Contents

Preface xiii
Acknowledgments xv

1. Architecting Speed 1
 1.1 High Throughput 2
 1.2 Low Latency 4
 1.3 Timing 6
 1.3.1 Add Register Layers 6
 1.3.2 Parallel Structures 8
 1.3.3 Flatten Logic Structures 10
 1.3.4 Register Balancing 12
 1.3.5 Reorder Paths 14
 1.4 Summary of Key Points 16

2. Architecting Area 17
 2.1 Rolling Up the Pipeline 18
 2.2 Control-Based Logic Reuse 20
 2.3 Resource Sharing 23
 2.4 Impact of Reset on Area 25
 2.4.1 Resources Without Reset 25
 2.4.2 Resources Without Set 26
 2.4.3 Resources Without Asynchronous Reset 27
 2.4.4 Resetting RAM 29
 2.4.5 Utilizing Set/Reset Flip-Flop Pins 31
 2.5 Summary of Key Points 34

3. Architecting Power 37
 3.1 Clock Control 38
 3.1.1 Clock Skew 39
 3.1.2 Managing Skew 40
viii Contents

3.2 Input Control 42
3.3 Reducing the Voltage Supply 44
3.4 Dual-Edge Triggered Flip-Flops 44
3.5 Modifying Terminations 45
3.6 Summary of Key Points 46

4. Example Design: The Advanced Encryption Standard 47

4.1 AES Architectures 47
 4.1.1 One Stage for Sub-bytes 51
 4.1.2 Zero Stages for Shift Rows 51
 4.1.3 Two Pipeline Stages for Mix-Column 52
 4.1.4 One Stage for Add Round Key 52
 4.1.5 Compact Architecture 53
 4.1.6 Partially Pipelined Architecture 57
 4.1.7 Fully Pipelined Architecture 60
4.2 Performance Versus Area 66
4.3 Other Optimizations 67

5. High-Level Design 69

5.1 Abstract Design Techniques 69
5.2 Graphical State Machines 70
5.3 DSP Design 75
5.4 Software/Hardware Codesign 80
5.5 Summary of Key Points 81

6. Clock Domains 83

6.1 Crossing Clock Domains 84
 6.1.1 Metastability 86
 6.1.2 Solution 1: Phase Control 88
 6.1.3 Solution 2: Double Flopping 89
 6.1.4 Solution 3: FIFO Structure 92
 6.1.5 Partitioning Synchronizer Blocks 97
6.2 Gated Clocks in ASIC Prototypes 97
 6.2.1 Clocks Module 98
 6.2.2 Gating Removal 99
6.3 Summary of Key Points 100

7. Example Design: I2S Versus SPDIF 101

7.1 I2S 101
 7.1.1 Protocol 102
 7.1.2 Hardware Architecture 102
Contents

7.1.3 Analysis 105
7.2 SPDIF 107
7.2.1 Protocol 107
7.2.2 Hardware Architecture 108
7.2.3 Analysis 114

8. Implementing Math Functions 117
8.1 Hardware Division 117
8.1.1 Multiply and Shift 118
8.1.2 Iterative Division 119
8.1.3 The Goldschmidt Method 120
8.2 Taylor and Maclaurin Series Expansion 122
8.3 The CORDIC Algorithm 124
8.4 Summary of Key Points 126

9. Example Design: Floating-Point Unit 127
9.1 Floating-Point Formats 127
9.2 Pipelined Architecture 128
9.2.1 Verilog Implementation 131
9.2.2 Resources and Performance 137

10. Reset Circuits 139
10.1 Asynchronous Versus Synchronous 140
10.1.1 Problems with Fully Asynchronous Resets 140
10.1.2 Fully Synchronized Resets 142
10.1.3 Asynchronous Assertion, Synchronous Deassertion 144
10.2 Mixing Reset Types 145
10.2.1 Nonresetable Flip-Flops 145
10.2.2 Internally Generated Resets 146
10.3 Multiple Clock Domains 148
10.4 Summary of Key Points 149

11. Advanced Simulation 151
11.1 Testbench Architecture 152
11.1.1 Testbench Components 152
11.1.2 Testbench Flow 153
11.1.2.1 Main Thread 153
11.1.2.2 Clocks and Resets 154
11.1.2.3 Test Cases 155
11.2 System Stimulus 157
 11.2.1 MATLAB 157
 11.2.2 Bus-Functional Models 158
11.3 Code Coverage 159
11.4 Gate-Level Simulations 159
11.5 Toggle Coverage 162
11.6 Run-Time Traps 165
 11.6.1 Timescale 165
 11.6.2 Glitch Rejection 165
 11.6.3 Combinatorial Delay Modeling 166
11.7 Summary of Key Points 169

12. Coding for Synthesis 171

12.1 Decision Trees 172
 12.1.1 Priority Versus Parallel 172
 12.1.2 Full Conditions 176
 12.1.3 Multiple Control Branches 179
12.2 Traps 180
 12.2.1 Blocking Versus Nonblocking 180
 12.2.2 For-Loops 183
 12.2.3 Combinatorial Loops 185
 12.2.4 Inferred Latches 187
12.3 Design Organization 188
 12.3.1 Partitioning 188
 12.3.1.1 Data Path Versus Control 188
 12.3.1.2 Clock and Reset Structures 189
 12.3.1.3 Multiple Instantiations 190
 12.3.2 Parameterization 191
 12.3.2.1 Definitions 191
 12.3.2.2 Parameters 192
 12.3.2.3 Parameters in Verilog-2001 194
12.4 Summary of Key Points 195

13. Example Design: The Secure Hash Algorithm 197

13.1 SHA-1 Architecture 197
13.2 Implementation Results 204

14. Synthesis Optimization 205

14.1 Speed Versus Area 206
14.2 Resource Sharing 208
14.3 Pipelining, Retiming, and Register Balancing 211
 14.3.1 The Effect of Reset on Register Balancing 213
 14.3.2 Resynchronization Registers 215
14.4 FSM Compilation 216
 14.4.1 Removal of Unreachable States 219
14.5 Black Boxes 220
14.6 Physical Synthesis 223
 14.6.1 Forward Annotation Versus Back-Annotation 224
 14.6.2 Graph-Based Physical Synthesis 225
14.7 Summary of Key Points 226

15. Floorplanning 229
 15.1 Design Partitioning 229
 15.2 Critical-Path Floorplanning 232
 15.3 Floorplanning Dangers 233
 15.4 Optimal Floorplanning 234
 15.4.1 Data Path 234
 15.4.2 High Fan-Out 234
 15.4.3 Device Structure 235
 15.4.4 Reusability 238
 15.5 Reducing Power Dissipation 238
 15.6 Summary of Key Points 240

16. Place and Route Optimization 241
 16.1 Optimal Constraints 241
 16.2 Relationship between Placement and Routing 244
 16.3 Logic Replication 246
 16.4 Optimization across Hierarchy 247
 16.5 I/O Registers 248
 16.6 Pack Factor 250
 16.7 Mapping Logic into RAM 251
 16.8 Register Ordering 251
 16.9 Placement Seed 252
 16.10 Guided Place and Route 254
 16.11 Summary of Key Points 254

17. Example Design: Microprocessor 257
 17.1 SRC Architecture 257
 17.2 Synthesis Optimizations 259
 17.2.1 Speed Versus Area 260
Contents

17.2.2 Pipelining 261
17.2.3 Physical Synthesis 262
17.3 Floorplan Optimizations 262
 17.3.1 Partitioned Floorplan 263
 17.3.2 Critical-Path Floorplan: Abstraction 1 264
 17.3.3 Critical-Path Floorplan: Abstraction 2 265

18. **Static Timing Analysis** 269
 18.1 Standard Analysis 269
 18.2 Latches 273
 18.3 Asynchronous Circuits 276
 18.3.1 Combinatorial Feedback 277
 18.4 Summary of Key Points 278

19. **PCB Issues** 279
 19.1 Power Supply 279
 19.1.1 Supply Requirements 279
 19.1.2 Regulation 283
 19.2 Decoupling Capacitors 283
 19.2.1 Concept 283
 19.2.2 Calculating Values 285
 19.2.3 Capacitor Placement 286
 19.3 Summary of Key Points 288

Appendix A 289

Appendix B 303

Bibliography 319

Index 321