Index

Adatom energetics, 59
Aluminum oxide films (alumina), 247–250
 Crystalline phases, 249
 Hardness, 250–251
Aluminum oxinitride (AlO\textsubscript{x}N\textsubscript{y}) films, 253
AlCrN films, 188, 197–199
Amorphous silicon (a-Si)
 Deposition processes, 377
 Solar cells, 378, 460
Amorphous silicon solar cell, 458
Angle of incidence (AOI), 286, 288, 295, 318, 325, 328, 329
Artificially structured materials, 444
Atomic force microscope, 24, 25
Atomic layer deposition (ALD)
 Advantages, 108–109
 Reaction steps, 109, 111
 Precursors, 110
 Al\textsubscript{2}O\textsubscript{3}, 112
 Materials deposited, by ALD 112–113
Biophotonics
 Hierarchy of cell structure, 541
 Laser therapy, 552–555
 Optical interactions of light a tissue, 542–545
 Photodynamic therapy, 547–550
 Bio-solar cell, 513–514
Bloch wave function, 400–402
Boron nitride (BN) films, 200
 c-BN films, 200–205
 B-N Allotropes, 201
 Deposition processes, 201
BN/CN films, 211
Boron carbide (B\textsubscript{C}\textsubscript{3}) films, 200
 B,C films, 205–207
 CVD films, 207–208
 Deposition processes, 202, 207
 Hardness, 209
Boron carbon nitride (B\textsubscript{x}C\textsubscript{y}N) films, 200, 209–210
 Deposition processes, 202
 B,C films, 205–207
 Boron carbon silicon nitride (BCS\textsubscript{3}N) films, 200
Carbon films
 Binary carbon, 233
 Coefficient of friction, 234–235
 Hardness, 235
 ta-C 226, 231, 234
Carbon nanotubes, 397
 Density of states: metal, 413.
 Density of states: semiconductor, 413, 418
 Dye sensitized solar cell, 428
 Energy band structure, 415
 Optical properties, 413, 417
 Optical transitions, 418
 p-n junction, 424
Photoconductivity, 422–424
Photoluminescence, 419–422
Properties, 410
Structure, 411ff
Synthesis, 427
Carbon nitride (CN) films, 236 ff
Chemical reactions in plasmas, 344–346

Chemical vapor deposition, (CVD)
CVD process family, 91–93
Basic CVD, 93
Process parameters, 95
Common precursors, 96
Reactors, 97–102
Reaction zones, 98

Chlorophyll
Optical absorption, 513

Chromium films
Plating, 212
Health concerns, 212
CrN films, 217–220
CrAlN films, 219
1931 C.I.E chromaticity
 diagram, 310
C.I.E RGB model, 313
C.I.E XYZ chromaticity
 diagram, 312
Cloaking device, 439
Coefficient of friction, 14

Color
Color perception, 308
Color matching functions, 311
Lab color space system, 314
Tristimulus chromaticity
 model, 309
1931 C.I.E chromaticity
 diagram, 310
C.I.E RGB model, 313
C.I.E XYZ chromaticity
 diagram, 312

Color in thin films
Angle of incidence (AOI), 286, 288, 295, 318, 325, 328, 329
Decorative hard coatings, 331–332

Color shift in multilayer
cOatings, 318–322
Metal reflector, 316–517
Reflected color, 315–323
Antireflection coating,
 325, 326
Transmitted color, 324–330
Antireflection coating, 326–327
Low-e window, 328
Transition metal nitrides,
 322–324

Color shift in multilayer coatings,
 318–322

Composite nanostructures,
 534–536

Contact angle, 519–520
Copper indium gallium deselenide
 solar cell (CIGS), 458
Corrosion of solid surfaces, 34
Cyanobacteria, 516
Cylindrical magnetron
cathode, 68
Rotatable, 69
Post magnetron, 70
Thin film materials, 71

Decorative hard coatings and
 colors, 331–332

Diamond like carbon (DLC) films
Allotropes, 222
Bonding configurations, 221, 227
Coefficient of friction
 (COF), 230 ff
Films deposited by PECVD,
 228–230
Mechanical properties, 227
Properties of DLC films,
 223–226
Diels–Adler reaction, 526–529
Diffusion in solids
 Diffusion coefficient, 486–489
 Minimization, 488
Direct electron transitions, 391
Dye sensitized solar cell,
 426–428, 430
Index

<table>
<thead>
<tr>
<th>Electrical properties of solid surfaces</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical conductivity</td>
<td>30</td>
</tr>
<tr>
<td>Frequency dependence of electrical conductivity</td>
<td>33</td>
</tr>
<tr>
<td>Electrochromic coatings (EC)</td>
<td></td>
</tr>
<tr>
<td>EC window layer design</td>
<td>481</td>
</tr>
<tr>
<td>EC materials</td>
<td>482</td>
</tr>
<tr>
<td>EC reaction</td>
<td>483</td>
</tr>
<tr>
<td>Spectral switching</td>
<td>483–484</td>
</tr>
<tr>
<td>Electron beam evaporation</td>
<td>42</td>
</tr>
<tr>
<td>Evaporated materials</td>
<td>47</td>
</tr>
<tr>
<td>Electromigration</td>
<td>362–368</td>
</tr>
<tr>
<td>Humidity effects</td>
<td>366</td>
</tr>
<tr>
<td>Mechanical stress</td>
<td>365</td>
</tr>
<tr>
<td>Structure effects</td>
<td>363</td>
</tr>
<tr>
<td>Electro-optical property modification</td>
<td>337</td>
</tr>
<tr>
<td>Energy band structure</td>
<td>389</td>
</tr>
<tr>
<td>Fermi level</td>
<td>390</td>
</tr>
<tr>
<td>Germanium</td>
<td>407</td>
</tr>
<tr>
<td>Silicon</td>
<td>407</td>
</tr>
<tr>
<td>Engineered band structure</td>
<td>405ff</td>
</tr>
<tr>
<td>Engineered materials</td>
<td>6</td>
</tr>
<tr>
<td>Engineered surface structures</td>
<td>521</td>
</tr>
<tr>
<td>Environmental stability of thin films</td>
<td>48</td>
</tr>
<tr>
<td>Etch parameters</td>
<td>347</td>
</tr>
<tr>
<td>Evanescent wave</td>
<td>291</td>
</tr>
<tr>
<td>Ferroelectric films</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>374–375</td>
</tr>
<tr>
<td>Fermi level</td>
<td>390</td>
</tr>
<tr>
<td>Fick’s first law of diffusion</td>
<td>483, 487</td>
</tr>
<tr>
<td>Filtered cathodic arc deposition (FCAD or FCA)</td>
<td></td>
</tr>
<tr>
<td>Macroparticle issues</td>
<td>86</td>
</tr>
<tr>
<td>Drawbacks</td>
<td>88, 90</td>
</tr>
<tr>
<td>Thin film materials</td>
<td>89</td>
</tr>
<tr>
<td>Fluorides</td>
<td>129–130</td>
</tr>
<tr>
<td>Free energy</td>
<td>161</td>
</tr>
<tr>
<td>Frequency selective surfaces (FSS)</td>
<td></td>
</tr>
<tr>
<td>Complementary FSS structures</td>
<td>500</td>
</tr>
<tr>
<td>Element shapes</td>
<td>499</td>
</tr>
<tr>
<td>Mesh parameters</td>
<td>501</td>
</tr>
<tr>
<td>Optical transmission</td>
<td>502</td>
</tr>
<tr>
<td>Functional biomaterials</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>510</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>516</td>
</tr>
<tr>
<td>Lotus leaf effect</td>
<td>517–518</td>
</tr>
<tr>
<td>Self cleaning biological materials</td>
<td>515ff</td>
</tr>
<tr>
<td>Self healing biological materials</td>
<td>522</td>
</tr>
<tr>
<td>Wound healing</td>
<td>522</td>
</tr>
</tbody>
</table>

Glancing angle deposition (GLAD)
- Microstructures | 437 |
| Grain and texture evolution in thin films | 158 |
| Grain boundary | 159 |
| General observations | 160 |
| Stress in grain boundaries | 163 |
| Grain boundary energy | 164 |
| Grätzel cell | 426 |
| Germanium quantum dots | 532–534 |

*Henry’s law | 486 |
Hierarchy of cell structure	541
High power pulsed magnetron sputtering (HPPMS)	73
Power supplies	74
Improved tribological properties	77

Indirect electron transitions	391
Indium tin oxide (ITO)	
Electron mobility	470
Magnetron sputtering	473–474
Sheet resistance	470, 472
Spectral transmittance	471
Ion assisted deposition	50
Factors that affect film growth	52
Property modification	53
Ion sources	53, 55
Ion beam sputtering (IBS)	81ff
Ion plating	54, 57
Kronig-Penny model, 402

Lab color space system, 314
Lotus leaf effect, 517–518
Low dimensional structures
 Density of states: 3D, 2D, 394
 Density of states: 1D, 0D, 395
 Minibands, 396
 Quantum well, 392
 Quantum dots, 398

Metallization, 360
 Electromigration, 362
 Subtractive, 361
Metamaterials
 Cloaking device, 439
 Dimensional scales, 445
 Metallic wire array, 447
 Negative refractive index materials, 437–444
 Split ring resonators, 450–452
 Stacked cylinder array, 449
 Super lens, 443
Microhardness of PVD and CVD films, 189
Microstructure/surface properties, 143
Minibands, 396
Molybdenum disulfide (MoS$_2$) films, 245
 As solid lubricants, 245
 Nanocomposite films, 246
Moore’s law, 431, 531
Multilayer optical coatings
 Antireflection coating, 297–299
 High pass filter, 306
 High reflectance coatings
 Dielectric enhanced, 301
 Quarter wave dielectric, 301–305
 Low pass filter, 306
 Structure, 297
 Types, 284
Multilayer structures
 Deposition, 120–121

Nanocomposite
 Structure, 261
 Materials, 257–260
Nanocomposite films
 MoS$_2$ based films, 246
 Cr-Ni-N, 264
 Hardness, 266
Industrial applications, 270–271
ncMeN films, 265
TiC$_N$/SiCN superhard films, 267–268
Zr-Cu-N, 264
Nanolaminate, 262
 Cu/Al nanolaminate, 269, 272
 Structure, 270
Nanoindentation, 23
Nanostructured coatings, 263
Nanotubes-polymer composites, 429
Nearly free electron approximation, 403
Negative photoresist, 370

Optical properties of solid surfaces, 25
 Absorptance, 27
 Modification, 283
 Polarization, 287–291
 Reflectance, 26, 286
 Color, 28
 Refraction, 286
 Transmittance, 26
Optical properties of thin films, 293–296
Optical interactions of light a tissue, 542–545
Optoelectronic properties of solid surfaces, 29
Optoelectronic transitions of electrons, 32
Plasma frequency, 33
Organic solar cell, 476
Parallel plate plasma etch system, 354
Photocatalytic processes in water, 512
Photocatalytic thin films
 Hydrophilic surfaces, 493
 Materials, 497
 Photocatalytic processes in
 TiO₂, 425
 Photocatalytic reaction, 494, 495, 497, 511
 Photosynthesis, 497
 TiO₂ solar cell, 426
Photolithography
 Photoresist stripping, 372
 Positive photoresist, 370
 Negative photoresist, 370
 Steps, 368–370
Photolytically driven electrochemistry (PDEC), 495–496
Photonic band gap materials
 Forbidden bands, 432–433
Physical vapor deposition, 40–42
Photodynamic therapy, 547–550
Photosystem I (PSI), 513
Photosystem II (PSII), 494–496
Photosynthesis, 497
 In thylakoid membrane, 514
 Process steps, 539
Piezoelectric films
 AlN, 374–375
 Piezoelectric equations, 373
p-i-n junction, 459
Planar magnetron sputtering, 60
 Optical thin film materials, 64
Plasma enhanced chemical deposition (PECVD)
 Reactors, 103–107
Plasma etching, 348–350
 Etch profile, 349
 Etch rates, 355
 Etchants, 353
 Microscopic processes, 351
 Pattern transfer, 350
 Process steps, 352
 Reactors, 358
 Plasma-film interactions, 346
 Plasma properties, 339
 Plasma processing, 338–346
 p-n junction, 459
 p-type transparent conductors
 Energy band structure, 479
 Materials, 480
 Polarization of light, 287–291
 Positive photoresist, 370
 Pulsed laser deposition (PLD)
 Benefits, 114, 118
 Chamber configuration, 115
 Nucleation and growth, 117
 Pulsed magnetron sputtering, 79ff
Quantum dots, 398
 Germanium, 532–534
 InGaAs solar cell, 535
 PbTeSe/PbTe, 535
 Quantum well
 Energy profile, 392–393
 Allowed wave functions, 394
 RAFT reaction, 529–530
 Ranges of plasmas, 340
 Reactive sputtering, 62–63
 Resonant mesh, 501–503
 Self assembled nanostructures
 Critical issues, 531
 Ge quantum dots, 532–534
 Self cleaning biological materials, 515ff
 Lotus leaf effect, 517–518
 Self healing biological materials, 522
 Self healing process, 523
 Self healing structures, 524–530
 Wound healing, 522
Semiconductor thin films
- Aluminum gallium arsenide (AlGaAs), 379, 408
- Amorphous silicon, 378
- Cadmium telluride (CdTe), 379–383
- Copper indium diselenide, CIS (CuInSe2), 383
- Copper indium gallium diselenide, CIGS (CuInxGa1-xSe2), 383
- Gallium arsenide (GaAs), 379–383
- Process goals, 376
- Silica films: see Silicon dioxide films
- Silicon carbide (SiC) films, 233
- Hardness, 240–241
- Silicon carbon nitride (Si-C-N) films, 238
- Hardness, 238–239
- Silicon dioxide (SiO2) films, 252
- Microhardness, 255
- Silicon nitride (SiN) films, 252
- Hardness, 253
- CVD deposited films, 254
- Silicon oxinitride (SiOxNy) films, 253
- SE applications, 2, 5
- SE benefits, 3
- Solar cell: also see Thin film solar cell
 - Intermediate band, 537
- Solid surfaces
 - Tribological properties, 7
 - Tribological coatings, 8
 - Wear, 8
 - Wear mechanisms, 9
 - Adhesive friction, 10
 - Abrasive wear, 11
 - Plowing, 11
 - Fragmentation, 12
 - Erosive wear, 13
 - Setting wear, 13
 - Lubricity, 14
- Hardness, 15
 - Hardness tests, 16
 - Mohs hardness, 17
 - Brinell hardness, 17
 - Rockwell hardness, 19
 - Vickers hardness, 19–20
 - Knoop hardness, 19–22
- Structure of thin films
 - Microstructures, 156
 - Types, 156
 - Short range and intermediate range order, 157
 - Amorphous thin films, 156–158
 - Columnar structure, 163
 - Pathological structures, 168–170
 - GLAD structures, 171
- Structure zone model
 - Movchan and Demchishin, 173
 - Evaporated films, 174
 - Sputtered films, 175–177
 - Ion plating, 177
 - Monte Carlo simulation, 179
 - Updates, 180–185
 - Superlattice, 262
 - Super lens, 443
 - Surface engineering defined, 1
 - Thermal rule, 166
- Thermal barrier coating, 255
- Thermal evaporation, 42
- Thermoelastic coating, 484
- Tight binding approximation, 403
- Tissue engineering, 551–555
- Thin film optical materials
 - Spectral ranges, 284–285
- Thin film permeation barrier
 - Applications, 485
 - Oxygen and water vapor barrier coatings, 490
 - Permeation factors, 488
Polymer multilayer coatings, 489
Vacuum polymer deposition technology, 491
Thin film solar cell
Amorphous silicon, 458, 460
CdTe, 458, 460
CIGS, 458, 461
Intermediate band, 537
Organic solar cell, 476
Thin film nucleation and growth
Surface kinetic processes, 144
Pressure, 146
Thermodynamics, 147
Frank-van der Merwe (FM) growth mode, 150–152
Volmer-Weber (VW) growth mode, 152–153
Stranski-Krastanov (SK) growth mode, 154–155
Titanium diboride (TiB$_2$) films, 188–190
Titanium boron carbide (TiBC) films, 188
Titanium carbide (TiC) films, 188, 190–194
TiN films, 188, 213–215
Cutting tools, 214
Decorative coatings, 214
Hardness, 215
Replacement for chromium, 213–214
Resistivity, 215
TiC films, 216–219
TiCN films, 188, 194
TiAlN films, 188, 195–197
TiBCN films, 188
Tristimulus chromaticity model, 309
Transparent conductive oxide
Dielectric constant, 468
Electrical properties, 463–467
Indium tin oxide (ITO), 469
Optical properties, 467–468
Zinc oxide (ZnO) and related materials, 476
Tungsten carbide (WC) films
Deposition processes, 242
Wear rate, 243
WC-Co films, 244
Unbalanced magnetron sputtering, 65, 133
Closed field magnetron, 65
Thin film materials, 67
Advantages, 68
Vacuum polymer deposition (VPD)
Chamber configuration, 125
Advantages, 125
Applications, 126–128
Vacuum polymer deposition technology, 491
Layer structure, 489, 492–493
WC-Co films, 244
Nanostructured films, 244–245
Wet chemical etching, 349–351
Common wet etchants for metals, 360
Pattern transfer, 350
Yttria stabilized zirconia films, 256
Zinc oxide (ZnO) and related materials, 476
ZnO family of thin films, 477
Zirconia films: see Zirconium dioxide films
Zirconium dioxide (ZrO$_2$) films
Cubic ZrO$_2$ (cubic zirconia) films, 255