INDEX

A
- Adhesion forces, experiments on, 76–83
 - capillary forces, 79–81
 - electrostatic forces, 81–83
 - glass substrate, 77
 - polystyrene substrate, 77
 - pull-off forces, 76–79
 - van der Waals forces, 76–79
- Adhesion models, 2–3
- Adhesion ratio at interfaces \(\frac{\Gamma}{\Gamma_1} \), 146–150
 - modifying methods, 149
 - blowing effect, 150
 - contact area, 149
 - electrostatic effect, 149
 - material at the interfaces, 149
 - presence of a meniscus at the interface, 149
 - roughness, 149
 - suction effect, 150
 - points to consider, 148
 - contact characteristics, 148
 - external forces applied to the microobject, 148
 - forces at interfaces, 148
 - ‘gripper/substrate’ relative movement, 148
- Adhesion-based micromanipulation, 150–159,
 - See also Adhesion ratio at interfaces \(\frac{\Gamma}{\Gamma_1} \)
 - behavior of microobject, 157–159
 - constraints at interfaces, 151–152

Rolling and pivoting thresholds, 154–157
- separation threshold, 152–153
- sliding threshold, 153–154
- Adhesive substrate, release on, 213–221,
 - See also under Submerged medium

Air and liquid, theoretical comparison between, 68–70
- electrostatic forces, 69–70
- surface forces, 68–69
- van der Waals forces, 69

Ambient environment
 - for robotic microhandling, 122–123
 - for self-assembly, 123
- Asymptotic model, 43
- Atomic force microscope (AFM)-based measurements, 74–76, 85
 - approach-and-retract cycle, 74–75
 - description, 74
 - method, 74–76
 - roughness measurement, 85
 - submerged medium, 204–206
- Automated microassembly, 253–254, See also High-yield automated MEMS assembly compliant microassembly, 254

B
- Behavior of microobject, 157–159
- Bond number, 30

Robotic Microassembly, edited by Michæl Gauthier and Stéphane Régnier
Copyright © 2010 the Institute of Electrical and Electronics Engineers, Inc.
Capillary condensation, 36–39
Capillary forces, 17–34, 79–81
applications, 33–34
flipping part by, 134
glass substrate, 80
gold substrate, 81
grounded substrate, 81
key concepts, 18–22
Laplace force, 22–24
Laplace term in two parallel plates, direct
calculation of, 28–29
meniscus, 22
models of, 22–28
perspectives, 33–34
polystyrene substrate, 80
prism–plane, 30
sphere–sphere, 29–33
surface energy derivation
definitions, 24
properties, 24
in plate, 24
in sphere, 24
tension force, 22–24
tension terms in two parallel plates, direct
calculation of, 28–29
Capillary gripper, 113
Capillary principle, 147
Capillary self-alignment, 117
Centre Suisse d’Electronique et Microtechnique
(CSEM), 196
Chemical functionalization, submerged medium,
203–204
Classical microworld models, 6–36
capillary forces, 17–34, See also individual
tentry
elastic contact mechanics, 34–36
van der Waals forces, 6–17, See also van der
Waals (VDW) forces
Westegaard model, 35
Clausius–Mosotti factor, 191, 193
Collaborative manipulation, 113
Cone models, 88
Conical tip models, 42
Contact angle hysteresis, 18
Contact angles, 18
Contact mechanics, microworld modeling
for, 5–6
Contact microgripper, 113
Coulomb’s law, 39
Cover method, 97
Curvature, 18
Cylindrical model, 44

4 Degree-of-freedom (DoF) piezoelectric
microgripper, 194
Derjaguin method, 62–63
Desktop microassembly machine design,
279–297
fine accuracy, achieving, 280–285
computer aided engineering (CAE), 281
degrees of freedom (DoF), 280–281
design considerations, 280–282
force control, 283–285
numerical control (NC) machining, 280
vision measurement subsystem, 282–283
higher accuracy, pursuing, 291–295
mechanical structures verification, 293–295
placement accuracy, 291
positioning accuracy, 291
vision measurement verification, 291–293
industrial application to microsolder ball
manipulation, 279–297
joining process of electric components,
application to, 285–291
collet chuck, 288
microsolder balls, manipulation issue,
285–289
reflow soldering, heating issues
of, 289–291
solder ball sheet, 288
solder balls alignment, 288–289
Dielectrophoresis (DEP), 190–193
experimentations, 194–196
field-flow-fractionation (FFF-DEP), 193
in micromanipulation, 194–196
‘negative DEP’, 193
piezomicrogripper, 195
‘positive DEP’, 193
robotic microhandling using, 193–194
silicon finger tips (SiFiT), 195
Dielectrophoretic gripper, 190–196
dielectrophoresis force, 191–192
on dielectric microobject, 191
dielectrophoresis torque, 192–193
on microobject in a rotating field, 192
Difference average law (DAL), 98
2.5-Dimensional (2.5D) microassembly,
253
guidelines, 255–260
fixtures, 257–258
high-yield assembly condition (HYAC),
259–260
lithographic fabrication techniques, 258
micropart transfer, 257–258
pick-move-place operations, 257
precision robotic work cell design, 258–259
part and end-effector compliance, 257
remote center of compliance (RCC)
end-effector designs, 257
DLVO theory, 64–66
Double-layer forces, 55–56, See also Electric
double layer (EDL)
3D MEMS structures, robotic microassembly of,
227–251, See also Robotic microassembly
devices; Robotic micromanipulator (RM)
compatibility, modular design features for, 239
grasping interface (interface feature), 239–241
methodology of, 228–230
microassembly concept, 229
microassembly subsystems, interface between,
229–230
microassembly versus micromanipulation,
228–229
PMKIL microassembly process, 241–247
purpose of, 228
system objectives, 228
Droplet self-alignment-based hybrid
microhandling analysis, 136–138
ambient environment, 138
external disturbance and excitation, 138
feeding, 136–137
fixing, 137
positioning, 137
releasing and alignment, 137
surface properties, 138
Dynamic spreading, 19

E
Elastic contact mechanics, 34–36
Electric double layer (EDL), 55–56
qualitative models of, 56–58
Gouy–Chapman model, 56
Gouy–Chapman–Stern–Grahame model
(GCSG), 56
Stern model, 56, 58
Electrostatic forces, 39–49, 69–70, 81–83
asymptotic model, 43
cylindrical model, 44
glass substrate, 83
hyperboloid model (hyperboloid tip model), 43
plane–plane model, 40–42
polystyrene substrate, 82
roughness impact, 46–49
scanning probe microscopy, application to,
45–46
sphere–plane model, 40–42
tilted conical tip models, 44–45
uniformly charged line models (conical tip
models), 42
Electrostatic gripper, 113
Electrostatic principle, 147
Environment component of microhandling,
122–123
External Helmholtz plane (EHP), 57
F
Feeding component of microhandling, 119–120
robotic microhandling, 119–120
self-assembly, 120
vibration feeding, 119–120
Field-flow-fractionation (FFF-DEP), 193
Finite element analysis (FEA), 260
First microobject micromanipulation principle,
212–213
First object positioning, submerged medium,
216–217
adapting adhesive effects, 216–217
DRIE fabrication process, 216
experimental microassembly, 217
pick and place, 217
scalloping, 216–217
Fixing in microhandling, 122
Fluidic self-assembly, 115
Form closure microgripper, 113
Fractal character of surfaces, extracting, 93–101
cover method, 97
difference average law (DAL), 98
log–log plot, 94–98
modified Gaussian fractal model, 98
power spectrum method, 94–96
PSD, validity domain for, 100–101
reticular cell counting method, 97
structure function method, 96–97
validity domain for, 100–101
variation method, 97
Fractal representation of roughness, 89–93
advantages, 92
construction of fractal surface, 91
continuous, 90
limitations, 93
nondifferentiable, 90
self-similarity, 89–90
Free-hanging structures, hybrid microhandling,
135
Functionalization mechanisms, submerged
medium, grafted silanes, 204
Functionalized surfaces application in
micromanipulation, 211–212
G
Gaseous environments, microworld modeling
in, 3–49
Gel-Pack, 216
Gouy–Chapman electric double-layer model, 58–59
Gouy–Chapman model, 56
Gouy–Chapman–Stern–Grahame model (GCSG), 56
external Helmholtz plane (EHP), 57
internal Helmholtz plane (IHP), 57
layers of, 56–57
Grasping, 159–164
additional force acting at the interface, 162–163
external force acting on the component, 163–164
a microobject, 159–160
operation, 170
release operation, 160–162
lateral release, 160
tangential release, 160
vertical release, 160
Hamaker approach for van der Waals (VDW) forces computation, 8–9
Handling principles in microworld, 145–164
Hertz contact theory, 34–36
Heterogeneities, 19
Hierarchical assembly, hybrid microhandling, 135
High-yield assembly condition (HYAC), 259–260
High-yield automated MEMS assembly, 253–276, See also μ³ Microassembly system
compliant part design, 260–266
design principles, 260–261
finite element analysis (FEA), 260
peg-in-hole insertion models, 260
RCC (remote center of compliance), 260
RCR (remote center of rotation), 260
snap-fastener insertion models, 260
detethering, 273
insertion force, experimental validation, 265–266
part assembly, 273
part pickup, 273–274
repeated assemblies, 274–276
snap arm optimization using insertion simulation, 263–265
Hogg, Healy, and Fuerstenau (HHF) formula, 63
Hybrid microhandling, 127–138
accuracy of, 130–131
capabilities of, 132–136
combining droplet self-alignment and robotic microhandling (case study), 128–136
droplet self-alignment-based, 136–138
efficiency of, 129–130
flipping parts by, 134
capillary forces, 134
free-hanging structures, 135
hierarchical assembly, 135
reliability of, 131–133
Hydrodynamic forces, 68
impact on microobject behavior, 70–74
initial configuration, 70
Hyperboloid model (hyperboloid tip model), 43
Ice grippers, 113
in air, 196–202
Inertial microgripper based on adhesion, 167, 173–177
experimentations, 175–177
inertial release, 175
minimal frequency of release, 175
picking by adhesion, 175
positioning performances, 177
Inertial principle, 147
Insertion force, experimental validation, 265–266
Insertion, submerged medium, 218–221
lock joint design, 219
reliability analysis, 220
reversible assembly, 218–220
Internal Helmholtz plane (IHP), 57
Kelvin equation, 36
Key-lock joint system, 245–246
Laplace equation, 18, 22
Laplace force, 22–24
Lewis acid–base theory, 66
Lifshitz approach for van der Waals (VDW) forces computation, 8–9
Linear Debye–Heckel approximation, 60
Linear scaling law, 137
Linear superposition (LSA) method, 60–61
Liquid environment impact on microworld modeling, 55–74
air and liquid, theoretical comparison between, 68–70
classical models, 55–60, See also Electric double layer (EDL)
Derjaguin method, 62–63
DLVO theory, 64–66
INDEX

hydrodynamic forces impact on microobject behavior, 70–74
hydrodynamic forces, 68
linear superposition (LSA) method, 60–61
sphere–plane interactions, 60–68
sphere–sphere interactions, 60–68
XDLVO model, 66–67

M
Macroscopic approach for van der Waals (VDW) forces computation, 8–9
Meniscus, 22
Microassembly, release on, 213–221
See also under Submerged medium
μμμ Microassembly system, 266–271
assembly cell
automation, 268–271
kinematics, 266–268
M1 end-effector calibration of the remote center of rotation, 269
M1 angular posed alignment to M1 end-effector through vision, 269
M3 to M1 translational posed alignment through teaching, 270–271
multirobot system, kinematic frames for, 268

Microelectromechanical systems (MEMS), 33, 134. See also 3D MEMS structures, robotic microassembly of; High-yield automated MEMS assembly
MEMS tweezers, 169–170
Microhandling, 109–139. See also Hybrid microhandling; Robotic microhandling
components of, 119–127
environment component, 122–123
ambient environment, 122–123
external disturbance and excitation, 125–126
feeding component of, 119–120
fixing in, 122
positioning component of, 120–121
releasing and alignment in, 121–122
surface properties, 123–125
pick-and-place technique, 124

Micromanipulation techniques, 4, 113, 164–166
capillary gripper, 113
form closure microgripper, 113
collaborative manipulation, 113
contact microgripper, 113
electrostatic gripper, 113
ice gripper, 113
snap-locking fixing, 113
submerged micromanipulation, 113
vacuum gripper, 113
van der Waals gripper, 113
vibration release, 113
Microscopic analysis, 74–84
adhesion forces, experiments on, 76–83,
See also individual entry
AFM-based, 74–76
for van der Waals (VDW) forces computation, 8–9
Microwezeer family, 146, 167–173
experimentations on, 170–173
grasping operation, 170
materials influence, 172
relative humidity influence, 171–172
release direction, 171
fingertips types, 168
silicon tips, 168
stainless steel tips, 168
MEMS tweezers, 169–170
modular microtweezers, 168
monolithic microtweezers, 168
pneumatic microtweezers, 168–169
release strategy for, 161

Microworld modeling, 3–49. See also Classical microworld models
adhesion models, 2–3
capillary condensation, 36–39
for contact mechanics, 5–6
electrostatic forces, 39–49, See also individual entry
recent developments, 36–49
theoretical background, 4
for van der Waals forces, 5–6
in vacuum and gaseous environments, 3–49
MiniPeltier, 200
MMOC piezomicrogripper, 215
Modified Gaussian fractal model, 98
Modular microtweezers, 168
Monolithic microtweezers, 168

O
Optical roughness measurement method, 84

P
Peg-in-hole insertion models, 260
Phase changing microgrippers, 114
Pick-and-place operations, 124, 167, 217–218
Piezoelectric ceramics (PZT), 253
Piezoelectric microgripper, 215
MMOC piezomicrogripper, 215
Piezomicrogripper, 195
Pivoting thresholds, 154–157
Plane–plane model, 40–42
Plastic deformation magnetic assembly (PDMA), 227
PMKIL microassembly process, 241–247
assembled micropart, releasing, 247
grasping a MicroPart, 242–243
microparts, 243–247
joining to other microparts, 245–247
removing from chip, 243–244
translating and rotating, 244–245
Pneumatic microwezeers, 168–169
Poisson–Boltzmann (PB) equation, 59–60
Positioning component of microhandling, 120–121
Positioning error, 167
Positioning repeatability, 168
Power spectrum method, 94–96
Precise micromanipulation, 145–185, See also
Adhesion-based micromanipulation
capillary principle, 147
electrostatic principle, 147
experimentations, 166–184
positioning error, 167
positioning repeatability, 168
success rate 168
handling principles, 145–164
inertial principle, 147
pick-and-place operations, 167
referencing, 148
state of the art of micromanipulation
principles, 146
strategies adapted, 145–164
vacuum principle, 147
Pressure drop, 18
Prism–plane, capillary forces in, 30
Pull-off forces, 76–79
R
Referencing, 148
Reflow soldering, heating issues of, 289–291
Reliability analysis, submerged medium, 220
Remote center of compliance (RCC), 260
Remote center of rotation (RCR), 260
Reticular cell counting method, 97
Reversible assembly, submerged medium, 218–220
Robotic microassembly devices, 214–216, 232–239
grasped micropart removing from chip, 235–236
microgripper alignment with micropart, 235
microgripper bonding to probe pin of RM, 232–239
microgripper grasping micropart, 235
microobjects design, 215–216
micropart grasping with microgripper,
234–235
micropart joining to another micropart,
237–238
micropart manipulation, 236–237
joining orientation, probe and microgripper in, 237
microgripper grasping micropart above chip, 237
micropart releasing from microgripper, 238–239
piezoelectric microgripper, 215
robotic structure, 214–215
Robotic microhandling, 111–115, See also
Microhandling; Self-assembly
advantage, 110
ambient environment for, 122–123
external disturbance and excitation, 125–126
microhandling systems, 111–112
commercial positioning systems, 111
degrees-of-freedom (DOF), 111
positioning in, 120
releasing and alignment in, 121
strategies, 112–115, See also
Micromanipulation techniques
ambient environment conditions, 114
snap-locking, 114–115
vibration release technique, 114
surface properties, 124
using dielectrophoresis, 193–194
Robotic micromanipulator (RM), 230–232
6 DoF robotic manipulator, 231
Rolling thresholds, 154–157
Roughness impact on microworld modeling, 84–101
fractal parameters, 89–93
statistical parameters, 85–88
autocorrelation function, 87
power spectrum, 87
structure function, 87
surface topography measurements, 84–85
AFM method, 84–85
contact types, 84
noncontact types, 84
optical method, 84
SEM method, 84–85
STM method, 84–85
stylus method, 84
Roughness impact, electrostatic forces, 46–49
S
Scaling effect, 109
Scalloping, 216–217
Scanning electron microscopy (SEM), 85
in roughness measurement, 85
INDEX

305

Scanning probe microscopy, application to, 45–46
Scanning tunneling microscopy (STM), 85 in roughness measurement, 85
Self-assembly, 115–119
ambient environment for, 123
capillary self-alignment, 117
e external disturbance and excitation, 126
feeding in, 120
fluidic self-assembly, 115, 118
positioning in, 120–121
releasing and alignment in, 121–122
stochastic self-assembly, 118
strategies, 117–119
capillary self-alignment, 118
geometrical shape recognition, 118
sequential multibatch self-assembly, 119
two stage positioning approach, 118
surface properties, 124–125
working principle, 116–117
principle of minimum potential energy, 116
Self-similarity, 89–90
Separation threshold, 152–153
Silane, (3 aminopropyl) triethoxysilane (APDMES), 203
Silane, 3 (ethoxydimethylsilyl) propyl amine (APTES), 203
Silicon finger tips (SiFiT), 195
Silicon-on-insulator (SOI) MEMS, 169, 254
Sliding threshold, 153–154
Snap arm optimization, 263–265
Snap-fastener insertion models, 260
Snap-locking, 113–115
Sphere (hemispherical model), 88
sphere–plane interactions, 60–68
Sphere–plane model, 40–42
Sphere–sphere, capillary forces in, 29–33
Sphere–sphere interactions, 60–68
State of the art of micromanipulation principles, 146
Static contact angle, 19
Statistical representation of roughness, 85–88
Stern model, 56, 58
Stochastic self-assembly, 118
Stokes’s law, 71
Strategies adapted in microworld, 145–164
Structure function method, 96–97
validity domain for, 100–101
Stylus roughness measurement method, 84
Submerged freeze gripper, 196–202
experimental, 199, 201–202
handling strategy, 198
ice grippers in air, 196–202
MiniPeltier, 200
Peltier module, 197–198
physical characteristics, 199–200
principle, 199
technical characteristics, 199–200
thermal behavior, 200–201
crystallization of water, 200
local cooling of water, 200
precooling, 200
thawing of the water, 200
Submerged medium, 189–222, See also
Dielectrophoretic gripper; Robotic microassembly device
adhesive substrate and microassembly, release on, 213–221, See also First object positioning; Robotic microassembly device
first microobject micromanipulation principle, 212–213
handling and assembly strategy, 212–214
microassembly of both objects, 213–214
chemical functionalization, 203–204
chemicals, 203–204
materials, 203–204
pH influence on cantilever, 209–210
pH influence on functionalized surface, 206–208
principles, 203
silane, (3 aminopropyl) triethoxysilane (APDMES), 203–209
silane, 3 (ethoxydimethylsilyl) propyl amine (APTES), 203–209
typical distance–force curves, 206
chemical self-assembly monolayer (SAM), 202
experimental force measurements, 204–210
atomic force microscope, 204–206
functionalization mechanisms, 204
grafted silanes, 204
functionalized surfaces application in micromanipulation, 211–212
microassembly in, 189–222
microhandling strategies in, 189–222
release in, chemical control of, 202–212
steps involved in SAM, 205
covalent grafting to the substrate, 205
hydrolysis, 205
in plane reticulation, 205
physisorption, 205
surface charges modeling, 210–211
surface functionalizations, 204
Submerged micromanipulation, 113
Success rate 168
Surface charges modeling, 210–211
Surface energy derivation in plate, 24
Surface energy derivation (Continued)
in sphere, 24
Surface energy, 18–19
Surface forces, 68–69
Surface functionalizations, submerged medium, 204
Surface impurities, 19
Surface roughness models, 88–89
cone models, 88
discretized profiles for, 88
sphere (hemispherical model), 88
Surface tension, 18–19
Surface topography measurements, 84–85
contact types, 84
noncontact types, 84

T
Tension force, 22–24
Thermal behavior, submerged freeze gripper, 200–201
Thermodynamic microgripper, 167, 180–184
conception, 181–182
experimentations on, 182–184
Tilted conical tip models, 44–45
'triangle' trajectory, 71–72
Triple layer, 56–57

U
Uniformly charged line models (conical tip models), 42

V
Vacuum gripper, 113, 167
Vacuum nozzle assisted by vibration, 177–180
conception, 178
experimentations, 178–180
picking with vacuum, 179
releasing operation, 179

W
Vacuum principle, 147
microworld modeling, 3–49
van der Waals (VDW) forces, 6–17, 69, 76–79
computing ways, 8
macroscopic/Lifshitz approach, 8
microscopic/Hamaker approach, 8
interaction potential
between sphere and infinite half-space, 12
between sphere and volume element, 9–11
between two spheres, 11–12
between an infinite half-space and rectangular box, 14–17
microworld modeling for, 5–6
between a sphere and infinite half-space, 14
between two spheres, 12–14
van der Waals gripper, 113
van der Waals Lifshitz interactions, 66
Variation method, 97
Vibration feeding, 119–120
Vibration release technique, 113–114
Vision measurement, in desktop microassembly machine design, 282–283

X
Weierstrass–Mandelbrot (WM) function, 90, 94, 98–100
Westegaard model, 35
Wettability, 18

Y
XDLVO model, 66–67
Young–Dubre equation, 18

Z
Zyvex connector, 260–261