Index

<table>
<thead>
<tr>
<th>Abstract design techniques</th>
<th>Algorithm division, 119</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPGA, 75</td>
<td>Alternating polarities</td>
</tr>
<tr>
<td>high-level design, 69</td>
<td>dual-phase latching, 276</td>
</tr>
<tr>
<td>Adders critical paths, 13</td>
<td>Analog feedback</td>
</tr>
<tr>
<td>Address decoder, 11, 174</td>
<td>resynchronization, 91</td>
</tr>
<tr>
<td>Add-round-key block, 53</td>
<td>Application specific integrated circuits</td>
</tr>
<tr>
<td>Advanced encryption standard (AES), 47–67</td>
<td>(ASIC)</td>
</tr>
<tr>
<td>architectures, 47–64</td>
<td>versus FPGA, 99, 223</td>
</tr>
<tr>
<td>compact architecture, 53–56</td>
<td>test insertion, 192</td>
</tr>
<tr>
<td>fully pipelined architecture, 60–64</td>
<td>gated clocks, 98</td>
</tr>
<tr>
<td>one stage for add round key, 52</td>
<td>Architecting area, 18–35</td>
</tr>
<tr>
<td>one stage for sub-bytes, 51</td>
<td>control-based logic reuse, 20–22</td>
</tr>
<tr>
<td>partially pipelined architecture, 57–59</td>
<td>reset impact on area, 25–34</td>
</tr>
<tr>
<td>two pipeline stages for mix-column, 52</td>
<td>resources without asynchronous</td>
</tr>
<tr>
<td>zero stages for shift rows, 51</td>
<td>reset, 27–28</td>
</tr>
<tr>
<td>clock cycles, 57</td>
<td>resources without reset, 25</td>
</tr>
<tr>
<td>performance versus area, 66</td>
<td>resources without set, 26</td>
</tr>
<tr>
<td>Advanced simulation, 151–169</td>
<td>utilizing set/reset flip-flop pins, 31–34</td>
</tr>
<tr>
<td>code coverage, 159</td>
<td>resource sharing, 23–24</td>
</tr>
<tr>
<td>gate-level simulations, 159–161</td>
<td>rolling up pipeline, 18–19</td>
</tr>
<tr>
<td>run-time traps, 165–166</td>
<td>Architecting power, 37–46</td>
</tr>
<tr>
<td>combinatorial delay modeling, 166–168</td>
<td>clock control, 38–41</td>
</tr>
<tr>
<td>glitch rejection, 165</td>
<td>clock skew, 39–40</td>
</tr>
<tr>
<td>timescale, 165</td>
<td>managing skew, 40–41</td>
</tr>
<tr>
<td>system stimulus, 157–158</td>
<td>dual-edge triggered flip-flops, 44</td>
</tr>
<tr>
<td>bus-functional models, 158</td>
<td>input control, 42–43</td>
</tr>
<tr>
<td>MATLAB, 157</td>
<td>terminations modification, 45</td>
</tr>
<tr>
<td>testbench architecture, 152–155</td>
<td>voltage supply reduction, 44</td>
</tr>
<tr>
<td>testbench components, 152</td>
<td>Architecting speed, 2–16</td>
</tr>
<tr>
<td>testbench flow, 153–155</td>
<td>high throughput, 2–3</td>
</tr>
<tr>
<td>toggle coverage, 162</td>
<td>low latency, 4–5</td>
</tr>
<tr>
<td>AES. See Advanced encryption standard (AES)</td>
<td>timing, 6–14</td>
</tr>
<tr>
<td></td>
<td>add register layers, 6–7</td>
</tr>
<tr>
<td></td>
<td>flatten logic structures, 10–11</td>
</tr>
<tr>
<td></td>
<td>parallel structures, 8–9</td>
</tr>
</tbody>
</table>

Advanced FPGA Design. By Steve Kilts
Copyright © 2007 John Wiley & Sons, Inc.
Architecting speed (Continued)
register balancing, 12–13
reorder paths, 14
Architectural resource sharing, 208
Architectural timing
strategies for improvement, 6, 8, 10, 12, 14
ASIC. See Application specific integrated circuits (ASIC)
Asynchronous assertion
reset circuits, 144
synchronous deassertion, 144
Asynchronous circuits
STA, 269
static timing analysis, 276–277
Asynchronous clock domains
FIFO, 100
Asynchronous data signals, 142
Asynchronous feedback signals, 91
Asynchronous reset, 33, 140
external logic implementation, 29
external signal, 144
logic, Xilinx BRAM, 31
resource utilization, 29
for BRAM, 31
source example, 140
static hazard, 146
versus synchronous circuits, 140–144
Auto-generated pipelined FIR, 78
Back-annotation, 224
Back-annotations
versus forward annotation, 224
timing violations, 224
Balanced logic, 214
Balance route length
registers duplication, 246
Balancing combinatorial logic, 211
BCK. See Bit clock (BCK)
Behavioral tools
synthesis tools, 184
BFM. See Bus-functional model (BFM)
Binary division
long, 119
Binary encoding
FPGA technology, 217
Biphase Mark Code (BMC), 107
encoding example, 108
Bit capture, 105
Bit clock (BCK), 102
rising edge, 102
Bit detection, 114
32-bit floating point
representation, 128
32-bit key expansion stages
propagation through, 61
8-bit mapping
sub-bytes module, 51
Black box, 227
critical path, 221
synthesis directive, 222
synthesis flow, 220
synthesis optimization, 220–222
Blocking, 180
assignments, 155
incorrect implementation of, 181
mixing with nonblocking
assignments, 195
code example statements, 182
expressions, 153
versus nonblocking, 180–182
Block RAM (BRAM)
elements, 30
resource utilization, 31
BMC. See Biphase Mark Code (BMC)
BRAM. See Block RAM (BRAM)
Built-in delays
logic blocks, 42
Built-in shift register
advantages, 25
Burstable Flash
PCI bus interface, 159
Bus-functional model (BFM), 158, 168
advanced simulation
system stimulus, 158
PCI interface, 158
test bench, 158
Capacitor placement
PCB issues, 286
Capacitor resonance, 285
Capacitor values, 286
Cell-based logic elements, 251
Chipscope, 159
C-level synthesis, 80
Clock. See also Bit clock (BCK); Gated
clocks; Multiple clock domains
ASIC prototypes, 98
asynchronous domains, 100
audio bit speed, 106
clock skew, 41
consolidated module, 98
control
 architecting power, 38–41
 resources, 46
CoolClock, 45
cross domain, 84–87
cycles, 57
derived, 83
distribution, 106
domains, 84–100, 98
clocks module, 98
creation, 84
crossing, 84–87
double flopping, 89–91
FIFO, 100
FIFO structure, 92–96
gated clocks in ASIC prototypes, 97–99
gating removal, 99
metastability, 86–87
partitioning synchronizer blocks, 97
phase control, 88
simple propagation, 85
timing between, 86
dual domains, 84
fast, 85
fast domain, 143
FPGA, 98, 99
gating, 46, 84
global buffer, 42
mixing, hazards, 190
module, 98
path logic, 41
placement, 42
propagation delay, 39–40
removal, 99, 100
resources, 98
signal, 39–40
single domain, 276
skew, 40
 architecting power, 39–40
clock control, 39–40
dominant delay, 41
 introduced with clock gating, 41
slow/gated, 143
speed, 12
design, 6, 16
timing reference, 16
CMOS transistor, 37, 42, 45
 simple I/V curve, 43
Coding styles
 conventions, 66
coverage
 advanced simulation, 159
 ASIC design, 159
design state machines, 227
 latches, 273, 278
types, 177
types of, 181–182
Combinatorial delay modeling
 advanced simulation, 166–168
Combinatorial feedback, 278
 asynchronous circuits, 277
 static timing analysis, 277
types of, 187
Combinatorial logic, 169
 internal delays, 169
Combinatorial loops
 versus sequential loops, 186
 synthesis coding traps, 185–186
 synthesizing of, 278
Combined adder resource, 209
Compact architecture
 AES architectures, 53–56
Compact implementation, 54
Consolidated clocks module, 98
Constrained speed
 versus speed, 207
Control-based logic reuse
 architecting area, 20–22
Control signals, 11
CoolClock, 45
Coordinate rotation digital computer (CORDIC), 124
 algorithms, 124–125
 angle with cosine, 125
 angle with sine, 125
 initialization, 124
 rotation, 125
 theory, 125
CORDIC. See Coordinate rotation digital computer (CORDIC)
Cosine
 CORDIC angle, 125
 Taylor expansion, 126
Cost table, 252
Critical path
 adders, 13
 black box, 221
 floorplanning, 232, 266
Critical path (Continued)
design flow, 232
example design microprocessor, 264–265
example of constraints, 233
optimizations, 264–265
reduction, 15
reorganizing codes, 15
SRC, 261
Cross clock domain
clock domains, 84–87
failures, 85
Cycle-based C syntax
HDL, 80
Cycle-by-cycle
FPGA, 160
Data encryption
pipeline design, 60
Data flow
FIFO, 94
Data path
floorplanning, 235
optimal, 234
Debug phase, 155
Decision trees
absence of priority encoding, 175
case statement examination, 176
FPGA design, 172
implementation with implicit priority, 179
in-system testing, 179
modular designs, 190
priority placement, 173
synthesis coding, 172–179
synthesis tools, 179
Decoupling capacitor, 283
parasitic inductance, 288
PCB issues, 283–286
placement, 287
poor design practice, 287
Default conditions
absence of, 178
encoding for, 177
Default operating voltage
temperature settings, 243
Defparam
abuse of, 193
Verilog, 193
Delay locked loop (DLL), 88–89
phase matching, 88
Delay modeling, 166
result of incorrect, 167
Derived clocks, 83
Design
clock speed, 6
coding styles, 227
floorplanning, 229–231, 232
flow with critical paths, 232
organization, 188–194
partitioning, 229–231
floorplanning example, 231
priority requirements, 10
state machines, 227
synthesis coding, 188–194
Destination register critical paths, 14
Device delay SDF entry, 162
Device structure floorplanning, 235
Digital design, HDL, 69
Digital filters, 75
Digital Signal Processing (DSP), 27
algorithms, 75
applications, 272
design, high-level, 75–79
fixed sampling rate, 272
hardware, 79
multifunction resources, 35
synthesis core, 29
DLL. See Delay locked loop (DLL)
Double flopping
crossing clock domains, 89–91
resynchronization, 90
technique, 89, 90, 100, 142
DSP. See Digital Signal Processing (DSP)
D-type rising edge
flip-flop, 274
Dual clock domains, 84
Dual-edge triggered flip-flops, 44
architecting power, 44
Dual-phase latching, 275
alternating polarities, 276
Dual rank synchronizers, 89
Dynamic power
consumption, 44
dissipation, 46, 164
equation, 163
estimation of, 169
reduction, 38
Dynamic timing analysis, 272
EDA. See Electronic design automation (EDA) tools
8-bit mapping
sub-bytes module, 51
Electronic design automation (EDA) tools, 39
Event-driven flip-flops, 83
floating-point formats, 127
floating-point unit, 127–138
floorplan optimizations, 262–265
critical-path, 264–265
partitioned, 263
implementation results, 204
I2S, 101–106
analysis, 105
hardware architecture, 102–105
protocol, 102
microprocessor, 257–265
pipelined architecture, 128–137
resources and performance, 137
Verilog implementation, 131–136
secure hash algorithm, 197–204
SHA-1 architecture, 197–203
SPDIF, 107–116
analysis, 114
hardware architecture, 108–114
protocol, 107–108
SRC architecture, 257–258
synthesis optimizations, 259–262
physical synthesis, 262
pipelining, 261
speed versus area, 260
External logic
asynchronous reset implementation, 29
set implementations, 27
External signal
asynchronously reset, 144
False path STA, 272
Fan-out long routes, 246
Federal Information Processing Standard (FIPS), 48
Federal Information Processing Standards Publication (FIPS PUB), 47
Feedback elements, 258
Feedback mechanisms loops, 185
FIFO. See First-in, first-out structure (FIFO)
Finite impulse response (FIR), 6
area efficiency, 79
auto-generated pipelined, 78
filter, 20
Simulink model, 76
logic, 79
MAC, 22
parameterization, 77
FIPS. See Federal Information Processing Standard (FIPS)
FIR. See Finite impulse response (FIR)
First-in, first-out structure (FIFO), 92
asynchronous clock domains, 100
crossing clock domains, 92–96
data flow, 94
FPGA, 94
vendors, 96
handshaking, 95
PCI application, 92
synchronization, 106
Fixed FPGA resources, 237
Fixed-point fractional multiplier, 18
Fixed-point multiplication, 124
Fixed-point representation, 118
Flatten logic structures
architecting speed, 10–11
Flip-flops, 83
implementation shift register, 26
setup time, 40
timing path, 211
Floating-point formats
design flow, 127
elementary functions, 127
device structures, 235
design with critical paths, 232
data path, 234
design partitioning, 229–231
device structures, 235
elementary functions, 127
FPGA resources, 237
Floorplanning, 229–240
candidates for, 234
critical-path, 232
dangers, 233
data path, 234
design flow with critical paths, 232
design partitioning, 229–231
device structures, 235
elementary functions, 127
FPGA resources, 237
focused, 265
Floorplanning (Continued)
functional partitions, 233
glue logic, 240
high-activity nets, 239
high fan-out nets, 234
high fan-out regions, 236
initial results, 264
method, 229
optimal, 234–237
data path, 234
device structure, 235–237
high fan-out, 234
reusability, 238
optimizations, 262–265
paths of, 240
performance of design, 240
pipeline flow reflection, 264
reducing power dissipation, 238–239
shielding from layout changes, 238
timing constraints, 232
worst case path, 265
Focused floorplanning, 265
Folded FIR
implementation results, 80
For-loops
synthesis coding traps, 183–184
Forward annotation
versus back-annotations, 224
placement data, 225
FPGA
ASIC, 223
catastrophic failures, 87
clock resources, 98
complex math functions, 117
corresponding timing paths, 277
cycle-by-cycle, 160
design, 187
decision tree, 172
flow, 87
ignored aspects, 139
quick-and-dirty simulations, 151
RTL-based design, 75
timing analysis performance, 187
device voltage, 242
FIFO, 94
fixed resources, 237
hierarchy, 156
hold delay violations, 271
instance-by-instance basis, 191
layout implementation tools, 241
logic resources, 250
physical synthesis technology for, 225
placement route tools, 254
power pins, 288
power supply requirements, 279, 288
programming, 151
prototype
AISC test insertion, 192
versus ASIC, 99
clock gating, 99
prototype designing, 97
routing matrix, 245
SRAM, 251
synthesis
dangers of options, 178
optimization options, 205
structure description, 186
tools, 223
technology
binary encoding, 217
sequential encoding, 217
timing analysis, 241
vendor, 161
FIFO, 96
library elements, 139
FPU. See Floating point unit (FPU)
Free-running oscillator, 277
Frequency
maximum, 6
FSM, 171, 205
compilation, 219
synthesis optimization, 216–219
RTL, 216
Full case directive, 171
synthesis, 195
Fully asynchronous resets problems
asynchronous versus synchronous, 140–143
Fully pipelined
AES architectures, 60–65
architecture, 60
FPU, 128
key expansion, 61
Fully synchronized resets, 142
asynchronous versus synchronous
circuits, 142–143
slow/gated clock, 143
Index

Input/output (I/O)
- buffer, register packs, 249
- packing
 - additional pipeline register, 250
 - imbalanced route delays, 249
 - registers place and route optimization, 248–249
Interconnect delay
- SDF entry, 162
Internal delays
- combinatorial logic, 169
Internally generated resets
- mixing reset types, 146–147
I/O. See Input/output (I/O)
Iterative implementation, 3
- computations, 3
Iterative key expansion, 56
Iterative loops
- HDL, 184
- penalty for unrolling, 16
Key-exp1
- single word expansion, 62
KeyExpansionEnc, 55
Key Expansion function, 60
Latches
- coding styles, 273, 278
- static timing analysis, 273–275
Latency, 1
LC trace parasitics, 239
Left/right channel select (LRCK), 102–105
- detection, 105
Linear regulation, 283
Load balancing method, 212
Localparam, 194
- human error, 195
Logic blocks
- built-in delays, 42
Logic duplication, 255
Logic replication
- place and route optimization, 246
Logic resources
- FPGA, 250
- sharing, 20
Logic structures
- levels of, 229
- non blocking structure, 183
Long critical path, 15
Long routes
- fan-out, 246
Look-up table
- subtypes, 51
Looping structures
- HDL designers, 183
Loops. See also Delay locked loop (DLL);
 - Phase locked loop (PLL)
- combinatorial
 - versus sequential loops, 186
 - synthesis coding traps, 185–186
 - synthesizing of, 278
- feedback mechanisms, 185
- for-loops
 - synthesis coding traps, 183–184
 - iterative
 - HDL, 184
 - penalty for unrolling, 16
 - sequential
 - combinatorial versus, 186
 - unrolling, 2, 4
Low latency
- architecting speed, 4–5
- implementation, 5
Low-pass DSP function, 70
Low-skew resources, 40
LRCK. See Left/right channel select (LRCK)
- hierarchy optimization, 248
- instantiation, 161
- SRAM implementation, 161
- timing, 162
MAC, 29
- FIR, 22
 - long path, 7
 - module, 30
 - operations, 79
Maclaurin series expansions, 122
Mantissa normalization, 129
Map-column hierarchy, 53
Mapping
- logic into RAM, 251
- sub-bytes module, 51
Math functions implementation,
- 117–126
 - hardware division, 117–121
Goldschmidt method, 120–121
iterative division, 119
multiply and shift, 118
Taylor and Maclaurin series expansion, 122–123
CORDIC algorithms, 124–125
MATLAB, 75
advanced simulation, 157
system stimulus creation, 152
Metastability
crossing clock domains, 86–87
timing violation, 87
Mix-column
hierarchy, 52
two pipeline stages, 52
Mixed reset types
implementation, 146
optimal implementation, 146
Mixing clock
hazards involved with, 190
Mixing reset types, 145–146
Modular designs decision
trees, 190
Monotonic power curve, 281
Multiple capacitors wide
band attenuation, 285
Multiple clock domains, 84
reset circuits, 148
reset synchronization with, 148
Multipliers
addition, 19
architectural design, 19
implementations, 22
output decoding, 74
separated stages, 10
shifting, 19
Mux
alternative input, 176
priority, 173
implementation, 173
serialized structure, 172

National Institute of Standards and Technology (NIST), 47
Natural pipeline
SRC, 263
N-channel MOSFET (NMOS), 43
NIST. See National Institute of Standards and Technology (NIST)
NMOS. See N-channel MOSFET (NMOS)
Nonblocking, 180
assignments, 155
code examples, 182
coding for synthesis, 183
race conditions of, 183
simple logic with, 180
versus blocking
synthesis coding traps, 180–182
Noncritical paths
register balancing, 213
Nonmonotonic power curve, 280
Nonresetable flip-flops
mixing reset types, 145
Normal regions, 128
Operating voltage
temperature settings, 243
Optimization across hierarchy
place and route optimization, 247
Optimization options
FPGA synthesis, 205
Optimization region, 207
Optimization without reset, 33
Output. See also Input/Output
decoding multipliers, 74
logic resources, 236
pins, 45
RAM interfaces, 236
resistive loads, 45
Over constrained, 207
Overflow issues, 9
Pack factor, 250
Parallel case directive, 171, 175
full case directives, 178
synthesis, 195
Parallel logic
SRC, 261
Parallel structures
creation, 8
timing, 8–9
Parameterization
synthesis coding, 191–194
Paramreg, 192
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>Partially pipelined architecture</td>
</tr>
<tr>
<td></td>
<td>AES architectures, 57–59</td>
</tr>
<tr>
<td></td>
<td>Partitioning, 188–189</td>
</tr>
<tr>
<td></td>
<td>between data path and control, 189</td>
</tr>
<tr>
<td></td>
<td>floorplan example design</td>
</tr>
<tr>
<td></td>
<td>microprocessor, 263</td>
</tr>
<tr>
<td></td>
<td>synchronizer blocks, 97, 97</td>
</tr>
<tr>
<td></td>
<td>synthesis coding, 188–190</td>
</tr>
<tr>
<td></td>
<td>PCB. See Printed circuit board (PCB)</td>
</tr>
<tr>
<td></td>
<td>P-channel MOSFET (PMOS), 42–43</td>
</tr>
<tr>
<td></td>
<td>PCI</td>
</tr>
<tr>
<td></td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>FIFO, 92</td>
</tr>
<tr>
<td></td>
<td>burstable Flash, 159</td>
</tr>
<tr>
<td></td>
<td>bus interface, 159</td>
</tr>
<tr>
<td></td>
<td>interface, 236</td>
</tr>
<tr>
<td></td>
<td>BFM, 158</td>
</tr>
<tr>
<td></td>
<td>standardized, 157</td>
</tr>
<tr>
<td></td>
<td>PDS. See Power distribution system (PDS)</td>
</tr>
<tr>
<td></td>
<td>Performance</td>
</tr>
<tr>
<td></td>
<td>pipelined architecture, 137</td>
</tr>
<tr>
<td></td>
<td>Performance reduction</td>
</tr>
<tr>
<td></td>
<td>register ordering, 252</td>
</tr>
<tr>
<td></td>
<td>Phase control</td>
</tr>
<tr>
<td></td>
<td>crossing clock domains, 88</td>
</tr>
<tr>
<td></td>
<td>techniques, 100</td>
</tr>
<tr>
<td></td>
<td>Phase locked loop (PLL), 88–89</td>
</tr>
<tr>
<td></td>
<td>Phase matching DLL, 88</td>
</tr>
<tr>
<td></td>
<td>Physical synthesis, 227</td>
</tr>
<tr>
<td></td>
<td>example design microprocessor, 262</td>
</tr>
<tr>
<td></td>
<td>flow versus standard, 230</td>
</tr>
<tr>
<td></td>
<td>FPGA technology, 225</td>
</tr>
<tr>
<td></td>
<td>graph based on, 226</td>
</tr>
<tr>
<td></td>
<td>optimization, 223–225, 262</td>
</tr>
<tr>
<td></td>
<td>tool, 223</td>
</tr>
<tr>
<td></td>
<td>Pipeline</td>
</tr>
<tr>
<td></td>
<td>architecture, 8, 66</td>
</tr>
<tr>
<td></td>
<td>example design floating-point unit, 128–137</td>
</tr>
<tr>
<td></td>
<td>FPU, 128</td>
</tr>
<tr>
<td></td>
<td>design data encryption, 60</td>
</tr>
<tr>
<td></td>
<td>example design microprocessor, 261</td>
</tr>
<tr>
<td></td>
<td>FIR implementation results, 79</td>
</tr>
<tr>
<td></td>
<td>implementation, 4</td>
</tr>
<tr>
<td></td>
<td>partially planned, 57</td>
</tr>
<tr>
<td></td>
<td>SRC processor, 257</td>
</tr>
<tr>
<td></td>
<td>moved into multiplier, 213</td>
</tr>
<tr>
<td></td>
<td>multiplier, 212</td>
</tr>
<tr>
<td></td>
<td>registers</td>
</tr>
<tr>
<td></td>
<td>addition, 8</td>
</tr>
<tr>
<td></td>
<td>latency, 16</td>
</tr>
<tr>
<td></td>
<td>latency of design, 5</td>
</tr>
<tr>
<td></td>
<td>removal, 5</td>
</tr>
<tr>
<td></td>
<td>rolling up, 35</td>
</tr>
<tr>
<td></td>
<td>SRC, 262</td>
</tr>
<tr>
<td></td>
<td>stages distribution, 51</td>
</tr>
<tr>
<td></td>
<td>synthesis optimization, 211–215, 261</td>
</tr>
<tr>
<td></td>
<td>well-defined interfaces, 231</td>
</tr>
<tr>
<td></td>
<td>Place and route optimization, 241–254</td>
</tr>
<tr>
<td></td>
<td>guided place and route, 254</td>
</tr>
<tr>
<td></td>
<td>I/O registers, 248–249</td>
</tr>
<tr>
<td></td>
<td>logic replication, 246</td>
</tr>
<tr>
<td></td>
<td>mapping logic into RAM, 251</td>
</tr>
<tr>
<td></td>
<td>optimal constraints, 241–243</td>
</tr>
<tr>
<td></td>
<td>optimization across hierarchy, 247</td>
</tr>
<tr>
<td></td>
<td>pack factor, 250</td>
</tr>
<tr>
<td></td>
<td>placement and routing relationship, 244–245</td>
</tr>
<tr>
<td></td>
<td>placement seed, 252–253</td>
</tr>
<tr>
<td></td>
<td>register ordering, 251</td>
</tr>
<tr>
<td></td>
<td>Placement-based synthesis, 206</td>
</tr>
<tr>
<td></td>
<td>Placement relationship</td>
</tr>
<tr>
<td></td>
<td>place and route optimization, 244–245</td>
</tr>
<tr>
<td></td>
<td>Placement seed</td>
</tr>
<tr>
<td></td>
<td>initial placement, 253</td>
</tr>
<tr>
<td></td>
<td>place and route optimization, 252–253</td>
</tr>
<tr>
<td></td>
<td>Placer seed</td>
</tr>
<tr>
<td></td>
<td>adjustment, 254</td>
</tr>
<tr>
<td></td>
<td>PLL. See Phase locked loop (PLL)</td>
</tr>
<tr>
<td></td>
<td>PMOS. See P-channel MOSFET (PMOS)</td>
</tr>
<tr>
<td></td>
<td>Polynomial multiplication X2, 53</td>
</tr>
<tr>
<td></td>
<td>Port in. See also Input/output (I/O) blocks, 75</td>
</tr>
<tr>
<td></td>
<td>Port out. See also Input/output (I/O) blocks, 75</td>
</tr>
<tr>
<td></td>
<td>Positive power rail, 42, 280, 281, 282</td>
</tr>
<tr>
<td></td>
<td>Positive slack</td>
</tr>
<tr>
<td></td>
<td>STA, 271</td>
</tr>
<tr>
<td></td>
<td>Power distribution system (PDS), 283</td>
</tr>
<tr>
<td></td>
<td>Power-of-3 example, 5</td>
</tr>
<tr>
<td></td>
<td>Power supply</td>
</tr>
<tr>
<td></td>
<td>PCB designers, 283</td>
</tr>
<tr>
<td></td>
<td>PCB issues, 279–282</td>
</tr>
<tr>
<td></td>
<td>requirements</td>
</tr>
<tr>
<td></td>
<td>FPGA, 279, 288</td>
</tr>
</tbody>
</table>
ramp time, 281
Preamble detection, 114
Prime implicant
 addition of, 148
Printed circuit board (PCB),
 279–288
decoupling capacitors, 283–286
calculating values, 285
capacitor placement, 286
design, 279, 283
power supply, 279–282
 regulation, 283
 supply requirements, 279–282
Priority encoding, 11
 absence, 12
 logic, 174
 removal, 16
Priority-less decision tree, 174
Priority mux, 173
 implementation, 173
Propagation delay
 clock signal, 39–40
Pulse width reference, 113
RAM
 cells, 251
 interfaces output logic resources, 236
 mapping logic, 251
 resetting, 29–30, 30
 synchronous blocks, 83
Ramp times, 281
 requirements
 power supply, 281
Reducing power dissipation
 floorplanning, 238–239
Register adder, 13
Register balancing, 14, 157, 205,
 212, 227
 architecting speed, 12–13
 improvements, 16
 mixed reset types, 215
 noncritical paths, 213
 pipelining, retiming, and register
 balancing, 213–214
 signal resynchronization, 215
 synthesis optimization, 211–215
 timing, 12–13
Register duplication
 balance route length, 246
Register layers
 addition, 16
 timing, 6–7
Register ordering
 performance reduction, 252
 place and route optimization, 251
Register packs
 I/O buffer, 249
Register stage
 add operations, 14
Reorder paths
 timing, 14
Repetitive shift-add operations,
 122
Resetable flip-flop code, 145
Reset circuits, 139–149
 asynchronous versus synchronous,
 140–144
 fully asynchronous resets problems,
 140–143
 fully synchronized resets, 142–143
 mixing reset types, 145–146
 internally generated resets,
 146–147
 nonresetable flip-flops, 145
 multiple clock domains, 148
Reset hazard
 example wave form, 147
Reset impact on area
 architecting area, 25–34
Reset implementations
 resource utilization, 27
Reset pin
 optimization, 34
 potential hazard, 147
Reset RAM
 architecting area, 29–30
Reset recovery
 compliance, 141
 time, 141
Reset structures, 25
Reset synchronization
 failure, 143
 multiple clock domains, 148
Reset types
 hazards involved with, 190
Resistive loads
 output pins, 45
Resistive termination, 45
Resistor inductor capacitor (RLC), 286
 model, 284
 resonance, 284
Resources
 pipelined architecture, 137
 sharing, 23, 157
 architecting area, 23–24
 optimization, 209
 synthesis optimization, 208–210
 utilization
 asynchronous resets, 29
 for BRAM, 31
 set implementations, 27
 shift register implementations, 26
 synchronous resets, 29, 31
 without reset
 asynchronous, 27–28
 reset impact on area, 25
 without set, 26
Resynchronization
 analog feedback, 91
 flip-flop, 100
 registers
 balancing applied to, 216
 synthesis optimization, 215
 without balancing, 216
 timing analysis, 100
Retiming
 balancing, 212
 synthesis optimization, 211–215
Reusability
 optimal floorplanning, 238
Ripple rate of change
 voltage, 282
RLC. See Resistor inductor capacitor (RLC)
Rolling up pipeline
 architecting area, 18–19
 method, 18
Round encryption, 50
Round key
 one stage for add, 52
 RoundsIterEnc, 55
Round sunblocks
 implementation, 51
Round transformation blocks, 65
Route algorithms, 253
Route optimizations, 241–254
Route tools
 FPGA placement, 254
 Routine delay, 267
 Routing effort
 performance versus placement, 245
 Routing matrix
 FPGA, 245
 simplification, 222
 Routing relationship
 place and route optimization, 244–245
RTL
 based design
 FPGA, 75
 coding for synthesis, 171, 175
 constrictive nature, 180
 FSM, 216
 gating removal, 99
 levels of abstraction, 74
 simulation, 87, 160
 StateCad implementation, 74
 synthesis, 79
 synthesis level, 206
 traps, 180
Run-time traps
 advanced simulation, 165–166
Safe mode, 219
 state machine implementation, 220
SDF. See Standard Delay Format (SDF)
Secure hash algorithm (SHA), 197
 algorithms, 197
 constant generator implementation, 203
 current values, 198
 NIST definition, 197
Self-checking test bench, 169
Separated counters, 23
Sequential bits
 ordering, 251
Sequential encoding
 FPGA technology, 217
Sequential loops
 versus combinatorial, 186
Serial audio data, 102
Serialized logic
 SRC, 260
Serialized mux structure
 simple priority, 172
Serial Peripheral Interface (SPI), 189
Set implementations
 external logic, 27
 resource utilization, 27
Set pin
 optimization, 34
SHA. See Secure hash algorithm (SHA)
SHA-1 architecture
 example design secure hash algorithm, 197–203
Shared counters, 24
Shared logic
 controls of reuse, 35
Shift register
 implementations, 219
 flip-flop, 26
 resource utilization, 26
SRL 16 element, 26
Shift rows
 AES architectures, 51
 implementation, 52
Shunt termination
 transmission lines, 45
Signal feedback
 timing violations, 91
Signal resynchronization
 register balancing, 215
Sign detection, 129–130
Simple clock gating
 poor design practice, 39
Simple-fixed point division architecture, 119
Simple 1/V curve
 CMOS transistor, 43
Simple RISC computer (SRC)
 architecture, 257–258
 critical paths, 261
 increase in target frequency, 260
 initial synthesis, 260
 memory, 258
 microprocessor, 257
 natural pipeline, 263
 parallel logic, 261
 pipelining, 259
 results with, 262
 processor
 implementation, 257
 registers, 258
 results with pipelining, 262
 serialized logic, 260
Simple synchronous logic
 OR gate, 31
Simplified asynchronous FIFO, 96
Simulation code, 153
Simulink model
 FIR filter, 76
Sine
 CORDIC angle, 125
 Taylor expansion, 126
 wave approximations, 123
Single clock domain
 STA, 276
Single word expansion
 Key-Exp1, 62
Skewing
 clock control, 40–41
 key pipeline, 62
 managing, 40–41
Slow/gated clock
 fully synchronous reset, 143
Soft start, 280
 circuit, 281
Software, 2
 high-level design, 80
 implementation, 185
Sony/Philips Digital Interface Format (SPDIF), 101, 107
 architecture, 109
 basic architecture, 108
 frame definition, 108
 input resynchronization, 113
 versus I2S, 107–114
 output synchronization, 115
 preambles, 108
 pulse width counter, 113
 receiver, 107
 sampling rates, 115
Source-synchronous, 101
 data stream, 105
SPDIF. See Sony/Philips Digital Interface Format (SPDIF)
Speed
 characteristics, 25
 versus constrained speed, 207
 definition, 1
 expense, 17
SPI. See Serial Peripheral Interface (SPI)
SRC. See Simple RISC computer (SRC)
SRL 16 element shift register, 26
STA. See Static timing analysis (STA)
Standard analysis
static timing analysis, 269–272
Standard Delay Format (SDF), 161
device delay, 162
interconnect delay, 162
Standard flow
versus physical synthesis flow, 230
Starting conditions
different placement, 253
State-CAD, 72
StateCad implementation
RTL, 74
State machine implementation, 220
safe mode, 220
State machines
implementation requirements, 22
State-transition diagrams, 70
Static hazard
asynchronous reset, 146
Static-1 hazard
identification of, 148
Static timing analysis (STA),
269–278
asynchronous circuits, 269,
276–277
combinatorial feedback, 277
comprehensive analysis, 272
false path, 272
induced latch, 274
latches, 273–275
multicycle path, 271
positive slack, 271
single clock domain, 276
standard analysis, 269–272
timing violations, 273
Steady-state current dissipation, 45
Sub-bytes
AES architectures, 51
8-bit mapping, 51
Subnormal detection, 129
Subnormal regions, 128
Supply sequencing, 282
Synchronous deassertion
asynchronous assertion, 144
method, 145
Synchronous digital circuits, 38
Synchronous elements, 83
Synchronous logic, 32
Synchronous reset
Xilinx BRAM, 30
Synchronous reset circuits
versus asynchronous, 140–144
Synchronous resets
resource utilization, 29, 31
Synchronous reset signals, 34
Synchronous set signals, 34
Synchronous timing paths, 270
Synplify
Identify, 160
Synplify DSP, 75, 76, 81
Synplify Premiere
results with physical synthesis, 262
Synplify Pro, 120
Synthesis coding, 171, 172–195
decision trees, 172–179
full conditions, 176–179
multiple control branches, 179
priority versus parallel, 172–176
design organization, 188–194
parameterization, 191–194
partitioning, 188–190
traps, 180–187
blocking versus nonblocking, 180–182
combinatorial loops, 185–186
for-loops, 183–184
inferred latches, 187
Synthesis core
dsp core, 29
Synthesis flow
black boxes, 220
Synthesis optimization, 206–226
black boxes, 220–222
Fsm compilation, 216–219
unreachable states removal, 219
grey code creation, 218
HDL language, 171
physical synthesis, 223–225
forward annotation versus
back-annotations, 224
graph-based physical synthesis, 225
pipelining, retiming, and register
balancing, 211–215
reset effect on register balancing,
213–214
resynchronization registers, 215
potential hazard, 218
resource sharing, 208–210
speed versus area, 206–207
Synthesis optimizations
example design microprocessor, 259–262
Synthesis-provided resource sharing option, 208
Synthesis tags, 176
Synthesis tools
behavioral tools, 184
decision trees, 179
structure reports, 176
Synthesizable
HDL, 184
System stimulus
advanced simulation, 157–158
Taylor and Maclaurin series expansion
math functions implementation, 122–123
Taylor expansion, 122
calculation of cosine operations, 126
calculation of sine operations, 126
Temperature settings, 255
default operating voltage, 243
operating voltage, 243
Terminations modification
architecting power, 45
Testbench
architecture, 152–155
BFM, 158
calls, 153
components, 152
advanced simulation, 152
development of, 154
flow, 153–155
gate-level blocks, 160
organization, 152
shell, 163
32-bit floating point representation, 128
32-bit key expansion stages
propagation through, 61
Three-wire synchronous protocol
I2S, 102
Throughput (speed)
expense, 17
Time-domain power curve, 280
Timescale
directive, 165
run-time traps, 165
Timing, 1
analysis
clock speed design reference, 16
direct impact, 16
LUT, 162
measurement of, 277
paths
FPGA, 277
reordering, 16
violation
back-annotation, 224
metastability, 87
phase relationship, 86
signal feedback, 91
STA, 273
Toggle coverage
advanced simulation, 162
Transistors
intermediate voltage, 86
Transmission lines
shunt termination, 45
Transport delay, 165, 166, 167
behavior, 168
results, 168
Traps
synthesis coding, 180–187
True utilization, 250
Two-phase latching, 275
Ultra low-power design
techniques, 37
Under constrained, 207
Unreachable states removal
synthesis optimization, 219
Unrolling loops, 2
penalty to pay, 4
User interfaces, 81
US National Institute of Standards and Technology, 47
Utilizing set/reset flip-flop pins, 31–34
VDD (positive power rail), 42, 280, 281, 282
Vector change dump, 164
Verify output function, 156
Verilog, 66, 153, 156, 180
code, 76, 91
defparam, 193
implementation, 131–136
language, 167
representation, 73
Verilog-2001, 193, 194
VHDL, 180
language, 174
Virtex-II device, 242
Voltage
architecting power, 44
FPGA devices, 242
ripple rate of change, 282
settings, 255
supply reduction, 44
transistors, 86
Xilinx, 161, 252, 286
implementation, 278
state-machine editor, 72
Xilinx BRAM
asynchronous reset
logic, 31
synchronous reset, 30
Xilinx-cool runner-II dual-edge flip-flops, 45
Xilinx DSP block
with synchronous reset, 28
Xilinx Spartan-3
area statistics, 204
implementation, 137
speed statistics, 204
XC3S50, 115
Xilinx Virtex
area statistics, 66
speed statistics, 66
Xilinx Virtex-2, 259
Xilinx Virtex-4 devices, 30
Xilinx Virtex II FPGA, 66
Xpower tool, 286