Contents

Preface xi
Foreword xii

1 Chemical messengers and the cell membrane 1
 1.1 Endocrine signalling by hormones 1
 1.2 The nervous system and synaptic signalling by neurotransmitters 8
 Small molecule neurotransmitters 11
 Neuropeptides 13
 1.3 Paracrine signalling by local chemical messengers 15
 1.4 Hydrophobicity: effect on release and transport of messengers 16
 1.5 Membrane proteins and membrane receptors 23
 1.6 Ligand–receptor interactions 25

2 Radioligand binding studies 29
 2.1 Technical aspects of radioligand binding 29
 2.2 Saturation binding 33
 2.3 Competition binding 38
 2.4 Kinetic experiments 46
 2.5 Regional distribution of receptors 50

3 Functional studies 53
 3.1 Dose-response curves and associated problems 53
 3.2 From receptor occupation to stimulus and response 56
 From receptor occupation to stimulus 56
 From stimulus to response: linear relationship 59
 From stimulus to response: non-linear relationship 61
 3.3 Receptor classification and antagonist affinity 65
 3.4 Pharmacological models 69

4 G protein-coupled receptors 77
 4.1 From receptor to response: introduction to GPCRs 77
 4.2 GPCR structure 86
 4.3 Ligand interactions with family A, B and C receptors 97
 Ligand interaction with family A receptors 98
Ligand interaction with family B receptors
Ligand interaction with family C receptors

4.4 Receptor activation
4.5 Activated GPCRs: interaction with G proteins
 Techniques to study G protein-coupling preference
 Divergence of intracellular signalling
4.6 Activated GPCRs: phosphorylation and internalization
 Receptor phosphorylation
 β-Arrestin binding mediated GPCR endocytosis
 Mechanisms to terminate signalling
4.7 β-Arrestin-binding and MAP kinase activation
4.8 GPCR dimerization and association with other proteins
 Introductory comments
 GPCR dimerization
 GPCR interaction with other membrane receptors
 GPCR interaction with other membrane proteins
 GPCR interactions with cytoplasmic proteins
4.9 Early models for GPCR activation
4.10 Restricted GPCR mobility and G protein coupling
 Membrane compartimentalization
 Restricted GPCR–G protein coupling: effector activity
4.11 Spontaneous receptor–G protein coupling
 Models
 Inverse agonism
4.12 Interaction of two G proteins with one activated receptor state
 Fusion proteins between GPCRs and G proteins
4.13 Multiple receptor conformations
 ‘Agonist trafficking’: what do models predict?
 Experimental ‘evidence’ for agonist trafficking: potential pitfalls
 Multistate receptors: ligand-mediated sequential changes in
 receptor conformation
 Multiple receptor states related to truncation, covalent modification
 and mutation
4.14 Multistate receptors and multiple ligand binding sites
 The general allosteric ternary complex model
 Exogenous and endogenous allosteric modulators
 allosteric phenomena at GPCR: detection by radioligand binding
 Detection of allosteric phenomena at GPCRs by functional assays
 Usefulness of allosteric modulators
4.15 ‘Competitive’, ‘non-competitive’ and ‘insurmountable’ antagonism
 Co-incubation, no receptor reserve
 Antagonist pre-incubation, no receptor reserve
4.16 Naturally occurring mutations of GPCRs

5 Concluding remarks

References

Index