CONTENTS

CONTRIBUTORS
Alexander Alex, C. John Harris and Dennis A. Smith
References, 4

1 Attrition in Drug Discovery and Development
Scott Boyer, Clive Brealey and Andrew M. Davis
1.1 “The Graph”, 5
1.2 The Sources of Attrition, 7
1.3 Phase II Attrition, 9
1.3.1 Target Engagement, 11
1.3.2 Clinical Trial Design, 11
1.4 Phase III Attrition, 12
1.4.1 Safety Attrition in Phase III, 14
1.5 Regulation and Attrition, 17
1.6 Attrition in Phase IV, 19
1.7 First in Class, Best in Class, and the Role of the Payer, 32
1.8 Portfolio Attrition, 34
1.9 “Avoiding” Attrition, 36
1.9.1 Drug Combinations and New Formulations, 36
1.9.2 Biologics versus Small Molecules, 37
1.9.3 Small-Molecule Compound Quality, 38
1.10 Good Attrition versus Bad Attrition, 39
1.11 Summary, 40
References, 42
2 Compound Attrition at the Preclinical Phase

Cornelis E.C.A. Hop

2.1 Introduction: Attrition in Drug Discovery and Development, 46
2.2 Target Identification, HTS, and Lead Optimization, 50
2.3 Resurgence of Covalent Inhibitors, 55
2.4 In Silico Models to Enhance Lead Optimization, 56
2.5 Structure-Based and Property-Based Compound Design in Lead Optimization, 59
 2.5.1 Risks Associated with Operating in Nondrug-Like Space, 62
2.6 Attrition Due to ADME Reasons, 64
 2.6.1 Metabolism, Bioactivation, and Attrition, 68
 2.6.2 PK/PD Modeling in Drug Discovery to Reduce Attrition, 69
 2.6.3 Human PK Prediction Uncertainties, 70
2.7 Attrition Due to Toxicity Reasons, 72
2.8 Corporate Culture and Nonscientific Reasons for Attrition, 75
2.9 Summary, 76
References, 76

3 Attrition in Phase I

Dennis A. Smith and Thomas A. Baillie

3.1 Introduction, 83
3.2 Attrition in Phase I Studies and Paucity of Published Information, 84
3.3 Drug Attrition in not FIH Phase I Studies, 85
3.4 Attrition in FIH Studies Due to PK, 86
 3.4.1 Attrition due to Pharmacogenetic Factors, 88
3.5 Attenuation of PK failure, 90
 3.5.1 Preclinical Methods (In Vivo), 90
 3.5.2 Preclinical Methods (In Vitro), 91
 3.5.3 Phase 0, Microdose Studies in Humans, 92
 3.5.4 Responding to Unfavorable PK Characteristics, 94
3.6 Phase I Oncology Studies, 95
3.7 Toleration and Attrition in Phase I Studies, 97
 3.7.1 Improving the Hepatic Toleration of Compounds, 98
 3.7.2 Rare Severe Toxicity in Phase I Studies, 98
3.8 Target Occupancy and Go/No-Go Decisions to Phase II Start, 99
3.9 Conclusions, 102
References, 102

4 Compound Attrition in Phase II/III

Alexander Alex, C. John Harris, Wilma W. Keighley and Dennis A. Smith

4.1 Introduction, 106
4.2 Attrition Rates: How Have they Changed?, 107
4.3 Why do Drugs Fail in Phase II/III? Lack of Efficacy or Marginal Efficacy Leading to Likely Commercial Failure, 108
4.4 Toxicity, 111
4.5 Organizational Culture, 112
4.6 Case Studies for Phase II/III Attrition, 112
 4.6.1 Torcetrapib, 112
 4.6.2 Dalcetrapib, 113
 4.6.3 Onartuzumab, 114
 4.6.4 Bapineuzumab, 115
 4.6.5 Gantenerumab, 115
 4.6.6 Solanezumab, 116
 4.6.7 Pomaglumetad Methionil (LY-2140023), 116
 4.6.8 Dimebon (Latrepirdine), 117
 4.6.9 BMS-986094, 117
 4.6.10 TC-5214 (S-Mecamylamine), 118
 4.6.11 Olaparib, 118
 4.6.12 Tenidap, 119
 4.6.13 NNC0109-0012 (RA), 120
 4.6.14 Omapatrilat, 120
 4.6.15 Ximelagatran, 121
4.7 Summary and Conclusions, 122
References, 123

5 Postmarketing Attrition 128

Dennis A. Smith

5.1 Introduction, 128
5.2 On-Target Pharmacology-Flawed Mechanism, 130
 5.2.1 Alosetron, 130
 5.2.2 Cerivastatin, 130
 5.2.3 Tegaserod, 133
5.3 Off-Target Pharmacology, Known Receptor:
 An Issue of Selectivity, 135
 5.3.1 Fenfluramine and Dexfenfluramine, 135
 5.3.2 Rapacuronium, 136
 5.3.3 Astemizole, Cisapride, Grepafloxacin, and Thioridazine, 138
5.4 Off-Target Pharmacology, Unknown Receptor: Idiosyncratic
 Toxicology, 142
 5.4.1 Benoxaprofen, 142
 5.4.2 Bromfenac, 142
 5.4.3 Nomifensine, 143
 5.4.4 Pemoline, 144
 5.4.5 Remoxipride, 144
 5.4.6 Temafloxacin, 145
 5.4.7 Tienilic acid, 145
 5.4.8 Troglitazone, 146
 5.4.9 Tolcapone, 146
 5.4.10 Trovafloxacin, 147
 5.4.11 Valdecoxib, 148
 5.4.12 Zomepirac, 148
5.5 Conclusions, 150
References, 151
6 Influence of the Regulatory Environment on Attrition
Robert T. Clay
6.1 Introduction, 158
6.1.1 How the Regulatory Environment has Changed Over the Last Two Decades, 159
6.1.2 Past and Current Regulatory Attitude to Risk Analysis and Risk Management, 161
6.2 Discussion, 162
6.2.1 What Stops Market Approval?, 162
6.2.2 Impact of Black Box Warnings, 166
6.2.3 Importance and Impact of Pharmacovigilance, 167
6.2.4 Prospects of Market Withdrawals for New Drugs, 168
6.2.5 What are the Challenges for the Industry Given the Current Regulatory Environment?, 173
6.2.6 Future Challenges for Both Regulators and the Pharmaceutical Industry, 174
6.3 Conclusion, 175
References, 176

7 Experimental Screening Strategies to Reduce Attrition Risk
Marie-Claire Peakman, Matthew Troutman, Rosalia Gonzales and Anne Schmidt
7.1 Introduction, 180
7.2 Screening Strategies in Hit Identification, 183
7.2.1 Screening Strategies and Biology Space, 183
7.2.2 Screening Strategies and Chemical Space, 187
7.2.3 High-Throughput Screening Technologies, 191
7.2.4 Future Directions for High-Throughput Screening, 194
7.3 Screening Strategies in Hit Validation and Lead Optimization, 194
7.4 Screening Strategies for Optimizing PK and Safety, 197
7.4.1 High-Throughput Optimization of PK/ADME Profiles, 198
7.4.2 Early Safety Profiling, 202
7.4.3 Future Directions for ADME and Safety in Lead Optimization, 204
7.5 Summary, 205
References, 206

8 Medicinal Chemistry Strategies to Prevent Compound Attrition
J. Richard Morphy
8.1 Introduction, 215
8.2 Picking the Right Target, 216
8.3 Finding Starting Compounds, 216
8.4 Compound Optimization, 218
8.4.1 Drug-Like Compounds, 218
8.4.2 Structure-Based Drug Design, 219
8.4.3 The Thermodynamics and Kinetics of Compound Optimization, 220
9 Influence of Phenotypic and Target-Based Screening Strategies on Compound Attrition and Project Choice 229
Andrew Bell, Wolfgang Fecke and Christine Williams
9.1 Drug Discovery Approaches: A Historical Perspective 229
9.1.1 Phenotypic Screening, 229
9.1.2 Target-Based Screening, 230
9.1.3 Recent Changes in Drug Discovery Approaches, 231
9.2 Current Phenotypic Screens, 233
9.2.1 Definition of Phenotypic Screening, 233
9.2.2 Recent Anti-infective Projects, 233
9.2.3 Recent CNS Projects, 235
9.3 Current Targeted Screening, 237
9.3.1 Definition of Targeted Screening, 237
9.3.2 Recent Anti-infective Projects, 237
9.3.3 Recent CNS Projects, 239
9.4 Potential Attrition Factors, 241
9.4.1 Technical Doability and Hit Identification, 241
9.4.2 Compound SAR and Properties, 246
9.4.3 Safety, 248
9.4.4 Translation to the Clinic, 250
9.5 Summary and Future Directions, 252
9.5.1 Summary of Impact of Current Approaches, 252
9.5.2 Future Directions, 254
9.5.3 Conclusion, 255
References, 255

10 In Silico Approaches to Address Compound Attrition 264
Peter Gedeck, Christian Kramer and Richard Lewis
10.1 In Silico Models Help to Alleviate the Process of Finding Both Safe and Efficacious Drugs, 264
10.2 Use of In Silico Approaches to Reduce Attrition Risk at the Discovery Stage, 265
10.3 Ligand-Based and Structure-Based Models, 265
10.4 Data Quality, 268
10.5 Predicting Model Errors, 270
10.6 Molecular Properties and their Impact on Attrition, 272
10.7 Modeling of ADME Properties and their Impact of Reducing Attrition in the Last Two Decades, 275
10.8 Approaches to Modeling of Tox, 276
10.9 Modeling PK and PD and Dose Prediction, 276
10.10 Novel In Silico Approaches to Reduce Attrition Risk, 278
10.11 Conclusions, 280
References, 280
11 Current and Future Strategies for Improving Drug Discovery Efficiency 287
 Peter Mbugua Njogu and Kelly Chibale

11.1 General Introduction, 287

11.2 Scope, 288

11.3 Neglected Diseases, 289
 11.3.1 Introduction, 289
 11.3.2 Control of NTDs, 290
 11.3.3 Drug Discovery Potential of Neglected Diseases, 290

11.4 Precompetitive Drug Discovery, 292
 11.4.1 Introduction, 292
 11.4.2 Virtual Discovery Organizations, 293
 11.4.3 Collaborations with Academic Laboratories, 295
 11.4.4 CoE and Incubators, 296
 11.4.5 Screening Data and Compound File Sharing, 297

11.5 Exploitation of Genomics, 297
 11.5.1 Introduction, 297
 11.5.2 Target Identification and Validation, 298
 11.5.3 Target-Based Drug Discovery, 298
 11.5.4 Phenotypic Whole-Cell Screening, 301
 11.5.5 Individualized Therapy and Therapies for Special Patient Populations, 302

11.6 Outsourcing Strategies, 304
 11.6.1 Introduction, 304
 11.6.2 Research Contracting in Drug Discovery, 305

11.7 Multitarget Drug Design and Discovery, 305
 11.7.1 Introduction, 305
 11.7.2 Rationale for Multitargeted Drugs, 306
 11.7.3 Designed Multitarget Compounds for Neglected Diseases, 307

11.8 Drug Repositioning and Repurposing, 315
 11.8.1 Introduction, 315
 11.8.2 Cell Biology Approach, 317
 11.8.3 Exploitation of Genome Information, 318
 11.8.4 Compound Screening Studies, 318
 11.8.5 Exploitation of Coinfection Drug Efficacy, 318
 11.8.6 In Silico Computational Technologies, 319

11.9 Future Outlook, 319
References, 319

12 Impact of Investment Strategies, Organizational Structure and Corporate Environment on Attrition, and Future Investment Strategies to Reduce Attrition 329
 Geoff Lawton

12.1 Attrition, 329
12.2 Costs, 331
 12.2.1 The Costs of Creating a New Medicine, 331
 12.2.2 The Costs of Not Creating a New Medicine, 332
12.3 Investment Strategies, 334
 12.3.1 RoI, 334
 12.3.2 Investment in a Portfolio of R&D Projects, 335
 12.3.3 Asset-Centered Investment, 335
 12.3.4 Sources of Funds, 336

12.4 Business Models, 337
 12.4.1 FIPCO, 337
 12.4.2 Fully Integrated Pharmaceutical Network (FIPNET), 338
 12.4.3 Venture-Funded Biotech, 339
 12.4.4 Fee-for-Service CRO, 339
 12.4.5 Hybrids, 339
 12.4.6 Academic Institute, 340
 12.4.7 Social Enterprise, 341

12.5 Portfolio Management, 341
 12.5.1 Portfolio Construction, 341
 12.5.2 Project Progression, 343
 12.5.3 The Risk Transition Point, 343

12.6 People, 344
 12.6.1 Motivation, 344
 12.6.2 Culture and Leadership, 344
 12.6.3 Sustainability, 344

12.7 Future, 345
 12.7.1 Business Structures, 345
 12.7.2 Skilled Practitioners, 347
 12.7.3 Partnerships, 348
 12.7.4 A Personal View of the Future, 349

References, 351