Index

Page numbers in italics refer to figures; those in bold to tables.

ACE inhibitors, 24
acute chest pain, 6
acute coronary syndrome, 219–20
acute myocardial infarction (AMI), 153
adults, young, 103
age, 24, 49, 86
ambispective data collection, 46, 47–48
AMI see acute myocardial infarction
angiography, 3, 5
classic, 8
coronary, 9
renal, 119, 121
Annals of Internal Medicine, 171, 218
anorexia nervosa, 24
antibiotics, 222
anticoagulation, intravenous, 66, 66, 66–68
anxiety, 53
appendicitis, 34–36, 35, 36, 101
architecture of diagnostic research
introduction to, 21–24
questions regarding, 20–21, 25–40, 26, 27, 29, 30, 31, 35, 36, 37, 38, 39, 40
area under the curve (AUC), 6, 221
area under the ROC curve (AUROC), 6, 151, 156, 224
artifactual variation, 101
aspiration pneumonia, 74, 74–75
aspirin, 68, 68–69
AUC see area under the curve
AUROC see area under the ROC curve
Bayes’s theorem, 36, 50, 161, 164, 237, 242, 249
clinical problem solving/diagnostic decision making and, 242–43, 246
formal application of, 238, 245
formulation of, 119, 131–32, 132
logistic regression, 134–36
implication of, 118–19
benign prostatic hyperplasia, 52
bias(es)
confirmation, 246
in diagnostic accuracy studies, 168–71
test examples of, 222
incorporation, 42, 53, 222
observer, 1, 10
potential, 14
in processing information, 245–46
selection, 1, 250–51
evaluation of, 4, 8–9
spectrum, 222
workup, 192
see also selection; spectrum biomarkers, 171
biomedical knowledge, 273
developments of, 277
progress of, 278
bicovariate model, 180, 209
bicovariate techniques, 43, 57, 58
blinding, 10, 51, 53, 54, 89
allocation, 78
procedures, 83
blood
flow, 8
pressure, 23, 24
sugar, 24
tests, 5, 6, 10
BNP (B-type natriuretic peptide), 22
breast(s)
cancer
detection of, 49
screening programs, 14
women with, 75
fibroadenomatosis of, 49
BRHS see British Regional Heart Study
British Journal of Cancer, 176
British Medical Journal, 171, 218
British Regional Heart Study (BRHS), 223
B-type natriuretic peptide see BNP

COPYRIGHTED MATERIAL
Index

calibration, 222, 224
predictive values and, 98, 100
of tests, 98, 100, 106, 106–7
variation in, 108–9

cancer see breast cancer
cardiovascular diseases (CVDs)
clinical example-validation studies of primary prevention of, 224–26, 226
impact analysis studies of primary prevention of, 228–29, 229
cardiovascular risk functions, 233
CARE (Clinical Assessment of the Reliability of the Examination), 36, 215
carotid diseases
management of, 64
severity of, 65
carotid stenoses, 15
CART see classification and regression tree software
case-control studies, 13
case-referent approach, 42, 46, 46–47
CDSSs (computer-based clinical decision support systems)
implementation of, 216, 229–30
links to, 213, 214
CENTRAL, 182
“certainty effect” violations, 244
cervical bruit
duplex ultrasonography and, 68, 68
without previous cerebrovascular disease, 64–65, 65
cesarean section, vaginal birth after previous, 219–20
CHD see coronary heart disease
chest pain, acute, 6
children, 103
cholesterol
levels of, 24
serum, 23
CINAHL see Cumulative Index of Nursing and Allied Health
CIs see Confidence Intervals
classification and regression tree software (CART), 160
characteristics of, 149–50
diagnostic outcomes and, 149
example of, 150
indicators of diagnostic accuracy studies and, 149
interactions, 149
problems shared with, 155–58
sequence in, 149
use of, 149
Clinical Assessment of the Reliability of the Examination see CARE
Clinical Chemistry, 171, 175
clinical decision analysis, 12, 12, 275, 277
approach, 15
clinical epidemiological quality, 278
clinical practice, integration of information in, 15–16
Clinical Prediction Rules (CPRs), 15
application of, 213
clinical context of, 214–15
conclusions on, 222, 223, 229, 232
coverage and description of, 218–21, 219–20
definition of, 213
derivation and, 222–23, 223
heuristics of decision making and, 215–16
impact analysis for, 226–32, 227, 229, 231
implementation of, 213, 229–30
introduction to, 214
levels of evidence/methodological standards and, 221–26, 222, 223, 226
methodological challenges with, 221
recommended key references for, 233
thresholds approach to diagnosis and, 216–18, 217
usage of, 213
clinical problem solving, 274–76
diagnostic decision making and Bayes theorem, 242–43, 246
categorization/pattern recognition and, 240–41
conclusions on, 249–51
educational implications for, 248–49
errors in hypothesis generation/restructuring and, 241–42
Index 287

errors in probability estimation and, 243–45
errors in probability revision and, 245–46
as hypothesis selection, 238–39
hypothesico-deductive method and, 239–40
introduction to, 237–38
methodological guidelines for, 249–51
as opinion revision, 242–43
two-system theories of cognition and, 247–48, 248
clinical studies, 4, 12–14
clinical validity, 59, 281
Cochrane Collaboration, 14, 171, 172, 232
coefficient of variation (CV), 50
cognition, two-system theories of, 247–48, 248
cohort studies, 13
comorbidity, 49, 86
compression errors, 244
computed tomography (CT), 5, 8, 10–11, 110
computer-based clinical decision support systems see CDSSs
concealment, 78
Confidence Intervals (CIs), 67, 68–69
data analysis of diagnostic tests’ accuracy, 121, 122–23, 123
tables
for proportions, 137–44
for Renal Artery Stenosis, 137, 144
for small n, 138–41
confoundling
probability and values of outcomes, 246
variables
control of, 49–50
definition of, 49
effect of, 87
use of, 50
consensus methods, 12, 12–13
conservatism, 245
CONSORT, 171–72, 175
coronary angiography, 9
coronary artery diseases, 27, 27
coronary heart disease (CHD), 225
coronary syndrome, acute, 219–20
cost-benefit analysis, 268
cost-consequence analysis, 268–69
cost-effectiveness analysis, 267
cost-effectiveness studies, 2, 6, 11–12, 12
cost-minimization analysis, 266–67
cost-utility analysis, 267–68
CPRs see Clinical Prediction Rules
CPT see cumulative prospect theory
cross-sectional studies, 1
accuracy of diagnostic testing and, 42–44
adverse effects of reference standard, 56, 57
adverse effects of test, 56, 57
basic steps in diagnostic research and, 44
case-referent approach to, 42, 46, 46–47
concluding remarks on, 60
determinants and, 48–50, 49
direction of data collection, 46, 47–48
evaluation of contrast and, 44–46, 45
external validation of, 59
general approach to, 46, 46–47
modifiers of, 49
“occurrence relation” and, 48–50, 49
outline of study question and, 46, 46–48
pragmatic criteria for, 52–55
reference standard outcome and, 42, 50–52, 51
reproducibility and, 50
research question for, 44–46, 45
specification of study population and, 55–57, 56
test based enrollment and, 46, 46–47
delayed type, 8
pragmatic criteria for, 52–55
clinical follow-up in, 53
independent expert panel and, 52
prognostic criterion for, 54–55
standard shift and, 55
Index

cross-sectional studies (cont.)
tailor-made reference standard
protocol and, 53–54
survey, 12, 12
see also research designs
CT see computed tomography
Cumulative Index of Nursing and Allied Health (CINAHL), 183,
185b–191b
cumulative prospect theory (CPT), 244
CV see coefficient of variation
CVDs see cardiovascular diseases
DARE see Database of Abstracts of Reviews of Effects
DAs see decision aids
data
analysis, 118–45, 195
CIs and, 121, 122–23, 123
clinical example of, 119–20, 120
concepts and questions regarding, 120–21
concluding remarks on, 136
ER with, 125–26, 137, 142–44
introduction to, 119
LR and, 126–27, 129–34, 130, 132
multivariable, 146–66
negative/positive predictive values with, 124–25, 137, 142–44
optimal cutoff value and, 133, 133–34
posttest probability of disease with, 124–25, 137, 142–44
pretest probability of disease with, 124–25, 137, 142–44
sampling variability and, 121, 122–23, 123
sensitivity of, 121, 121–22, 132, 133, 134
software for, 136–37
specificity for, 121, 121–22
theory and guide to tables in appendix, 123–24
collection
ambispective, 46, 47–48
prospective, 46, 47–48
retrospective, 46, 47–48
extraction, 192, 194
history data, 3
interpretation with
hypothesetico-deductive method, 239–40
laboratory data, 3
meta-analyses of pooled, 14, 180, 201–9
presentation, 185b–191b, 203–5, 204b
Database of Abstracts of Reviews of Effects (DARE), 183,
185b–191b
databases for conducting systemic reviews of diagnostic accuracy studies, 182–83, 185b–191b
other, 207–8
death, 65
decision aids (DAs), 214, 232
decision making, heuristics of, 215–16
decision tree, 15, 147–49
delayed type cross-sectional studies, 8
depression, 52
derivation, 222–23, 223
Derivation and Validation of a Clinical Prediction Rule, 223, 223–24
design options, 12
determinant(s)
operationalize, 44
of primary interest, 42, 48–50, 49
diagnostic accuracy studies
biases in, 168–71
cconducting systemic reviews of, 180, 273
bivariate model for, 180, 209
comments on, 183–84
data analysis for, 195
data extraction for, 192, 194
data presentation for, 185b–191b, 203–5, 204b
discussion on, 205–6
documentation of, 183
heterogeneity in, 196–97, 198–200, 199b
HSROC model for, 209
introduction to, 181
literature search for, 181–82
methodological quality of, 184–94
notation and, 208
results of individual studies and, 195
retrieval of articles and inclusion criteria in, 183–84
search and selection process with, 206
search strategy for, 182
SROC and, 180, 208–9
statistical pooling and, 201–3
threshold (cut-point) effect in, 197, 198b
usage of statistical models and, 200
cross-sectional study, 42–62
data analysis of accuracy studies, 118–45
databases for conducting systemic reviews of, 182–83, 185b–191b
other, 207–8
meta-analyses in, 158
multivariable analysis in
additional methods in, 154
CART software as, 149–50, 155–58, 160
characteristics from logistic regression analysis and, 136, 158–64, 159, 160, 162, 163
introduction to, 146–47
latent class analysis as, 154–58
logistic regression analysis as, 150–52, 155–58
manipulated logistic regression analysis as, 152–53, 155–58, 160
methods’ overview of, 147–55
neural networks as, 153, 155–58
overlapping subgroups with, 156–57
performance of final model in, 156, 157
problems shared by all methods of, 155–58
recommendations for, 158
simple tree building as, 147–49, 155–58, 160
standards of reporting on bias and variability in, 168–71
introduction to, 167–68
other initiatives in, 176
STARD statement and, 171–72, 173–74, 175
uptake of STARD in, 172–76
tests, 2, 42–43
assessment of clinical course/severity of diagnosed condition and, 43
bivariate techniques for, 43, 57, 58
case-referent approach for, 42, 46, 46–47
cross-sectional studies and, 42–44
adverse effects of reference standard, 56, 57
adverse effects of test, 56, 57
basic steps in diagnostic research and, 44
case-referent approach to, 42, 46, 46–47
concluding remarks on, 60
determinants and, 48–50, 49
direction of data collection, 46, 47–48
evaluation of contrast and, 44–46, 45
external validation of, 59
general approach to, 46–47
modifiers of, 49
“occurrence relation” and, 48–50, 49
outline of study question and, 46, 46–48
pragmatic criteria for, 52–55
reference standard outcome and, 42, 50–52, 51
reproducibility and, 50
research question for, 44–46, 45
specification of study population and, 55–57, 56
test based enrollment and, 46, 46–47
data analysis of clinical example of, 119–20, 120
concepts and questions regarding, 120–21
concluding remarks on, 136
confidence intervals and, 121, 122–23, 123, 137–44
error rate with, 125–26, 137, 142–44
introduction to, 119
likelihood ratios and, 126–27, 129–34, 130, 132
diagnostic accuracy studies (cont.)
negative/positive predictive values with, 124–25, 137, 142–44
optimal cutoff value and, 133, 133–34
posttest probability of disease with, 124–25, 137, 142–44
pretest probability of disease with, 124–25, 137, 142–44
sampling variability and, 121, 122–23, 123
sensitivity of, 121, 121–22, 132, 133, 134
software for, 136–37
specificity for, 121, 121–22
terminology and guide to tables in appendix, 123–24
external validation of, 43
general design types for, 42
inclusion criteria for, 43
introduction to, 43–44
multivariable techniques for, 43, 57, 58
recruitment procedure for, 43
steps for, 42
survey of total study population, 42, 46, 46–47
test-based enrollment, 42
Diagnostic and Screening Tests Methods Working Group (Cochrane Collaboration), 171
Diagnostic and Statistical Manual of Mental Disorders (DSM), 149
diagnostic before-after study, 83–95
for evaluation of clinical impact of single or additional testing, 83
introduction to, 84
research questions and concluding remarks on, 93–94
diagnostic testing and, 89–90
example of, 84–86, 85
general model of, 86, 86–88
limitations of, 87, 93
modified approaches to, 93
posttest outcome and, 90–91, 91
pretest baseline and, 88–89
sample analysis/size and, 92
selection of study subjects and, 91–92
time factor with, 91, 91
time factor with, 91, 91
diagnostic decision making
clinical problem solving and, 274–76
Bayes theorem, 242–43, 246
categorization/pattern recognition and, 240–41
conclusions on, 249–51
educational implications for, 248–49
errors in hypothesis generation/restructuring and, 241–42
errors in probability estimation and, 243–45
errors in probability revision and, 245–46
as hypothesis selection, 238–39
hypothetico-deductive method and, 239–40
introduction to, 237–38
methodological guidelines for, 249–51
as opinion revision, 242–43
two-system theories of cognition and, 247–48, 248
diagnostic evaluation, funding of, 2
diagnostic odds ratio (DOR), 121, 127, 195, 201
diagnostic problems, research on, 273, 278
diagnostic procedures, evaluation strategy
challenges to, 277–80
efficiency and speed of, 280
evaluation of, 273
important steps towards, 274–77, 275
introduction to, 274
study designs and, 277
diagnostic research, 281–82
architecture of
introduction to, 21–24
questions regarding, 20–21, 25–40, 26, 27, 29, 30, 31, 35, 36, 37, 38, 39, 40
Index

291

comprehensiveness of, 2
designs, 11–16, 12
methodology of, 1, 2
Phase I questions, 20, 25–27, 26
Phase II questions, 20, 25, 27, 27–28, 29
Phase III questions, 21, 25, 28–31, 30, 31
 applicability of, 34–36, 35, 36
 limits, 34
 validity of, 32, 32–34
Phase IV questions, 21, 25, 37, 37–38, 38
Phase V questions, 21, 25, 38–40, 39, 40
synthesizing, 14–15
diagnostic systematic reviews, 1, 12, 14, 29, 180–212
diagnostic technologies
 conclusions on, 16
 development of, 1
 introduction to, 2–3
 methodological challenges to, 8–11
 complex relations within, 7
 “gold standard” problem and, 7–8
 “soft” measures within, 9
 objectives of, 1, 3–7, 4, 5
diagnostic test(s)
 “abnormal,” 20
 application of, 217–18
 diagnostic before-after study and, 89–90
discrimination of, 3, 5
 effectiveness/validity of, 2
 “normal,” 20, 21–24
 “normal range,” 21–24
 objectives of, 1, 3–7, 4, 5
pathophysiological
 concepts/developments for, 42–43
RCTs
 alternative randomized designs and, 69–71, 70
 comparison of test strategies and, 71, 71–76, 72, 73, 74, 76
 conclusions on, 80
design choices for, 77, 77–78
 measurement of, 64–69, 65, 66, 66, 67, 68, 69
 practical issues regarding, 78–80, 79
 prognostic impact of, 63–64
 research on, 2
technical developments for, 42–43
diagnostic tests, accuracy of, 2, 42–43
 assessment of clinical course/severity of diagnosed condition and, 43
 bivariate techniques for, 43, 57, 58
case–referent approach, 42, 46, 46–47
cross-sectional studies and, 42–44
 adverse effects of reference standard, 56, 57
adverse effects of test, 56, 57
 basic steps in diagnostic research and, 44
 concluding remarks on, 60
determinants and, 48–50, 49
direction of data collection, 46, 47–48
evaluation of contrast and, 44–46, 45
external validation of, 59
general approach to, 46, 46–47
 modifiers of, 49
“occurrence relation” and, 48–50, 49
 outline of study question and, 46, 46–48
 pragmatic criteria for, 52–55
 reference standard outcome and, 42, 50–52, 51
 reproducibility and, 50
 research question for, 44–46, 45
 specification of study population and, 55–57, 56
test based enrollment and, 46, 46–47
data analysis of
 clinical example of, 119–20, 120
 concepts and questions regarding, 120–21
 concluding remarks on, 136
 Confidence Intervals and, 121, 122–23, 123, 137–44
 Error rate and, 125–26, 137, 142–44
 introduction to, 119
Index

diagnostic tests, accuracy of (cont.)
 Likelihood Ratios and, 126–27, 129–34, 130, 132
 negative/positive predictive values with, 124–25, 137, 142–44
 optimal cutoff value and, 133, 133–34
 posttest probability of disease with, 124–25, 137, 142–44
 pretest probability of disease with, 124–25, 137, 142–44
 sampling variability and, 121, 122–23, 123
 sensitivity, 121, 121–22, 132, 133, 134
 specificity, 121, 121–22
 theory and guide to tables in appendix, 123–24
 external validation of, 43, 59, 96–117, 223–24
 general design types for, 42
 inclusion criteria for, 43
 introduction to, 43–44
 multivariable techniques for, 43, 57, 58
 recruitment procedure for, 43
 steps for, 42
 survey of total study population, 42, 46, 46–47
 test-based enrollment, 42

dichotomization of continuous tests, 127–31, 128, 129, 129, 130, 131
 occurrence of, 128, 129
 discrimination
 assessment of, 11
 of diagnostic tests, 3, 5
 measures of, 3, 4, 13
 predictive values and, 98, 100
 test accuracy and, 98, 100, 106, 106, 110
 usefulness of, 10
 variation in, 108–9
 discriminatory power, 107–8

disease(s)
 absence/presence of, 162
 carotid
 management of, 64
 severity of, 65
 cervical bruit without previous cerebrovascular, 64–65, 65
 CVDs
 clinical example-validation studies of primary prevention of, 224–26, 226
 impact analysis studies of primary prevention of, 228–29, 229
 definition of, 99
 estimation of probability of, 98
 groups across settings, 99–100, 100
 spectrum of, 103–4
 posttest probability of, 124–25, 137, 142–44
 pretest probability of, 124–25, 137, 142–44
 prognosis of, 2
 disorder(s)
 clinical course of, 6
 detection/exclusion of, 3, 4
 indication area of, 10–11
 target
 “gold standard” of, 50
 Phase I questions and, 20, 25–27, 26
 Phase II questions and, 20, 25, 27, 27–28, 29
 Phase III questions and, 21, 25, 28–31, 30, 31
 as primary dependent or outcome variable, 42, 48–50, 49
 reference standard outcome of, 42, 50–52, 51
 DNA, 55, 278
 doctors see physician(s)
 DOR see diagnostic odds ratio
 drug(s)
 antihypertensive, 24
 control of, 16
 quality of, 16
 safety of, 2
 DSM see Diagnostic and Statistical Manual of Mental Disorders
duplex ultrasonography
 accuracy of, 68, 69
 acute strokes and, 66, 66, 66–68
 cervical bruit and, 68, 68
 performance of, 65–66
 prognostic value of, 66
Index 293

dyspepsia, 76
dysphagia, 74, 74–75

EBM see evidence-based medicine
ECG see electrocardiogram
echocardiography, 30
elderly, 103
electrocardiogram (ECG)
exercise, 5
 abnormal, 9
 accuracy of, 54
 routine, 6
Electronic Patient Record (EPR), 214, 228, 232
EMBASE (Excerpta Medica Database), 182–83, 185b–191b
EMBASE ALERT, 185b–191b
endoscopy, 76
EPR see Electronic Patient Record
ER see error rate
error(s)
 compression, 244
 in hypothesis
 generation/restructuring, 241–42
 in probability estimation, 243–45
 in probability revision, 245–46
 in reference standard, 109
error rate (ER)
 concept, 125–26, 137, 142–44
 as measure, 133
erythrocyte sedimentation rate (ESR), 50
 diagnostic impact of, 84–86, 85, 85
 GPs and impact of, 84–86, 85, 85
 test characteristics of, 85–86
ESR see erythrocyte sedimentation rate
European Journal of Cancer, 176
evaluation strategy, overview, 273–77
evidence-based medicine (EBM), 243, 249, 256
Excerpta Medica Database see EMBASE
exercise
 ECG, 5
 fitness and, 24
 "eyeball test," 196
false negatives (FN), 133–34
false positives (FP), 133–34

FEESST see flexible endoscopic valuation of swallowing with sensory testing
fibroadenomatosis, of breasts, 49
fitness, exercise and, 24
 see also physical fitness
fixed effect
 model, 200
 pooling, 201
flexible endoscopic valuation of swallowing with sensory testing (FEESST), 74, 74–75
FN see false negatives
forward tracking, 182
FP see false positives
fracture rates, 98
Framingham risk functions, 225–26, 226, 228
From Discovery to Clinical Practice: Diagnostic Innovation, Implementation, and Evaluation see NCI-EORTC First International Meeting on Cancer Diagnostics
funding, 2
fuzzy-trace theory, 241, 247

Galbraith plot, 196
Gale Directory of Online Portable and Internet Databases, 183
Gaussian distribution, 20
definitions of, 22–23
gender, 49, 86
gene(s)
 characteristics of, 278
 expressions, 171
general practitioners (GPs), 3, 37
 on diagnosis of patients, 84–85, 85
 impact of ESR and, 84–85, 85, 85
 “gold standard,” 1
 establishment of, 50
 problem and methodological challenges to diagnostic technologies, 7–8
 of target disorders, 50
tests, 21–22
 see also reference standard
GPs see general practitioners
Index

HDL cholesterol, 225
health
 outcomes, 37–38
 perspectives, 6
 problems, 2
health care
 costs, 7
 Phase V questions and, 21, 25,
 38–40, 39, 40
 delivery, 269
 quality of, 2
 systems, 24
 see also primary care; tertiary care
heparin, unfractionated, 66, 66, 66–68
heterogeneity
 dealing with, 198–200, 199b
 search for, 196–97
 sources of, 180
 studies, 200
 when conducting systemic reviews of
diagnostic accuracy studies,
 196–97, 198–200, 199b
hierarchical SROC see HSROC
Hosmer-Lemeshow goodness-of-fit test, 224
hospitals, emergency departments of, 3
H Pylori, 76
HSROC (hierarchical SROC), 201–2, 209
human chorionic gonadotrophin see
 serum hCG
hyperplasia, benign prostatic, 52
hypertension, 23, 119–20, 120
hypothesis
 generation/restructuring, errors in,
 241–42
 selection, 238–39
hypothetico-deductive method
 clinical problem solving/diagnostic
decision making and, 239–40
data interpretation with, 239–40
early, 239
ICT see Information and Communication
 Technology
IFCC see International Federation of
 Clinical Chemistry
illness(s)
 clinical course of, 6
 symptoms of, 2
 imaging techniques, 8
 impact analysis, 226–32, 227, 229, 231
 inclusion criteria
 accuracy of diagnostic tests, 43
 conducting systemic reviews of
diagnostic accuracy studies,
 retrieval of articles and,
 183–84
 incremental value, 105–8
 independence, 32
 index test see duplex ultrasonography
 indication area, 10–11
International Federation of Clinical
 Chemistry (IFCC), 183
 intravenous anticoagulation, 66, 66,
 66–68
 irritable bowel syndrome, 52
Japan Information Centre of Science and
 Technology File on Science, Technology
 and Medicine (JICST-E), 183, 185b–191b
JICST-E see Japan Information Centre of
 Science and Technology File on
 Science, Technology and Medicine
Journal of Clinical Oncology, 176
Journal of National Cancer Institute, 176
Journal of the American Medical Association,
 218
 knowledge
 biomedical, 273
 developments of, 277
 progress of, 278
language, 184
 latent class analysis, 154–58
 characteristics of, 154–55
 example of, 155
 problems shared with, 155–58
Latin American Caribbean Health Sciences Literature (LILACS), 183
LBBB see left bundle branch block
left bundle branch block (LBBB), 153
left ventricular dysfunction (LVD), 22
Phase I questions and, 20, 25–27, 26
Phase II questions and, 20, 25, 27, 27–28, 29
Phase III questions and, 21, 25, 37, 37–38, 38
Phase IV questions and, 21, 25, 37–38, 38
Phase V questions and, 21, 25, 38–40, 39, 40
treatments for, 24
life, quality of, 6
Likelihood Ratio (LR), 3, 4, 21
calculation of, 72
data analysis of accuracy of diagnostic tests, 126–27, 129–34, 130, 132
informative value of test results and, 118
of a negative result, 5
of a positive result, 5
LILACS see Latin American Caribbean Health Sciences Literature
liver
biopsy, 8
function tests, 3
pathology, 8
logistic regression, 134–36, 221
analysis, 158–64, 159, 160, 162, 163
characteristics of, 134, 150–52
example of, 135, 152
interactions in, 151
problems shared with, 155–58
formulation of Bayes theorem, 134–36
function, 159
LR see Likelihood Ratio
LVD see left ventricular dysfunction
magnetic resonance imaging (MRI), 10, 50
mammography, 49
maneuvers, 29
manipulated logistic regression analysis, 160
characteristics of, 152
example of, 152–53
problems shared with, 155–58
MBS see modified barium swallowing swallow test
Medion, 183, 188
MEDLINE, 182–83, 185b–191b
Mencken, H.L., 23
MeSH, 182, 185b–191b
meta-analyses, 1, 12, 12, 59, 180, 275, 276
in diagnostic accuracy studies, 158
monitoring, 6
of pooled data, 14
migraines, 52
modified barium swallow test (MBS), 74, 74–75
modifiers of diagnostic test accuracy, 49
monitoring, 6
morality, 23
mortality, 14, 219–20
MRI see magnetic resonance imaging multivariable analysis
in diagnostic accuracy studies
additional methods in, 154
CART software as, 149–50, 155–58, 160
characteristics from logistic regression analysis and, 158–64, 159, 160, 162, 163
introduction to, 146–47
latent class analysis as, 154–58
logistic regression analysis as, 136, 150–52, 155–58
manipulated logistic regression analysis as, 152–53, 155–58, 160
methods’ overview of, 147–55
neural networks as, 153, 155–58
overlapping subgroups, 156–57
performance of final model in, 156, 157
problems shared by all methods of, 155–58
recommendations for, 158
simple tree building as, 147–49, 155–58, 160
Index

Murphy, Tony, 22
myocardial infarction, 5, 6, 65, 153, 156
myocardial infarction, acute, 153
natural prognostic value, 67, 67
Nature Clinical Practice Oncology, 176
NCI-EORTC First International Meeting
on Cancer Diagnostics (From
Discovery to Clinical Practice:
Diagnostic Innovation,
Implementation, and
Evaluation), 176
negative predictive values (NPVs),
124–25, 137, 142–44
neural networks
advantages of, 153
everyone of, 153
as multivariable analysis, 153, 155–58
problems shared with, 155–58
New England Journal of Medicine, 218
New Zealand, 37
NHS Centre for Reviews and
Dissemination, 183
nomograms, 31, 31
normal, 22

cultural desirability, 23
diagnostic definition of, 24
Gaussian definition of, 22
percentile, 22
risk factor definition, 23
therapeutic definition of, 24
notation, 208
NPVs see negative predictive values

obesity, 23
objectives
of diagnostic testing, 1, 3–7, 4, 5
of STARD, 171–72
observer(s)
biases, 1, 10
variability, 1, 10
“occurrence relation,” 48–50, 49
odds ratio (OR), 4, 5, 98, 121, 127
OLDMEDLINE, 1853–191b
OR See odds ratio
osteoarthritis, 98
outcome(s), 29
diagnostic and CART, 149
health, 37–38
posttest, 90–91, 91
of target disorders, reference standard,
42, 50–52, 51
in ultrasonography
abnormal, 78–79, 79
normal, 78–79, 79
variable, target disorders as primary
dependent or, 42, 48–50, 49
overemphasizing rare conditions, 243
pain, 9
PASCAL, 1853–191b
pathophysiological concepts, 42
patient(s), 6

changing roles of, 273, 279–80
characteristics of, 3, 49, 86
condition of, 3
diagnosis of, 85
health of, 54, 88
history of, 3, 21
population, 91–92
referral, selective of, 105
selection of, 29
status of, 90
patient, intervention, comparator, and
outcome (PICO), 101
pattern recognition, 240–41
PEG see percutaneous endoscopic
gastrostomy
percentiles, 22–23
percutaneous endoscopic gastrostomy
(PEG), 75
personal digital assistants (PDAs), 230–31
Phase I questions, 20, 25–27, 26
prospective identification of subjects
and, 46, 47–48
retrospective identification of subjects
and, 46, 47–48
Phase II questions, 20, 25, 27, 27–28, 29
prospective identification of subjects
and, 46, 47–48
retrospective identification of subjects
and, 46, 47–48
Phase III questions, 21, 25, 28–31, 30, 31
applicability of, 34–36, 35, 36
limits, 34
prospective identification of subjects
and, 46, 47–48
validity of, 32, 32–34
Phase IV questions, 21, 25, 37–38, 38
Phase V questions, 21, 25, 38–40, 39, 40
physical examination, 3, 21
physical fitness, 6
physician(s)
 assessment of, 83, 86
 experience and skills, 86
 management by, 14
PICO see patient, intervention,
 comparator, and outcome
placebo, 66, 66, 66–68
pneumonia, aspiration, 74, 74–75
population, 184
 clinical question and, 102–7, 103, 104,
 105, 106, 107, 110, 111
 indicated, 13
 study
 candidate, 55
 indicated, 55, 56
 intended, 55
 “intention to diagnose,” 43, 55–56, 56
 “intention to screen,” 43, 56
 intention to test, 43, 56
 “reference,” 22
 subgroups within, 112
 survey of total, 42, 46, 46–48
 variability of results within, 111
positive predictive values (PPVs),
 124–25, 137, 142–44
posterior probability, 4
 see also posttest probability
posttest outcomes, 90–91, 91
posttest probability, 4, 216
 basic determinant of, 50
 of disease, 124–25, 137, 142–44
 ESR and, 85, 85, 85–86
 see also Bayes’s theorem; negative
 predictive values; positive
 predictive values; posterior
 probability; predictive values
PPVs see positive predictive values
pragmatic criteria
 for cross-sectional studies, 52–55
 clinical follow-up in, 53
 independent expert panel and,
 52
 prognostic criterion for, 54–55
 standard shift and, 55
tailor-made reference standard
 protocol and, 53–54
predictive values, 4, 34
 calculation of, 72
 calibration, discrimination and, 98,
 100
 see also Bayes’s theorem; negative
 predictive values; positive
 predictive values; posterior
 probability; posttest probability
pregnancy, 6
pretest baseline, diagnostic before–after
 study and, 88–89
pretest probability, 30, 30–31
 assessments and ESR, 85, 85, 85–86
 of disease, 124–25, 137, 142–44
 estimates of, 215–16
 probability of target disorders and,
 50
 see also Bayes’s theorem
prevalence, 113, 114
primary care, 35, 35, 36
probability, 15
 distortions, 244–45
 estimation of
 of disease, 98
 errors in, 243–45
 “known,” 24
 prior, 10–11
 revision
 errors, 245–46
 fixedness in, 245–46
 values of outcomes and confounding,
 246
 see also posttest probability; pretest
 probability
problem solving, 238–39
 diagnostic decision making and
 clinical, 274–76
 categorization/pattern recognition
 and, 240–41
 conclusions on, 249–51
 educational implications for,
 248–49
 errors in hypothesis
 generation/restructuring and,
 241–42
 errors in probability estimation and,
 243–45
Index

problem solving (cont.)
errors in probability revision and, 245–46
as hypothesis selection, 238–39
hypothetico-deductive method and, 239–40
introduction to, 237–38
methodological guidelines for, 249–51
as opinion revision, 242–43
two-system theories of cognition and, 247–48
prognosis
assessment of, 3
of diseases, 2
prognostic value with intervention, 67, 67
prospective data collection, 46, 47–48
prospect theory (PT), 244
prostatic hyperplasia, benign, 52
proteomics, 171
pseudodiagnosticity, 246
psychiatric illnesses, 53
PsycINFO, 185b–191b
PT see prospect theory
PubMed, 182

QALY (quality adjusted life year), 276
QUADAS (Quality Assessment of Diagnostic Accuracy Studies), 3, 192, 193b, 282
quality adjusted life year see QALY
Quality Assessment of Diagnostic Accuracy Studies see QUADAS
quality-of-care research, 2

Radiology, 171
random disclosure principle, 71, 73–74, 74
random effects model, 200
randomized controlled trials (RCTs), 1, 12, 13, 21
achievement of, 84
diagnostic testing and, 94
alternative randomized designs and, 69–71, 70
comparison of test strategies and, 71, 71–76, 72, 73, 74, 76
conclusions on, 80
design choices for, 77, 77–78
measurement of, 64–69, 65, 66, 66, 67, 68, 69
practical issues regarding, 78–80, 79
prognostic impact of, 63–64
research on, 2
technical developments for, 42–43
principles of, 2
review of, 230
in test evaluation research, 63
RAS see Renal Artery Stenosis
Rational Clinical Examination, 215
RCTs see randomized controlled trials
receiver operating characteristic curve (ROC), 6, 98, 119
pooling of, 202–3
serum creatinine concentration, 128–30, 129, 130, 131
for tests, 106, 106
red eye, 219–20
reference standard, 21–22
accuracy of, 32–34
adverse effects of, 56, 57
errors in, 109
independent, 32, 32
invasiveness and risks of, 57
misclassification of, 102
outcome of target disorders, 42, 50–52, 51
possible problems, 51, 52
possible solutions for, 51, 52
principles of, 50–52, 51
procedures, application of, 42–43
prognostic, 280–81
protocol, tailor-made, 53–54
target conditions and, 101–2, 102, 109–10
timing of, 170
see also “gold standard”
referral filter, 104, 104–5, 105
reformulation, 241–42
regression line, 196–97
REMARK, 176
renal angiography, 119, 121
Renal Artery Stenosis (RAS)
Confidence Intervals tables for, 137, 138–40
detection of, 120, 203–5, 204b
diagnosis of, 123, 123
Index

120 in hypertension, 119–20, renography, 121, 123 representativeness, 244 reproducibility, 50 research designs, 11–16, research questions diagnostic before-after study and concluding remarks on, 93–94 diagnostic testing and, 89–90 example of, 84–86, general model of, 86, 86–88 limitations of, 87, 93 modified approaches to, 93 posttest outcome and, 90–91, 91 pretest baseline and, 88–89 sample analysis/size and, 92 selection of study subjects and, 91–92 time factor with, 91, 91 restructuring, 241–42 retrospective data collection, 46, 47–48 ROC see receiver operating characteristic curve sample(s) analysis, 92 size, 1, 57, 57–58, 151 estimation of, 43 requirements, 92 sampling direction of, 48 groups, 13 variability, 121, 122–23, 123 SCI see Science Citation Index Science Citation Index (SCI), 185b–191b search selection process with, 206 strategy for conducting systemic reviews of diagnostic accuracy studies, 182 terms, 182 selection biases, 1, 250–51 evaluation of, 4, 8–9 effects, 280 sensitivity, 9, 21, 118, 132 calculation of, 147, 161 combinations of, 195 data analysis of accuracy of diagnostic tests, 121, 121–22, 132, 133, determination of, 9 homogenous, 201 overestimation of, 222 tests, 3, 4, 5, 6 serum cholesterol, 23 serum creatinine concentration RAS and, 127–31, 128, 129, 130, 131 ROC and, 128–30, 129, 130, 131 values, 133, 133–34 serum hCG (human chorionic gonadotrophin), 106, 108 sex, 24 simple tree building, 160 calculations with, 148 characteristics of, 148 cut-points, indicators and, 148 example of, 149 imprecision and, 148 interactions and, 148 overview of, 147 problems shared with, 155–58 sinusitis, 52 small steps, 11 smoking, 24 Social Sciences Citation Index (SSCI), 185b–191b “soft” outcome measures, 1, 9 software, 136–37 specificity, 3, 4, 5, 6, 21, 118, 132, 161 calculation of, 147 combinations of, 195 in data analysis of accuracy of diagnostic tests, 121, 121–22 homogenous, 201 overestimation of, 222 study population and accuracy of diagnostic tests/ cross-sectional studies, 55–57, spectrum, 280 bias, 1, 222 evaluation of, 4, 8–9 characteristics, 50 of disease groups, 103–4 of nondisease groups, 103–4
Index

SROC (Summary ROC), 180, 208–9
curve, 201
estimated, 204b
SSCI see Social Sciences Citation Index
Standards for the Reporting of Diagnostic
accuracy studies see STARD
STARD (Standards for the Reporting of
Diagnostic accuracy studies), 2–3, 282
development of, 168, 171–72, 173–74, 175
objective of, 171–72
steering committee, 172, 173–74, 175
uptake of, 172–76
statistical models, 200
statistical pooling, 201–3
stenosis, 65–66, 66, 127, 128
strategy of evaluation, overview, 273–77
stroke, 65, 219–20, 224
duplex ultrasonography and, 66, 66, 66–68
intravenous anticoagulation and, 66, 66, 66–68
studies
case-control, 13
clinical, 4, 13–14
cohort, 13
cost-effectiveness, 2, 6, 11–12, 12
see also cross-sectional studies
Summary ROC see SROC
support theory, 244
systemic reviews, 273, 276–77
diagnostic, 1, 12, 14, 29
of diagnostic accuracy studies
databases for conducting, 182–83, 185b–191b
other, 207–8
of diagnostic accuracy studies, conducting, 180, 273
bivariate model for, 180, 209
comments on, 183–84
data analysis for, 195
data extraction for, 192, 194
data presentation for, 185b–191b, 203–5, 204b
discussion of, 205–6
documentation of, 183
heterogeneity for, 196–97, 198–200, 199b
HSROC model for, 209
introduction to, 181
literature search for, 181–82
methodological quality of, 184–94
notation and, 208
results of individual studies and, 195
retrieval of articles and inclusion
criteria in, 183–84
search and selection process with, 206
search strategy for, 182
SROC and, 180, 208–9
statistical pooling and, 201–3
threshold (cut-point) effect in, 197, 198b
usage of statistical models and, 200
target conditions, 101–2, 102, 109–10
target disorder(s)
“gold standard” of, 50
Phase I questions and, 20, 25–27, 26
Phase II questions and, 20, 25, 27, 27–28, 29
Phase III questions and, 21, 25, 28–31, 30, 31
pretest probability of, 50
as primary dependent or outcome
variable, 42, 48–50, 49
reference standard outcome of, 42, 50–52, 51
technologies see diagnostic technologies
tertiary care, 35, 35, 36
test(s), 1
application of, 89–90
based enrollment/cross-sectional
studies, 46, 46–47
blood, 5, 6, 10
calibration of, 98, 100, 106, 106–7
clinical impact of, 90–91, 93, 280
clinicochemical, 7
continuous
dichotomization of, 127–31, 128, 129, 129, 130, 131
trichotomization of, 127–31, 128, 129, 129, 130, 131
cutoff points, 5
Index

301

d-dimer, 104
development, 274, 275
dichotomous, 72, 72, 121, 127
evaluation of, 43, 168
research, 63
hazardous/invasive, 3
hematological, 7
Hosmer-Lemeshow goodness-of-fit, 224
incremental, 107–8, 110–11
less invasive, 3
liver function, 3
management and, 10
medical
main effects of, 64
prognostic impact of, 63–64
negatives, 105–6, 106
new
less expensive/invasive with fewer adverse side effects, 45, 45–46
more expensive/invasive, 45, 45–46
number of, 157, 167
ordering
changes in, 257–58, 259–60, 260, 262–70, 266
continuation and perpetuation of, 264
factors influencing, 258–59
guideline
development/implementation and, 259–62
implementation of, 262–64, 265–70, 266
improving, 256–57
introduction to, 257
performance of, 83
applicability and transferability of, 101–7, 102, 103, 104, 105, 106, 106, 107, 112–13
measures of, 98
reference, 184
replacement, 107–8, 110–11
reproducibility, 50
results
concordant, 72–73, 79
disclosure of, 89
discordant, 72–73, 73, 79
distribution of, 99
interpretation of, 89
multiple categories of, 107–8
thresholds between categories, 99
results and informative value of LR, 118
ROC for, 106, 106
selection of, 157–58
self-testing, 279–80
single, 45, 45, 57
diagnostic before-after study and, 83
evaluation of, 48–49
randomized designs for, 66, 66, 66–69, 67, 68, 69
triage, 45
as triage instrument, 75–76, 76
two or more, 49
types of, 11
urine, 7
value of, 3, 4
See also diagnostic tests
test accuracy, 32–33, 42, 50, 118
evaluation of, 273
transferability of, 96–97, 112–13
concluding remarks on, 114
discrimination and, 98, 100, 106, 106, 110
features that facilitate, 98–100, 99, 100
introduction to, 97–98
main assumptions in, 99, 99–100, 100
referral filter and, 104, 104–5, 105
true variability in, 98–108, 99, 100, 102, 103, 104, 105, 106, 106, 107
therapeutics, 3, 24
therapies, eradication, 76
threshold(s)
approach to diagnosis and Clinical Prediction Rules, 216–18, 217
between categories, 99
(cut-point) effect, 197, 198b
TIA see transient ischemic attack
transient ischemic attack (TIA), 65, 219–20
treatment(s)
effect
in all test categories, 66, 68
Index

treatment(s) (cont.)
in test abnormals, 67, 68
in test normals, 67, 68
evaluation of, 1
for LVD, 24
research, 1
Treeage-DATA, 137
Triage, 75
trichotomization, 127–31, 128, 129, 130, 131
Tuberculosis, 154–55
ultrasonography, 3, 5
duplex
accuracy of, 68, 69
acute strokes and, 66, 66–68
cervical bruit and, 68, 68
performance of, 65–66
prognostic value of, 66
outcomes in
abnormal, 78–79, 79
normal, 78–79, 79
unpublished or ongoing studies, 182
unstable angina, 65
urinary tract infection, 231
vaginal birth, after previous cesarean section, 219–20
validation
Clinical Prediction Rules, 223, 223–24
external, 43, 59, 96–117
variability
in diagnostic accuracy studies, 50, 96–117, 168–71
observer, 1, 10, 50
of results within population, 111
sampling, 121, 122–23, 123
true, 98–108, 99, 100, 102, 103, 104, 105, 106, 106, 107
venous thromboembolism, 104
virtual learning environment (VLEs), 231
Visual Bayes, 137
VLEs see virtual learning environment
weight loss/reduction, 5, 23
Wells, Philip, 34
women, 23
with breast cancer, 75
diagnosis of, 106
workup biases, 192
x-rays, 7–8, 10, 120