hirsch
Institut für Algemeine
Mikrobiologie Universität Kiel

David L. Kirchman
College of Marine Studies
University of Delaware

Kevin Marshall
School of Microbiology
University of New South Wales

James T. Staley
Department of Microbiology
University of Washington

David White
Institute for Applied Microbiology
University of Tennessee

Lily Y. Young
Center for Agricultural Molecular
 Biology
Cook College, Rutgers University

RECENT TITLES

WASTEWATER MICROBIOLOGY
2nd Edition
Gabriel Bitton, 1999

BIOFILMS II: Process Analysis and
Applications
James D. Bryers, Editor, 2000

EXTREMOPHILES: Microbial Life in
Extreme Environments
Koki Horikoshi and W.D. Grant,
Editors, 1998

MICROBIAL ECOLOGY OF THE
OCEANS
David L. Kirchman, Editor, 2000
SUBSURFACE MICROBIOLOGY AND BIOGEOCHEMISTRY

Edited by

James K. Fredrickson
Senior Staff Scientist
Environmental Microbiology
Pacific Northwest National Laboratory
Richland, WA

Madilyn Fletcher
Division of Science and Math
Belle Baruch Institute for Marine Biology
University of South Carolina
Columbia, SC
CONTENTS

Preface vii
Contributors ix

INTRODUCTION

1 Biogeochemical and Geological Significance of Subsurface Microbiology
 James K. Fredrickson and Tullis C. Onstott 3

2 Transport of Microorganisms in the Subsurface: The Role of Attachment and Colonization of Particle Surfaces
 Madilyn Fletcher and Ellyn Murphy 39

ENVIRONMENTS AND MICROORGANISMS

3 Constraints on the Distribution of Microorganisms in Subsurface Environments
 Frederick S. Colwell 71

4 Diversity and Activity of Microorganisms in Deep Igneous Rock Aquifers of the Fennoscandian Shield
 K. Pedersen 97

5 Vadose Zone Microbiology
 Thomas L. Kieft and Fred J. Brockman 141
CONTENTS

BIOGEOCHEMICAL PROCESSES

6 The Use of Geochemistry and the Importance of Sample Scale in Investigations of Lithologically Heterogeneous Microbial Ecosystems
 James P. McKinley 173

7 Reduction of Iron and Humics in Subsurface Environments
 Derek R. Lovley 193

8 Microbial Sulfur Cycling in Terrestrial Subsurface
 Ethan L. Crossman and Steven Desrocher 219

9 Intrinsic Bioremediation of Organic Subsurface Contaminants
 Eugene L. Madsen 249

FUTURE TRENDS

10 Nucleic Acid Analysis of Subsurface Microbial Communities: Pitfalls, Possibilities, and Biogeochemical Implications
 Darrell P. Chandler and Fred J. Brockman 281

11 The Deep Biosphere: Lessons for Planetary Exploration
 Christopher P. McKay 315

Index 329
During the past decade, the subsurface environment has represented a true frontier for microbiological research. Until recently, our understanding of microorganisms in the subsurface was largely a matter of speculation and based on sparse and sometimes anecdotal data. Much of the region below the terrestrial surface was believed to be hostile to microorganisms and essentially devoid of living organisms. However, enormous strides have been made in investigating the presence and characteristics of subsurface microorganisms, and we have come to appreciate these environments for their microbiological and chemical complexity and potential for harboring novel bacteria of environmental and, possibly, industrial importance.

Scientific investigations into the microbiology of deep subsurface environments early in this past century were stimulated by demands for petroleum and subsequent exploration for and study of oil fields and oil-bearing rocks. One of the first indications that microorganisms inhabited deep subsurface environments emerged in the 1920s when a geologist at the University of Chicago, Edson Bastin, examined the source of hydrogen sulfide and bicarbonate in water from deeply buried oil fields in Illinois. In an experiment reported in *Science* in 1926, Bastin and several colleagues at the University of Chicago submitted samples to bacteriological analysis and were successful in culturing sulfate-reducing bacteria (SRB) from groundwater samples collected from oil fields at depths of 150–600 m. These results suggested that microorganisms were responsible for the *in situ* reduction of sulfate to sulfide. Years later, investigations by Russian scientists also indicated that diverse microbial populations were associated with hydrocarbon-bearing rocks and waters. Many scientists at the time viewed the existence of microorganisms in deep terrestrial environments with skepticism due to the considerable uncertainty as to the origins of the microorganisms cultured from groundwaters collected from developed wells. The process of drilling and well development unavoidably introduced organisms into the deep strata, and the practice of flooding with water to enhance oil recovery led to further contamination and stimulation of indigenous and nonindigenous microorganisms. Although such early studies suggested the presence of microorganisms in the deep subsurface, these findings would not be verified until later in the century.
In the late 1970s and early 1980s, emerging groundwater quality issues in the United States stimulated scientists to further investigate the possibility that microorganisms inhabited shallow water-yielding formations as well as relatively deep aquifers. Moreover, technological and methodological advances were made that allowed researchers to collect deep groundwater, sediment, and rock samples while minimizing microbial contamination and chemical changes. Many researchers also employed various types of tracers during sampling that allowed measurement of the degree of contamination. Initial studies, focused primarily on microbiological characterization, revealed that active and diverse communities of microorganisms were present in shallow and deep (> 50 m) groundwaters and sediments. Most of these studies employed traditional microbiological methods involving culturing of microorganisms, visualization using direct microscopic techniques, or, in some cases, isolation and physiological and/or phylogenetic characterization. Despite the limitations of these techniques, important information was obtained on the presence and distribution of microorganisms, including aerobic heterotrophic bacteria, fungi, protozoa, and on total numbers of microbial cells in subsurface environments. However, the in situ activities of subsurface microorganisms and the biogeochemical processes they catalyzed remained poorly understood. The results of many of these early studies were biased by the limitations of techniques available at the time for studying microbial ecology and by the lack of robust methods for probing in situ microbial activities and community structure. Researchers were heavily dependent on laboratory cultures, introducing a potentially severe bias into results. It is now widely recognized that only a fraction, often less than 1% of the total microbial population, is typically cultured from environmental samples. Moreover, microorganisms cultured and studied under laboratory conditions may exhibit phenotypes quite different from those expressed in the environment. Regardless of these limitations, many novel aerobic and anaerobic microorganisms with interesting biochemical and genetic traits have been isolated from subsurface environments.

The results of these deep subsurface microbiology studies greatly spurred the interest of scientists from other disciplines, including geology, hydrology, geochemistry, and environmental engineering. Multidisciplinary teams and approaches and more robust analytical methods were increasingly applied to the study of deep subsurface microbiology. These approaches greatly extended the range of subsurface environments that microorganisms were shown to inhabit and allowed exploration of relationships between microbial abundance, physiology, taxonomy, and activity, and the subsurface environment, including geochemical, geological, and hydrological properties. Now it is clear that the subsurface environment provides numerous opportunities for microbial growth and survival, and, through this book, we have endeavored to capture this new understanding of the broad range and diversity of the previously “hidden” subterranean organisms.

We extend our sincere thanks to the contributors to this volume for the time, effort, and creative thought that made this work possible. We are also indebted to Ralph Mitchell for his sustained encouragement and support, and to Jill Walters and Luna Han for their editorial assistance and advice.
CONTRIBUTORS

Fred J. Brockman, Pacific Northwest National Laboratory, Environmental Microbiology Group, Richland, WA

Darrell P. Chandler, Pacific Northwest Northwest National Laboratory, Environmental Microbiology Group, Richland, WA

Frederick S. Colwell, Idaho National Engineering and Environmental Laboratory, Biotechnology Department, Idaho Falls, ID

Steven Desrocher, Golder Associates, Atlanta, GA

Madilyn Fletcher, University of South Carolina, Belle W. Baruch Institute for Marine Biology and Coastal Research, Columbia, SC

James K. Fredrickson, Pacific Northwest National Laboratory, Richland, WA

Ethan L. Grossman, Texas A&M University, Department of Geology and Geophysics, College Station, TX

Thomas L. Kieft, New Mexico Institute of Mining and Technology, Department of Biology, Socorro, NM

Derek R. Lovley, University of Massachusetts, Department of Microbiology, Amherst, MA

Eugene L. Madsen, Cornell University, Department of Microbiology, Ithaca, NY

Christopher P. McKay, NASA Ames Research Center, Space Science Division, Moffett Field, CA

James P. McKinley, Pacific Northwest National Laboratory, Interfacial Geochemistry Group, Richland, WA

Ellyn Murphy, Pacific Northwest National Laboratory, Richland, WA

Tullis C. Onstott, Princeton University, Department of Geosciences, Princeton, NJ

K. Pedersen, Göteborg University, Department of Cell and Molecular Biology, Microbiology, Göteborg, Sweden