Index

A
 Academic rationalism orientation, 21
 Accountability standards, 24; described, 24; frustration with, 199; mechanisms used for, 199
 Achievement tests, 10. See also High-stakes standardized tests; Student achievement
 ACT, 9
 Affect/dispositional learning targets, 34–35fig, 36e
 Airasian, P., 4
 Alibrandi, M., 181
 Allan, S. D., 144
 Alternative Grading Process, 108e
 Alternative (nontraditional) assessments, 4
 Ames, C., 162, 163
 Analytical rubric: described, 96–97, 99; elementary performance assessments in math, 98t; for practice on narrative essay, 97t. See also Holistic rubric
 Anderman, E. M., 162
 Anderson, L., 4, 79, 138
 Anecdotal data, 120–121e
 Apple, M. W., 20
 Aptitude tests, 9–10
 Archbald, D. A., 199, 201, 205, 206, 207
 Arter, J. A., 106, 134
 ASCD Yearbook, 189
 Ascher, C., 199, 201, 205, 207
 Assessment Beliefs and Practices, 133t
 Assessment. See Classroom assessment
 Assessment tasks. See Classroom assessment tasks
 Assignments: distributions and trends of, 122–124, 123fig; patterns observed in quarter work, 123fig; teacher inferences and action plan based on, 124t
 Authentic assessment, 6

B
 “Back to basics” movements, 21
 Back to School Night experience, 10–11
 Bailey, J., 179, 188, 189, 190, 192
 Bakken, J., 137
 Beaker with big rocks demonstration, 15–16fig
 Beard, J. G., 10, 206
 Behavior-learning targets, 136t, 137–138
 Benchmarks: assessment using, 17; definition of, 23; establishment of, 23–25; used for high school world geography study, 32. See also Learning targets
 Best-work portfolios, 66–67, 70
 Besvinick, S. L., 20
 Black, P., 141, 142, 143, 210
 Bloom, B., 138
 Bodies of evidence, 118–119. See also Data
 Bond, L. A., 9, 206
Boud, D., 156
Brandt, R., 165
Brewer, W. R., 157
Bridges, E. M., 154
Brigham, E. J., 137
Briscoe, C., 148
Bronstein, P., 162
Brookhart, S., 178, 188, 189
Brophy, J., 161, 162
Bruner, J., 37
Burke, K., 54
Busick, K., 184, 192
Butler, K., 68
Butler, R., 162
Butler, S. M., 10, 70, 71, 135, 150, 151

C
Campbell, B., 155
Canady, R. L., 180, 182, 184
Cannell, J. J., 200
Cannon, J., 86e, 87
Carpenter, S., 202
Carter, Coach, 60–61
Cavallo, A.M.L., 167
Chappius, J., 134
Chappius, S., 134
Cheating, 186
Checklists: Grading Practices That Support Learning, 187e; Panel Discussion, 61–62e; rubrics, 99–100e, 101r
Choral-reading exercises, 137–138
Clarkson, X., 74

Classroom assessment: comparing evaluation and, 2–3; Critique of the Assessment Environment survey on, 172–173r; definition of, 2, 78; examples traversing grade levels, 37e–41e; formative, 3, 195e–196; guides for scoring, 93–110; high-stakes standardized testing versus, 212r; language of, 3–11; to motivate students, 159–174, 183–184; PBL (problem-based learning) role in, 156–157; purposes of, 2–3; samples of elementary, 7e; self-checklist on promoting learning through, 134e; shaping learning with, 159; summative, 3, 100e, 188–189, 195e–196; value of different types of, 1

Classroom Assessment Cycle: beaker with big rocks scenario, 15–16fig; goals of, 166; integrating instruction with, 46; learning targets, 16–25; outside factors that affect the, 132; planning for, 15–16; revising feedback/instructional plans, 131–157; tracking and analyzing results, 113–127; unpacking learning targets, 25–30; using assessment to motivate students, 159–174

Classroom assessment information: anecdotal data (observational data), 47–48, 120–121e; assignment distributions and trends, 122–124r, 123fig; data analysis of, 113–115, 114fig; examining cumulative, 117–118; examining individual student, 115–117; grade distributions, 121–122fig; on trends in performance, 118–120. See also Grades; Information; Rubrics

Classroom assessment language: authentic assessment, 6; performance and product assessments methods, 5–6; quality assessment, 6–7; relevance, reliability, and validity, 10–11; selected versus constructed response, 4–5; tests, 7

Classroom assessment methods: classroom activities versus, 6; classroom assessment tasks, 77–91e; constructed response, 4–5, 46–47; definition of, 78; instruction that fails to prepare for, 183; logs, journals, and notebooks, 63–66; performance, 5, 59–62e; portfolios, 66–74; product, 5, 51–59r; projects, 74–76

Classroom assessment portfolios: assessment data from, 125; assessment utility of, 68, 70–71; design questions for using, 72–74; five types of, 66–68fig, 69fig; growth, 67, 68fig, 70, 118–119; issues involved in use of, 71–72; planning purpose, design, and assessment of, 71; purposeful definition of, 66

Classroom assessment tasks: characteristics of quality, 85–89; definition of, 78; designing quality, 79;
example of, 164e–165; grades derived from, 188; graphing activity worksheet, 91e; graphs for student interpretation, 90e; learning targets matched to, 79–80e, 81; planning template for, 81, 82e–83e, 84e–85; questioning guide for designing, 86e–88; scenario of, 77–78; scoring, 93–110; text-based assessment discourse groups, 84e

Classroom environment/climate: differentiated, 144–146; enhancing student motivation, 170, 172; feedback as part of, 143–144; impact on learning, 132; learner centered, 147–149; PBL (problem-based learning), 154–157, 155fig

Classroom Motivation Survey, 171t–172

Cochran-Smith, M., 211, 212

Cognitive apprenticeship teaching, 148–149

Cognitive learning target, 136t, 138

Commission on Instructionally Supportive Assessment, 202

Competencies: described, 25; goals of, 26–27

Concept map, 54fig

Constructed response assessments: comparison of selected and, 55fig; described, 4; manifested as products and performances, 51–52; when to use, 46–47

Constructivism, 21

Conventional classroom tests, 8

Cordeiro, P., 155

Corrigan, R. A., 18

Covington, M. V., 162

Criterion-referenced tests, 8–9

Critical thinking skills, 20

Critique of the Assessment Environment survey, 172–173t

Cruikshank, K., 4

Curriculum: comparison between new and traditional, 24t; definition of, 17; global transitions and changes in, 18r–20; hierarchy within North Carolina biology, 28r; learning targets and, 17; local level of changes, 22–23; orientations of, 21–22; standards-based, 21, 23–25, 41–42; understanding changing, 17–21; world geography, 32–34. See also Instructional strategies

Curriculum orientations, 21–22

D

Darling-Hammond, L., 199, 201, 205, 207

Data: anecdotal (observational), 120–121e; bodies of evidence, 118–119; creating valid inferences from multiple sources of, 124–127e; grade, 107–108e, 121–122fig; student assignment, 122–124t, 123fig

Data analysis: gathering student achievement data and, 113–115; process of, 114fig. See also Classroom assessment information

Davey, L., 207

Debate Self-Assessment Form, 61t

The Dentist: An Assessment Story, 197–198

Derived percentage scores, 203t

Diagnostic assessment, 3

Differentiated instruction, 144–146

Direct instructional model, 136

Discourse groups, 84e

Discussion Matrix, 48t

Dispositional/affect learning targets, 34–35fig, 36e

Drake, L. D., 132

Dunnivant, M., 29

E

Educational theories, 146–147

Edwards, C. H., 184, 185, 186

Edwards, L., 184, 185, 186

Eisner, E. W., 21

Electronic data usage, 125–126

Elizabeth City-Pasquotank School District (North Carolina), 209

Elliot, E. C., 178, 179

Ellis, A., 37

Emancipatory interests, 152–153

Evaluation, 2–3

Ewell, P. T., 137

Extrinsic motivation, 161–162
Feedback: characteristics of effective, 142–143; cognitive apprenticeship teaching use of, 148–149; differentiated instruction response to, 144–146; instruction improved by good, 141fig–144; instructional strategies promoting, 135
“Feedback spiral,” 157
Feldman, A., 181
Fisher, D., 170
Florida competency exam, 10
Florida Department of Education (FDOE), 70, 71
Florida’s Sunshine State Standards, 24
Flowcharts: for problem-based learning, 155fig; types of, 54, 55fig–56fig
Formative assessment, 3, 195e–196
Forster, G., 202
Foundation for Advancements in Science & Education, 65
Fraser, B., 170
Friedman, S. J., 186, 189
Frisbie, D. A., 190, 191
Grading practices: characteristics of productive, 186–187e, 188–193, 192t; comparison of traditional and new, 179–180t; examining current, 194e; history of, 178–180; negative effects of counterproductive, 180–186; organizing gradebook to support productive, 193–194e, 195e–196. See also Teaching best practices
Grading practices (counterproductive): 1: different grading scales, 180–181; 2: averaging to figure final grades, 181; 3: averages that include scores of zero, 182; 4: testing before teaching, 182; 5: instructional activities failing to prepare for assessment type, 183
Grading practices (productive): applied to science measurement unit of study, 192t; checklist of practices supporting learning, 187e; derived from assessment tasks, 188; gradebook organization supporting, 193–194e, 195e–196; grades figured from summative assessments, 188–189; grades tied to achievement of standards, 186, 188; not overly penalizing for missing work, 189; reflecting student’s current achievement level, 190–193; sharing grading policies with students/parents, 189–190; standardized grading policies, 190
Graphic organizers, 54
Graphing Activity Worksheet, 91e
Graphs: for student interpretation of assessment tasks, 90; types of, 56–57; used as assessment task, 78
Greene, J. P., 202
Growth portfolio, 67, 68 fig, 70, 118–119
Grundy, S., 149, 150, 152, 153
Guide to President Bush’s FY 2006 Education Agenda Website, 201
Guild, P. B., 146, 147, 151, 154
Guillot, M., 113
Guskey, T. R., 178, 179, 185, 188, 189, 190, 191, 192

H
Hallinger, P., 154
Haney, W., 199, 200, 201
Hardin, B., 209
Health Occupations Curriculum (North Carolina), 24
Hierarchy of needs theory (Maslow), 165
High-stakes standardized tests: advantages of, 199–200; classroom assessment versus, 212; criticisms of large-scale, 202; The Dentist scenario on unfair, 197–198; described, 7–8; “gambling” terminology of, 212; historic development of, 178; issues in reporting scores, 202–208; learning affected by strategies for using, 208–212; primary advantage of using, 199–200; purposes behind large-scale, 200–202. See also Achievement tests; Tests
Holistic rubric: checklist to provide feedback on, 99–100; described, 96–97, 99; sample holistic writing, 99. See also Analytical rubric
Holman, J., 148
Hotchkiss, P. R., 180, 182, 184
Howe, R. W., 18, 19, 20

I
ID, Research Group, 132
Information: exponential expansion of, 18–19; global shifts in, 17–18. See also Classroom assessment information
Information society, 19
Inhelder, B., 167
Instructional strategies: for application/process learning target, 136; 138, 140–141; for behavior learning target, 136; 137–138; cognitive apprenticeship teaching, 148–149; for cognitive learning target, 136; 138, 191; considering “learning criteria” in, 191; differentiated, 144–146; direct instructional model, 136; enhancing student motivation, 166–169; identifying and using effective, 135–136; issues in aligning grades and, 182; Question Quilt example of, 138, 139; scientific learning cycle used as, 167–170; Seminary Plan example of, 140; 141; 142; summary of, 136; that fail to prepare for assessment method, 183. See also Curriculum; Teaching best practices
Intrinsic motivation, 162
IQ (intelligence test), 9
IRC (individual reading conference), 45, 121; 144–145
IRC-Teacher Notes, 145

J
Jailall, J., 21, 22, 24
Johnson, M., 152
Jones, B., 209
Jones, G., 209
Journal of Teacher Education, 211
Journals: described, 64; establishing guidelines for, 65; math, 65; scoring rubric for, 106
Joyner, J., 37, 38, 39, 40, 41, 91, 98, 105

K
Kallick, B., 157
Kendall, J. S., 23, 25, 27
Kindergarten assessment example, 37
Kirschenbaum, H., 178
Knowledge learning targets, 32, 36
Kohn, A., 160, 162, 166, 185, 186, 199, 200, 205, 207, 208
Krathwohl, D., 4
Krieger, J., 19, 20
Kropf, A., 181

L
Lacy, M. J., 132
Lakoff, G., 152
Lawson, T., 61
Lazarus, M., 10, 201
Learner-centered environment, 147–149
Learning: checklist of grading practices supporting, 187e; cycle of scientific, 167–169e, 168fig; grades as undermining process of, 185; high-stakes testing strategies affecting, 208–212; impact of classroom environment on, 132; PBL (problem-based), 154–157, 155fig; self-checklist on promoting assessment for, 134e; shaping through assessment, 159; whole person, 154–157
Learning Activity sheets, 71
Learning criteria issues, 91
Learning Takes Place, 141fig
Learning targets: assessment tasks matched to, 79–80t, 81; curricular hierarchy for world geography strand, 35fig; curriculum, 17; disposition/affect, 34–35, 36e; example of oral fluency, 28–29t; importance of setting, 16–17; instructional strategies to fit particular, 135–141, 191; knowledge and understanding, 32, 36e; national standards used as, 26–28r; perimeter question, 29–30fig; product development, 34, 36e; reasoning, 32–33, 36e; to set student expectations, 31–36e; skill, 33, 36e; summary of types, 36e; understanding changing curriculum for, 17–21. See also Benchmarks
Learning teams, 165
Lehmann, I. J., 9, 201, 203, 204
Lewin, L., 75, 76
Likert scale report card, 70
Logs: described, 63–64; example of reading, 64e
Long, D., 70, 74
Lutz, M. V., 19

M
Madaus, G., 199, 200, 201
Madison, D., 140
Machr, M. L., 162
Marek, E. A., 167
Marshall, P., 151
Marx, G., 18, 20, 21
Marzano, R. J., 23, 25, 27, 32, 135, 147, 189, 190
Maslow, A., 165
Maslow’s hierarchy of needs, 165
Mastropieri, M. A., 137
Math journals, 65
Matrix: discussion, 48r; of planet characteristics, 59r
Mayer, R., 4
McCloskey, W., 47, 166, 167, 170, 172, 184, 192, 208, 209, 210
McMillan, J. H., 182, 189
McMunn, N., 2, 27, 28, 29, 37, 38, 39, 40, 41, 48, 50, 86, 91, 98, 105, 208, 209, 210
McNeil, L. M., 206, 207
McTighe, J., 32, 106
Meece, J., 166, 167, 170, 172
Mehrens, W. A., 9, 201, 203, 204
Memorabilia portfolios, 67, 70
Merrill, M. D., 132
Metaphors (teaching), 150–151, 152e
Middleton, W., 155, 178, 179
Minority students, 206
Mnemonic devices, 137
Multiple Intelligences theory, 179

N
Napier, R., 178
A Nation at Risk (1983), 199
National Association for Research in Science Teaching, 170
National Center for History in Schools History Standard Project (Kendall and Marzano), 25
National Council of Teachers of Mathematics (NCTM), 202
National Science Education Standards (NRC), 26
NCDPI (North Carolina Department of Public Instruction), 26, 27, 32, 60, 116
NCLB (No Child Left Behind), 208
Newmann, F. M., 199, 201, 205, 206, 207
Newsweek, 60
Nitko, A. J., 189, 190
Norm-referenced test, 8–9
North Carolina’s Health Occupations Curriculum, 24
Notebooks, 65–66
NRC (National Research Council), 26
O
Observations (teacher), 47–48, 120e–121e
O’Connor, K., 179, 180, 186, 188, 189, 190, 192
Ohanian, S., 206
“Organizational folders,” 125
O’Sullivan, R., 47
Other category-learning targets, 136t, 141
P
Parent Press (magazine), 113, 114, 115, 124
Parents, 189–190
“Partial Degradation of a Six-Carbon Sugar, Utilizing Protein Inclusions,” 6
Payne, D. A., 10, 204
PBL (problem-based learning), 154–157, 155fig
Percentile ranks, 203t
Performance assessment: Checklist for Panel Discussion, 61–62e; Debate Self-Assessment Form, 61t; described, 5, 59–60
Perimeter question learning target, 29–30fig
Personal relevance orientation, 22
Photo alums, 67
Piaget, J., 167
Pickering, D., 32, 135, 147
Pintrich, P., 4
Planet Characteristics Matrix, 59t
Planning Template for Quality Task Design, 82e–83e
Plans for Student 3 for Next Quarter, 127e
Pollock, J., 135, 147
Pop quizzes, 182
Popham, W. J., 210
Portfolios. See Classroom assessment portfolios
Practical interests, 153
Prather, J. P., 19, 20, 21
Pratt, J. A., 132
Prince William County Schools (Virginia), 136
Problem-based learning (PBL), 154–157, 155fig
Problem-solving instruction, 20–21
Product assessments: concept map, 54fig; as constructed response assessments, 51–52; described, 5; flowcharts, 54–55fig, 56; graphs, 56–57; matrices, 59t; tables, 57t–58t; types of simple, 52–59; Venn diagrams, 54, 55fig; webs, 54
Product development learning targets, 34, 36e
Proficiency portfolio, 68
Projects: assessment use of, 74; common pitfalls of, 75–76; definition of, 74; school level characteristics, 75
Promotion portfolio, 68
Protheroe, N., 114
Q
Quality assessment, 6–7
Question Quilt, 138, 139e
Questioning assessment approach, 48, 50
R
Raths, J., 4
Raw scores, 203t
Reagan, H., 27, 28, 29, 48, 50, 86, 144–145
Reasoning learning targets, 32–33, 36e
Reflective practitioners: students as, 151–154; teachers as, 149–151
Rosenthal, H., 156
Roth, W. M., 148
Rubric formats: checklist for designing, 99–101, 100e; essay prompt with partial rubric showing criteria, 103e; generalized or task specific, 95–96; holistic or analytical, 96–99t; poorly designed, 100, 101t
Rubrics: advantages and disadvantages of, 94–95; assessing quality of, 108–109; converting scores to grades, 107–108; described, 93–94; exemplars for math assessment, 105; formats for, 95–101; how to design, 101–108. See also Classroom assessment information

Ruiz, R., 206
Ruize-Primo, M., 84

S
Sadowski, M., 202
St. Germain, C., 113
SAT (Scholastic Aptitude Test), 8, 9
Science Observational Tool, Preassessing Measurement Skills, 120e
Scientific learning cycle: described, 167–168fig; used in chemistry instruction, 168–169e
Scoring guides. See Rubrics
Scrapbooks, 67
Scruggs, T. E., 137
Selected-response assessments, 4
Self-Assessment: My Progress in Reading, 49e
Self-worth theory, 162–164
Seminar Plan (Dolly Madison), 140e
SERVE Regional Educational Laboratory, 1, 209
SERVE Senior Project Report (2003), 60
Sesame Street data table, 58t
Shavelson, R. J., 84
Sher, B. T., 155
Shoemaker, B. J., 75, 76
Simon, S. B., 178
Skill targets, 33
Skills portfolio, 67, 70
Social adaptation orientation, 22
Social reconstruction orientation, 22
Squares and Rectangles flowchart, 56fig
Standardized tests, 7–8
Standards: accountability, 24, 199; as achievement assessment, 17, 25–26; challenge of teaching, 41–42; definition of, 23; establishing educational, 23–25; grades tied to achievement of, 186, 188; for grading policies, 190; national, 26–27; NCDPI (North Carolina Department of Public Instruction), 26–27
Standards-based curriculum, 21, 23–25, 41–42
Stanford-Binet test, 9
Star Trek: The Next Generation (TV show), 150–151
Starch, D., 178, 179
Stepien, W. J., 155, 156
Stiggins, R. J., 31, 34, 52, 134, 186, 188, 191
Strickland, J., 184, 185, 206
Strickland, K., 184, 185, 206
Student achievement: data analysis process on, 113–115, 114fig; gathering evidence on, 45, 47; grades reflecting current level of, 190–193; grades tied to standards and, 186, 188; self-worth theory on, 162; standards used to assess, 17, 25–26; triangulating evidence on, 45–46. See also Achievement tests; Grades
Student achievement assessment: Discussion Matrix, 48t; performance assessments, 5, 59–62e; product assessments, 5, 52–59; questioning used in, 48, 50; student-teacher dialogues used in, 50–51; summary of methods and approaches to, 51t; teacher observations for, 47–48
Student Assessment Conference Form: Fifth Grade, 117e
Student expectations: challenge of teaching standards as part of, 41–42; determined by standards traversing grade levels, 37e–41e; using learning targets to set, 31–36e
Student mastery assessment, 5–6
Student motivation: addressing motivational needs, 173–174; Classroom Motivation Survey on, 171t–172; description of, 160–165; enhancing student, 166–172; issues in grading that discourage, 183–184; learning teams to aid with, 165; myths of, 160; self-worth theory on, 162–164
Student Reading Profiles, 126fig
Students: cheating by, 186; Classroom Motivation Survey for, 171t–172; defining expectations of,
31–42; interests pursued by, 152–153; IRC (individual reading conference) with, 45, 121e, 144–145t; as reflective practitioners, 151–154; test construction issues and minority, 206; using assessment to motivate students, 159–174, 183–184

Student-teacher dialogues, 50–51

Summative assessment: described, 3; gradebook format for, 195e–196; grades figured from, 188–189; questions to think about for, 100e

Sunshine State Standards (Florida), 24

T

Tables, 57t–58t

Task specific rubric, 95–96

Tasks. See Classroom assessment tasks

Teacher beliefs/practices: assessment of, 133t; overview of, 132–135; self-checklist for promoting assessment for learning, 134e

Teacher Inferences and Action Plan, 124t

Teacher-as-action-research role, 149–151

Teachers: assessment questioning by, 48, 50; Classroom Motivation Survey for, 171t–172; data gathering/analysis by, 113–115, 114fig; defining student expectations, 31–42; dialogues between students and, 50–51; high-stakes testing and retention of, 208; impact of beliefs and practices of, 132–135; IRC (individual reading conference) by, 45, 121e, 144–145t; observations by, 47–48, 120e–121e; performance assessments by, 59–62; as reflective practitioner and decision maker, 149–151; simple product assessments by, 52–59; summary of assessment methods/approaches by, 51t

Teaching best practices: environment is learner centered, 147–149; metaphors for teaching, 150–151, 152e; students as reflective practitioners, 151–154; teacher as reflective practitioner and decision maker, 149–151; theories on, 146–147; whole person is educated, 154–157. See also Grading practices; Instructional strategies

Teaching metaphors, 150–151, 152e

Technical interests, 153

Technology orientation, 22

Test score reporting: impact on teacher retention, 208; issues in statistical methods, 205–206; issues in test construction, 206–207; overview of, 202–204t, 203t; poor performing students seen as liabilities, 208

Tests: conventional classroom, 8; definition of, 7; given prior to teaching, 182; norm-referenced versus criterion-referenced, 8–9. See also High-stakes standardized tests

Texas Assessment of Academic Skills, 207

Text-based assessment discourse groups, 84e

Three Cs, 162, 163

Tobias, S., 65

Tobin, K., 148, 150

Tomlinson, C. A., 144

Tomlinson, T., 162

TQE (total quality education), 22

Triangulation, 45

Troug, A. L., 189

U

U.S. Army slogan, 9

U.S. Congress Office of Technology Assessment, 7

V

Vallance, E., 21

Venn diagrams, 54, 55fig

Verdi (Cannon), 86e, 87

Vocabulary-building exercises, 137–138

W

“Wad-ja-get” preoccupation, 162

Waltman, K. K., 190, 191

Webs (concept maps), 54

Wechsler Intelligence Scale for Children, 9

Westheimer, F. H., 19

Whole person education, 154–157

Wiggins, G., 88, 143, 188
Wiliam, D., 141, 142, 143, 210
Williams, A., 74
Williamson, J., 27, 28, 29, 48, 50, 86
Winters, M., 202
Wittrock, M., 4
Workman, D., 155
Worksheet analysis data, 125

World geography study, 32–34
Wright, R. G., 181

Y
Yager, R. E., 19

Z
Zero grades, 182, 189