CONTENTS

PREFACE xv

PART I FUNDAMENTALS 1

1 INTRODUCTION 3

1.1 Era of Simulation and Computer Aided Engineering 3
 1.1.1 A World of Simulation 3
 1.1.2 Evolution of Explicit Finite Element Method 4
 1.1.3 Computer Aided Engineering (CAE)—Opportunities and Challenges 5

1.2 Preliminaries 6

 1.2.1 Notations 6
 1.2.2 Constitutive Relations of Elasticity 8

2 FRAMEWORK OF EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS 11

2.1 Transient Structural Dynamics 11

2.2 Variational Principles for Transient Dynamics 13
 2.2.1 Hamilton’s Principle 13
 2.2.2 Galerkin Method 15
CONTENTS

2.3 Finite Element Equations and the Explicit Procedures 15
 2.3.1 Discretization in Space by Finite Element 16
 2.3.2 System of Semidiscretization 19
 2.3.3 Discretization in Time by Finite Difference 19
 2.3.4 Procedure of the Explicit Finite Element Method 20

2.4 Main Features of the Explicit Finite Element Method 21
 2.4.1 Stability Condition and Time Step Size 22
 2.4.2 Diagonal Mass Matrix 23
 2.4.3 Corotational Stress 24

2.5 Assessment of Explicit Finite Element Method 24
 2.5.1 About the Solution of the Elastodynamics 24
 2.5.2 A Priori Error Estimate of Explicit Finite Element Method for Elastodynamics 25
 2.5.3 About the Diagonal Mass Matrix 30

PART II ELEMENT TECHNOLOGY 37

3 FOUR-NODE SHELL ELEMENT (REISSNER–MINDLIN PLATE THEORY) 39

 3.1 Fundamentals of Plates and Shells 40
 3.1.1 Characteristics of Thin-walled Structures 40
 3.1.2 Resultant Equations 42
 3.1.3 Applications to Linear Elasticity 44
 3.1.4 Kirchhoff–Love Theory 46
 3.1.5 Reissner–Mindlin Plate Theory 47

 3.2 Linear Theory of R-M Plate 47
 3.2.1 Helmholtz Decomposition for R-M Plate 48
 3.2.2 Load Scaling for Static Problem of R-M Plate 48
 3.2.3 Load Scaling and Mass Scaling for Dynamic Problem of R-M Plate 49
 3.2.4 Relation between R-M Theory and K-L Theory 50

 3.3 Interpolation for Four-node R-M Plate Element 52
 3.3.1 Variational Equations for R-M Plate 52
 3.3.2 Bilinear Interpolations 52
 3.3.3 Shear Locking Issues of R-M Plate Element 55

 3.4 Reduced Integration and Selective Reduced Integration 56
 3.4.1 Reduced Integration 56
CONTENTS

3.4.2 Selective Reduced Integration 57
3.4.3 Nonlinear Application of Selective Reduced Integration—Hughes–Liu Element 58

3.5 Perturbation Hourglass Control—Belytschko–Tsay Element 60
3.5.1 Concept of Hourglass Control 61
3.5.2 Four-node Belytschko–Tsay Shell Element—Perturbation Hourglass Control 63
3.5.3 Improvement of Belytschko–Tsay Shell Element 68
3.5.4 About Convergence of Element using Reduced Integration 70

3.6 Physical Hourglass Control—Belytschko–Leviathan (QPH) Element 71
3.6.1 Constant and Nonconstant Contributions 71
3.6.2 Projection of Shear Strain 72
3.6.3 Physical Hourglass Control by One-point Integration 73
3.6.4 Drill Projection 74
3.6.5 Improvement of B-L (QPH) Element 76

3.7 Shear Projection Method—Bathe–Dvorkin Element 76
3.7.1 Projection of Transverse Shear Strain 76
3.7.2 Convergence of B-D Element 78

3.8 Assessment of Four-node R-M Plate Element 80
3.8.1 Evaluations with Warped Mesh and Reduced Thickness 80
3.8.2 About the Locking-free Low Order Four-node R-M Plate Element 85

4 THREE-NODE SHELL ELEMENT (REISSNER–MINDLIN PLATE THEORY) 88

4.1 Fundamentals of a Three-node C^0 Element 89
4.1.1 Transformation and Jacobian 89
4.1.2 Numerical Quadrature for In-plane Integration 91
4.1.3 Shear Locking with C^0 Triangular Element 91

4.2 Decomposition Method for C^0 Triangular Element with One-point Integration 92
4.2.1 A C^0 Element with Decomposition of Deflection 92
4.2.2 A C^0 Element with Decomposition of Rotations 96

4.3 Discrete Kirchhoff Triangular Element 97

4.4 Assessment of Three-node R-M Plate Element 102
4.4.1 Evaluations with Warped Mesh and Reduced Thickness 102
4.4.2 About the Locking-free Low Order Three-node R-M Plate Element 105
CONTENTS

5 EIGHT-NODE SOLID ELEMENT 107
 5.1 Trilinear Interpolation for the Eight-node Hexahedron Element 107
 5.2 Locking Issues of the Eight-node Solid Element 111
 5.3 One-point Reduced Integration and the Perturbed Hourglass Control 113
 5.4 Assumed Strain Method and Selective/Reduced Integration 115
 5.5 Assumed Deviatoric Strain 118
 5.6 An Enhanced Assumed Strain Method 118
 5.7 Taylor Expansion of Assumed Strain about the Element Center 120
 5.8 Evaluation of Eight-node Solid Element 123

6 TWO-NODE ELEMENT 128
 6.1 Truss and Rod Element 128
 6.2 Timoshenko Beam Element 129
 6.3 Spring Element 131
 6.3.1 One Degree of Freedom Spring Element 131
 6.3.2 Six Degrees of Freedom Spring Element 132
 6.3.3 Three-node Spring Element 133
 6.4 Spot Weld Element 134
 6.4.1 Description of Spot Weld Separation 134
 6.4.2 Failure Criterion 135
 6.4.3 Finite Element Representation of Spot Weld 137

PART III MATERIAL MODELS 139

7 MATERIAL MODEL OF PLASTICITY 141
 7.1 Fundamentals of Plasticity 142
 7.1.1 Tensile Test 142
 7.1.2 Hardening 144
 7.1.3 Yield Surface 145
 7.1.4 Normality Condition 150
 7.1.5 Strain Rate Effect/Viscoplasticity 152
 7.2 Constitutive Equations 153
 7.2.1 Relations between Stress Increments and Strain Increments 153
 7.2.2 Constitutive Equations for Mises Criterion 157
 7.2.3 Application to Kinematic Hardening 158
CONTENTS

7.3 Software Implementation
 7.3.1 Explicit Finite Element Procedure with Plasticity 160
 7.3.2 Normal (Radial) Return Scheme 160
 7.3.3 A Generalized Plane Stress Model 163
 7.3.4 Stress Resultant Approach 164

7.4 Evaluation of Shell Elements with Plastic Deformation 169

8 CONTINUUM MECHANICS MODEL OF DUCTILE DAMAGE 175

 8.1 Concept of Damage Mechanics 175
 8.2 Gurson’s Model 177
 8.2.1 Damage Variables and Yield Function 178
 8.2.2 Constitutive Equation and Damage Growth 179
 8.3 Chow’s Isotropic Model of Continuum Damage Mechanics 180
 8.3.1 Damage Effect Tensor 181
 8.3.2 Yield Function and Constitutive Equation 183
 8.3.3 Damage Growth 185
 8.3.4 Application to Plates and Shells 187
 8.3.5 Determination of Parameters 188
 8.4 Chow’s Anisotropic Model of Continuum Damage Mechanics 189

9 MODELS OF NONLINEAR MATERIALS 192

 9.1 Viscoelasticity 192
 9.1.1 Spring–Damper Model 192
 9.1.2 A General Three-dimensional Viscoelasticity Model 196
 9.2 Polymer and Engineering Plastics 197
 9.2.1 Fundamental Mechanical Properties of Polymer Materials 197
 9.2.2 A Temperature, Strain Rate, and Pressure Dependent Constitutive Relation 198
 9.2.3 A Nonlinear Viscoelastic Model of Polymer Materials 199
 9.3 Rubber 200
 9.3.1 Mooney–Rivlin Model of Rubber Material 200
 9.3.2 Blatz–Ko Model 202
 9.3.3 Ogden Model 203
 9.4 Foam 203
 9.4.1 A Cap Model Combining Volumetric Plasticity and Pressure Dependent Deviatoric Plasticity 205
 9.4.2 A Model Consisting of Polymer Skeleton and Air 205
 9.4.3 A Phenomenological Uniaxial Model 207
CONTENTS

9.4.4 Hysteresis Behavior 208
9.4.5 Dynamic Behavior 209

9.5 Honeycomb 209
9.5.1 Structure of Hexagonal Honeycomb 210
9.5.2 Critical Buckling Load 210
9.5.3 A Phenomenological Material Model of Honeycomb 211
9.5.4 Behavior of Honeycomb under Complex Loading Conditions 213

9.6 Laminated Glazing 214
9.6.1 Application of J-integral 214
9.6.2 Application of Anisotropic Damage Model 215
9.6.3 A Simplified Model with Shell Element for the Laminated Glass 216

PART IV CONTACT AND CONSTRAINT CONDITIONS 219

10 THREE-DIMENSIONAL SURFACE CONTACT 221

10.1 Examples of Contact Problems 221
10.1.1 Uniformly Loaded String with a Flat Rigid Obstacle 222
10.1.2 Hertz Contact Problem 225
10.1.3 Elastic Impact of Two Balls 226
10.1.4 Impact of an Elastic Rod on the Flat Rigid Obstacle 228
10.1.5 Impact of a Vibrating String to the Flat Rigid Obstacle 231

10.2 Description of Contact Conditions 233
10.2.1 Contact with a Smooth Rigid Obstacle—Signorini’s Problem 233
10.2.2 Contact between Two Smooth Deformable Bodies 237
10.2.3 Coulomb’s Law of Friction 240
10.2.4 Conditions for “In Contact” 242
10.2.5 Domain Contact 242

10.3 Variational Principle for the Dynamic Contact Problem 243
10.3.1 Variational Formulation for Frictionless Dynamic Contact Problem 243
10.3.2 Variational Formulation for Frictional Dynamic Contact Problem 247
10.3.3 Variational Formulation for Domain Contact 250
10.4 Penalty Method and the Regularization of Variational Inequality
10.4.1 Concept of Penalty Method
10.4.2 Penalty Method for Nonlinear Dynamic Contact Problem
10.4.3 Explicit Finite Element Procedure with Penalty Method for Dynamic Contact

11 NUMERICAL PROCEDURES FOR THREE-DIMENSIONAL SURFACE CONTACT
11.1 A Contact Algorithm with Slave Node Searching Master Segment
11.1.1 Global Search
11.1.2 Bucket Sorting Method
11.1.3 Local Search
11.1.4 Penalty Contact Force
11.2 A Contact Algorithm with Master Segment Searching Slave Node
11.2.1 Global Search with Bucket Sorting Based on Segment’s Capture Box
11.2.2 Local Search with the Projection of Slave Point
11.3 Method of Contact Territory and Defense Node
11.3.1 Global Search with Bucket Sorting Based on Segment’s Territory
11.3.2 Local Search in the Territory
11.3.3 Defense Node and Contact Force
11.4 Pinball Contact Algorithm
11.4.1 The Pinball Hierarchy
11.4.2 Penalty Contact Force
11.5 Edge (Line Segment) Contact
11.5.1 Search for Line Contact
11.5.2 Penalty Contact Force of Edge-to-Edge Contact
11.6 Evaluation of Contact Algorithm with Penalty Method

12 KINEMATIC CONSTRAINT CONDITIONS
12.1 Rigid Wall
12.1.1 A Stationary Flat Rigid Wall
12.1.2 A Moving Flat Rigid Wall
12.1.3 Rigid Wall with a Curved Surface
CONTENTS

12.2 Rigid Body 296
12.3 Explicit Finite Element Procedure with Constraint Conditions 298
12.4 Application Examples with Constraint Conditions 300

REFERENCES 305
INDEX 325