Contents

Preface xvii
List of Abbreviations xix
Notations xxi

1 Introduction 1
1.1 Engineering Background of Robust Control 1
1.2 Methodologies of Robust Control 4
 1.2.1 Small-Gain Approach 5
 1.2.2 Positive Real Method 5
 1.2.3 Lyapunov Method 6
 1.2.4 Robust Regional Pole Placement 6
 1.2.5 Gain Scheduling 7
1.3 A Brief History of Robust Control 8

2 Basics of Linear Algebra and Function Analysis 10
2.1 Trace, Determinant, Matrix Inverse, and Block Matrix 10
2.2 Elementary Linear Transformation of Matrix and Its Matrix Description 12
2.3 Linear Vector Space 14
 2.3.1 Linear Independence 15
 2.3.2 Dimension and Basis 16
 2.3.3 Coordinate Transformation 18
2.4 Norm and Inner Product of Vector 18
 2.4.1 Vector Norm 19
 2.4.2 Inner Product of Vector 20
2.5 Linear Subspace 22
 2.5.1 Subspace 22
3.3.2 Interior Point Method Based on Central Path
Exercises
Notes and References

4 Fundamentals of Linear System

4.1 Structural Properties of Dynamic System
- **4.1.1 Description of Linear System**
- **4.1.2 Dual System**
- **4.1.3 Controllability and Observability**
- **4.1.4 State Realization and Similarity Transformation**
- **4.1.5 Pole**
- **4.1.6 Zero**
- **4.1.7 Relative Degree and Infinity Zero**
- **4.1.8 Inverse System**
- **4.1.9 System Connections**

4.2 Stability
- **4.2.1 Bounded-Input Bounded-Output Stability**
- **4.2.2 Internal Stability**
- **4.2.3 Pole–Zero Cancellation**
- **4.2.4 Stabilizability and Detectability**

4.3 Lyapunov Equation
- **4.3.1 Controllability Gramian and Observability Gramian**
- **4.3.2 Balanced Realization**

4.4 Linear Fractional Transformation

5 System Performance

5.1 Test Signal
- **5.1.1 Reference Input**
- **5.1.2 Persistent Disturbance**
- **5.1.3 Characteristic of Test Signal**

5.2 Steady-State Response
- **5.2.1 Analysis on Closed-Loop Transfer Function**
- **5.2.2 Reference Tracking**
- **5.2.3 Disturbance Suppression**

5.3 Transient Response
- **5.3.1 Performance Criteria**
- **5.3.2 Prototype Second-Order System**
- **5.3.3 Impact of Additional Pole and Zero**
- **5.3.4 Overshoot and Undershoot**
- **5.3.5 Bandwidth and Fast Response**

5.4 Comparison of Open-Loop and Closed-Loop Controls
- **5.4.1 Reference Tracking**
- **5.4.2 Impact of Model Uncertainty**
- **5.4.3 Disturbance Suppression**
6 Stabilization of Linear Systems

6.1 State Feedback
- 6.1.1 Canonical Forms
- 6.1.2 Pole Placement of Single-Input Systems
- 6.1.3 Pole Placement of Multiple-Input Systems*
- 6.1.4 Principle of Pole Selection

6.2 Observer
- 6.2.1 Full-Order Observer
- 6.2.2 Minimal Order Observer

6.3 Combined System and Separation Principle
- 6.3.1 Full-Order Observer Case
- 6.3.2 Minimal Order Observer Case

Exercises
Notes and References

7 Parametrization of Stabilizing Controllers

7.1 Generalized Feedback Control System
- 7.1.1 Concept
- 7.1.2 Application Examples

7.2 Parametrization of Controllers
- 7.2.1 Stable Plant Case
- 7.2.2 General Case

7.3 Youla Parametrization

7.4 Structure of Closed-Loop System
- 7.4.1 Affine Structure in Controller Parameter
- 7.4.2 Affine Structure in Free Parameter

7.5 2-Degree-of-Freedom System
- 7.5.1 Structure of 2-Degree-of-Freedom Systems
- 7.5.2 Implementation of 2-Degree-of-Freedom Control

Exercises
Notes and References

8 Relation between Time Domain and Frequency Domain Properties

8.1 Parseval’s Theorem
- 8.1.1 Fourier Transform and Inverse Fourier Transform
- 8.1.2 Convolution
- 8.1.3 Parseval’s Theorem
- 8.1.4 Proof of Parseval’s Theorem

8.2 KYP Lemma
- 8.2.1 Application in Bounded Real Lemma
- 8.2.2 Application in Positive Real Lemma
- 8.2.3 Proof of KYP Lemma*
9 Algebraic Riccati Equation
9.1 Algorithm for Riccati Equation
9.2 Stabilizing Solution
9.3 Inner Function

Exercises
Notes and References

10 Performance Limitation of Feedback Control
10.1 Preliminaries
 10.1.1 Poisson Integral Formula
 10.1.2 All-Pass and Minimum-Phase Transfer Functions
10.2 Limitation on Achievable Closed-loop Transfer Function
 10.2.1 Interpolation Condition
 10.2.2 Analysis of Sensitivity Function
10.3 Integral Relation
 10.3.1 Bode Integral Relation on Sensitivity
 10.3.2 Bode Phase Formula
10.4 Limitation of Reference Tracking
 10.4.1 1-Degree-of-Freedom System
 10.4.2 2-Degree-of-Freedom System

Exercises
Notes and References

11 Model Uncertainty
11.1 Model Uncertainty: Examples
 11.1.1 Principle of Robust Control
 11.1.2 Category of Model Uncertainty
11.2 Plant Set with Dynamic Uncertainty
 11.2.1 Concrete Descriptions
 11.2.2 Modeling of Uncertainty Bound
11.3 Parametric System
 11.3.1 Polytopic Set of Parameter Vectors
 11.3.2 Matrix Polytope and Polytopic System
 11.3.3 Norm-Bounded Parametric System
 11.3.4 Separation of Parameter Uncertainties
11.4 Plant Set with Phase Information of Uncertainty
11.5 LPV Model and Nonlinear Systems
 11.5.1 LPV Model
 11.5.2 From Nonlinear System to LPV Model
11.6 Robust Stability and Robust Performance

Exercises
Notes and References
12 Robustness Analysis 1: Small-Gain Principle
12.1 Small-Gain Theorem
12.2 Robust Stability Criteria
12.3 Equivalence between \mathcal{H}_∞ Performance and Robust Stability
12.4 Analysis of Robust Performance
12.4.1 Sufficient Condition for Robust Performance
12.4.2 Introduction of Scaling
12.5 Stability Radius of Norm-Bounded Parametric Systems
Exercises
Notes and References

13 Robustness Analysis 2: Lyapunov Method
13.1 Overview of Lyapunov Stability Theory
13.1.1 Asymptotic Stability Condition
13.1.2 Condition for State Convergence Rate
13.2 Quadratic Stability
13.2.1 Condition for Quadratic Stability
13.2.2 Quadratic Stability Conditions for Polytopic Systems
13.2.3 Quadratic Stability Condition for Norm-Bounded Parametric Systems
13.3 Lur’e System
13.3.1 Circle Criterion
13.3.2 Popov Criterion
13.4 Passive Systems
Exercises
Notes and References

14 Robustness Analysis 3: IQC Approach
14.1 Concept of IQC
14.2 IQC Theorem
14.3 Applications of IQC
14.4 Proof of IQC Theorem*
Notes and References

15 \mathcal{H}_2 Control
15.1 \mathcal{H}_2 Norm of Transfer Function
15.1.1 Relation with Input and Output
15.1.2 Relation between Weighting Function and Dynamics of Disturbance/Noise
15.1.3 Computing Methods
15.1.4 Condition for $\|G\|_2 < \gamma$
15.2 \mathcal{H}_2 Control Problem
15.3 Solution to Nonsingular \mathcal{H}_2 Control Problem
15.4 Proof of Nonsingular Solution
15.4.1 Preliminaries
15.4.2 Proof of Theorems 15.1 and 15.2
15.5 Singular \mathcal{H}_2 Control

xii
15.6 Case Study: \mathcal{H}_2 Control of an RTP System 337
 15.6.1 Model of RTP 337
 15.6.2 Optimal Configuration of Lamps 340
 15.6.3 Location of Sensors 340
 15.6.4 \mathcal{H}_2 Control Design 340
 15.6.5 Simulation Results 341
Exercises 342
Notes and References 345

16 \mathcal{H}_∞ Control 346
 16.1 Control Problem and \mathcal{H}_∞ Norm 346
 16.1.1 Input–Output Relation of Transfer Matrix’s \mathcal{H}_∞ Norm 346
 16.1.2 Disturbance Control and Weighting Function 347
 16.2 \mathcal{H}_∞ Control Problem 348
 16.3 LMI Solution 1: Variable Elimination 349
 16.3.1 Proof of Theorem 16.1 350
 16.3.2 Computation of Controller 351
 16.4 LMI Solution 2: Variable Change 351
 16.5 Design of Generalized Plant and Weighting Function 352
 16.5.1 Principle for Selection of Generalized Plant 352
 16.5.2 Selection of Weighting Function 353
 16.6 Case Study 354
 16.7 Scaled \mathcal{H}_∞ Control 355
Exercises 358
Notes and References 359

17 μ Synthesis 360
 17.1 Introduction to μ 360
 17.1.1 Robust Problems with Multiple Uncertainties 360
 17.1.2 Robust Performance Problem 363
 17.2 Definition of μ and Its Implication 364
 17.3 Properties of μ 365
 17.3.1 Special Cases 365
 17.3.2 Bounds of $\mu(M)$ 366
 17.4 Condition for Robust \mathcal{H}_∞ Performance 368
 17.5 D–K Iteration Design 369
 17.5.1 Convexity of the Minimization of the Largest Singular Value 370
 17.5.2 Procedure of D–K Iteration Design 370
 17.6 Case Study 371
Exercises 373
Notes and References 374

18 Robust Control of Parametric Systems 375
 18.1 Quadratic Stabilization of Polytopic Systems 375
 18.1.1 State Feedback 375
 18.1.2 Output Feedback 376
18.2 Quadratic Stabilization of Norm-Bounded Parametric Systems
18.3 Robust H_∞ Control Design of Polytopic Systems
18.4 Robust H_∞ Control Design of Norm-Bounded Parametric Systems
Exercises

19 Regional Pole Placement
19.1 Convex Region and Its Characterization
 19.1.1 Relationship between Control Performance and Pole Location
 19.1.2 LMI Region and Its Characterization
19.2 Condition for Regional Pole Placement
19.3 Composite LMI Region
19.4 Feedback Controller Design
 19.4.1 Design Method
 19.4.2 Design Example: Mass–Spring–Damper System
19.5 Analysis of Robust Pole Placement
 19.5.1 Polytopic System
 19.5.2 Norm-Bounded Parametric System
19.6 Robust Design of Regional Pole Placement
 19.6.1 On Polytopic Systems
 19.6.2 Design for Norm-Bounded Parametric System
 19.6.3 Robust Design Example: Mass–Spring–Damper System
Exercises
Notes and References

20 Gain-Scheduled Control
20.1 General Structure
20.2 LFT-Type Parametric Model
 20.2.1 Gain-Scheduled H_∞ Control Design with Scaling
 20.2.2 Computation of Controller
20.3 Case Study: Stabilization of a Unicycle Robot
 20.3.1 Structure and Model
 20.3.2 Control Design
 20.3.3 Experiment Results
20.4 Affine LPV Model
 20.4.1 Easy-to-Design Structure of Gain-Scheduled Controller
 20.4.2 Robust Multiobjective Control of Affine Systems
20.5 Case Study: Transient Stabilization of a Power System
 20.5.1 LPV Model
 20.5.2 Multiobjective Design
 20.5.3 Simulation Results
 20.5.4 Robustness
 20.5.5 Comparison with PSS
Exercises
Notes and References
21 Positive Real Method

21.1 Structure of Uncertain Closed-Loop System 436
21.2 Robust Stabilization Based on Strongly Positive Realness 438
 21.2.1 Variable Change 439
 21.2.2 Variable Elimination 440
21.3 Robust Stabilization Based on Strictly Positive Realness 441
21.4 Robust Performance Design for Systems with Positive Real Uncertainty 442
21.5 Case Study 445
 Exercises 448
 Notes and References 449

References 450

Index 455

The sections and chapters marked by * require relatively high level mathematics and may be skipped in the first reading, which does not affect the understanding of the main body.