CONTENTS

2.3 Least cost opportunistic routing

2.3.1 Expected opportunistic transmission count (EOTX)

2.3.2 End-to-end cost of opportunistic routing

2.3.3 Properties of LCOR

2.3.4 Dijkstra-based algorithm

2.3.5 Bellman – Ford-based algorithm

2.4 Conclusions

References

3 Energy efficiency of geographic opportunistic routing

3.1 EGOR problem formulation

3.1.1 Energy consumption model

3.1.2 Tradeoff between EPA and energy consumption

3.2 Efficient localized node-selection algorithms

3.2.1 Reformulate the node-selection optimization problem

3.2.2 Efficient node-selection algorithms

3.3 Energy-efficient geographic opportunistic routing

3.4 Performance evaluation

3.4.1 Simulation setup

3.4.2 Simulation results and analysis

3.5 Conclusion

References

4 Capacity of multirate opportunistic routing

4.1 Computing throughput bound of OR

4.1.1 Transmission interference and conflict

4.1.2 Concurrent transmission sets

4.1.3 Effective forwarding rate

4.1.4 Lower bound of end-to-end throughput of OR

4.1.5 Maximum end-to-end throughput of OR

4.1.6 Multi-flow generalization

4.2 Impact of transmission rate and forwarding strategy on throughput

4.3 Rate and candidate selection schemes

4.3.1 Least medium time opportunistic routing

4.3.2 Per-hop greedy: most advancement per unit time

4.4 Performance evaluation

4.4.1 Simulation setup

4.4.2 Impact of source–destination distances

4.4.3 Impact of forwarding candidate number

4.4.4 Impact of node density

4.5 Conclusion

References

5 Multiradio multichannel opportunistic routing

5.1 Introduction
5.2 System model and opportunistic routing primer 91
 5.2.1 Opportunistic routing primer 92
5.3 Problem formulation 93
 5.3.1 Concurrent transmission sets 93
 5.3.2 Effective forwarding rate 95
 5.3.3 Capacity region of an opportunistic module 96
 5.3.4 Maximum end-to-end throughput in multiradio, multichannel, multihop networks with OR capability 96
5.4 Forwarding priority scheduling 98
 5.4.1 A scheduling based on LP 99
 5.4.2 A heuristic scheduling 99
5.5 Performance evaluation 104
 5.5.1 Two scenarios with different link qualities 104
 5.5.2 Simulation of random networks 106
5.6 Conclusions and future work 108
References 108

6 Medium access control for opportunistic routing – candidate coordination 111
 6.1 Existing candidate coordination schemes 112
 6.1.1 GeRaF collision avoidance MAC 112
 6.1.2 ExOR batch-based MAC 114
 6.1.3 Contention-based forwarding (CBF) 115
 6.1.4 Slotted acknowledgment (SA) 117
 6.1.5 Compressed slotted acknowledgment (CSA) 118
 6.2 Design and analysis of FSA 119
 6.2.1 Design of FSA 119
 6.2.2 Analysis 120
 6.2.3 More on channel assessment techniques 122
 6.3 Simulation results and evaluation 122
 6.3.1 Simulation setup 123
 6.3.2 Simulation results and evaluation 125
 6.4 Conclusions 132
References 132

7 Integration of opportunistic routing and network coding 133
 7.1 A brief review of MORE 134
 7.2 Mobile content distribution in VANETs 137
 7.2.1 Model and assumptions 138
 7.3 Related works on mobile content distribution in VANETs 140
 7.3.1 Cooperative downloading of general contents in VANETs 140
 7.3.2 Streaming of multimedia content in VANETs 142
 7.4 Background on symbol-level network coding 143
 7.4.1 A brief review of SLNC 143
 7.4.2 Motivation: why VANET content distribution benefits from SLNC 145
7.5 CodeOn: a cooperative popular content broadcast scheme for VANETs based on SLNC 152

7.5.1 Design objectives 152
7.5.2 Design overview 152
7.5.3 Network coding method 154
7.5.4 Efficient exchange of content reception status 155
7.5.5 Distributed relay selection in cooperative PCD 156
7.5.6 Broadcast content scheduling 159
7.5.7 Performance evaluation 160
7.5.8 Simulation results 161

7.6 CodePlay: a live multimedia streaming scheme for VANETs based on SLNC 171

7.6.1 Design objectives 172
7.6.2 Overview of codeplay 172
7.6.3 LMS using symbol-level network coding 175
7.6.4 Coordinated and distributed relay selection 176
7.6.5 Transmission coordination of relays 179
7.6.6 OLRR: opportunistic LRR scheduling for sparse VANETs 179
7.6.7 Performance evaluation 181

7.7 Conclusion 188

References 190

8 Multirate geographic opportunistic routing protocol design 193

8.1 System model 193
8.2 Impact of transmission rate and forwarding strategy on OR performance 195

8.2.1 One-hop packet forwarding time of opportunistic routing 196
8.2.2 Impact of transmission rate 197
8.2.3 Impact of forwarding strategy 198
8.2.4 Impact of candidate coordination 198
8.3 Opportunistic effective one-hop throughput (OEOT) 199
8.4 Heuristic candidate selection algorithm 200
8.5 Multirate link-quality measurement 202
8.6 Performance evaluation 202

8.6.1 Simulation setup 203
8.6.2 Simulation results and analysis 204
8.7 Conclusion 211

References 211

9 Opportunistic routing security 213

9.1 Attack on link quality measurement 213

9.1.1 Existing link quality measurement mechanisms and vulnerabilities 215
9.1.2 Performance demonstration 218
9.1.3 Broadcast-based secure link quality measurement 219
CONTENTS

9.2 Attacks on opportunistic coordination protocols 222
 9.2.1 Attack on implicit-prioritized coordination protocol 223
 9.2.2 Attack on explicit-prioritized coordination protocol 224
 9.2.3 Attack on slotted ACK 225
 9.2.4 Attack on compressed slotted ACK 226
 9.2.5 Attack on fast slotted ACK 226
9.3 Resilience to packet-dropping attack 226
9.4 Conclusion 227
References 228

10 Opportunistic broadcasts in vehicular networks 231
 10.1 Related works on broadcasts in general MWNs 234
 10.1.1 Stateful broadcast 234
 10.1.2 Stateless broadcast 234
 10.2 Related works on broadcasts in VANETs 235
 10.2.1 Opportunistic forwarding in VANETs 235
 10.2.2 The reliability issue in VANET broadcast 237
 10.2.3 Broadcast in partitioned VANETs 237
 10.3 Problem statement 237
 10.3.1 Model and assumptions 237
 10.3.2 Objectives 238
 10.4 Overview of OppCast 239
 10.5 OppCast: main design 241
 10.5.1 Fast-forward dissemination 241
 10.5.2 Makeup for reliability 243
 10.5.3 Broadcast coordination in OppCast 246
 10.5.4 Extension to disconnected VANET 249
 10.5.5 Implementation issues 252
 10.6 Parameter optimization 252
 10.6.1 Optimize the forwarding range 253
 10.6.2 Optimal threshold density 259
 10.7 Performance evaluation 260
 10.7.1 Simulation setup 260
 10.7.2 Results for OppCast without extension 261
 10.7.3 Results for OppCast with extension 269
 10.8 Conclusion 271
References 271

11 Conclusions and future research 275
 11.1 Summary 275
 11.2 Future research directions 279
References 281

Index 283