Index

a
Absorbed energy 382
Admittance matrix
 lossy, homogeneous medium 20
 lossy, inhomogeneous medium 168
Admittance parameters
 transmission-line networks 139
Adverse health effects 312, 339, 344–347, 354, 365
Aerial mode 118, 121
Ampere’s law
 frequency domain 135, 207, 225
 lossy medium 155, 168, 207, 230, 239, 288
Analytical methods 6, 33, 82, 114, 126
Antenna
 centre-fed antenna 120, 128, 139, 145, 226, 228
 dipole antenna 6, 103, 109, 110, 133, 142, 198–200, 226, 228, 229
 linear antenna 35, 43, 45, 53, 118, 138, 139, 314
 parameters of antenna 33–35, 87, 93, 139, 163, 194, 198, 212, 225, 238, 242, 253, 263, 387
BLT equations:
 chain parameter matrix:
 phasor MTL 162, 213, 261
 properties of 93, 154, 205, 206
Boundary conditions
 Dirichlet 44, 355
 Neumann 355
Boundary element method (BEM)
 computational example 35, 42, 154, 205, 238, 253, 341, 353, 365
 discretization 167, 178, 180, 322, 323, 365
Boundary elements
 constant 95, 133, 137, 395
 isoparametric 137, 139, 210, 297, 300, 314, 353
 linear 35, 43, 45, 92, 137, 139, 178, 180, 241, 258, 264, 297, 314, 395
 quadratic 138, 139
Buried cables see Transmission below ground

b
Bessel function 39, 65, 94, 170, 184, 220, 254, 259, 261
Biconical transmission line 133, 144

© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
Index

Classes of transmission lines 50, 52, 57–60, 72, 74, 75
Coaxial cable
 conductance of 142, 145
Coefficients of potential 359–360
Common-impedance coupling
time-domain solution 213
Common-mode currents
 creation by asymmetries 6
Complementary error function 44, 159
Computed results, incident field illumination 372
Conductance
 coaxial cable 132, 142, 145
two-wire line 185, 230
Conductance matrix
definition of 93, 162
MTL definition of 162
Conducted emission 35, 340
 susceptibility 35
Conduction current 21, 30
Conductive loss 155
Conductivity, effective 306
Conformal mapping method 366
Conservation law 3, 20–22
Continuity equation
 incident field illumination 361
Continuous wave 34
Convolution, incident field illumination 168, 171
Convolution integral
 lossy line solution 168
Courant condition 180
Cross-sectional dimensions
 TEM restrictions 72
Current
 common mode 12, 312
differential mode 5, 10, 43, 54, 61, 74, 292, 297, 300, 301, 322
 transmission line 93, 153, 162, 182, 212, 219, 237, 253, 261, 263, 301, 304, 313, 324, 395
d
Decoupling MTL equations
Detection 198
Differential operator 5, 6, 110, 167, 322
Direct approach 35
Displacement current 10, 11, 345
Distributed parameters 34
e
Eddy currents
Electrically-short line, incident field illumination 46
Electrically-small cross section 35, 205
Electric field, sinusoidal charge expansion
Electric flux density vector 10
Electromagnetic interference (EMI) 33–35, 122, 163
 pulse (EMP) 82, 184, 185
 wave equations 19–20, 25, 29–30
Electrostatic fields 353, 354, 360, 361
Entire domain basis functions 136, 137
f
Faraday’s law
 integral form 10
Field
 approach 4, 5, 9
Finite element method (FEM)
 weak formulation 137, 356, 368
Flux density 10, 12, 19, 25, 343, 349, 381
Fourier transform 27, 72, 153, 186, 213, 219, 223, 225, 226, 288, 299
Frequency domain modeling 199, 205–215
Full-wave approach 34, 153, 205, 216, 253, 313

Gain 142, 193, 199
Galerkin Bubnov
 Indirect boundary element method
 (GB-IBEM) 42, 154, 161, 205, 238, 253, 395
 procedure 44, 242, 367
Gauss’ law
 finite difference method 110
Gauss’ laws, time domain 201
Generalized capacitance matrix
 conversion to MTL 93
 two-conductor line 184
Global nodes, finite element method 357
Grounding
 grids 17–19, 253, 297, 298, 304, 306, 307, 309, 312
 systems 15–17, 205, 230, 237, 253–331
Grounding horizontal electrode 84, 265–272, 312, 313, 315, 316, 319, 320, 328
Ground plane, incident Field illumination

h
 Hallen integral equation 167, 168, 175, 199
 Heating 340, 345–349, 365
Human body
 average value 387
 realistic model (BEM) 365
 root-mean-square value 342
 transient current 313, 341
 transient radiation 341
Human exposure
 assessment of 349, 351

i
 Impedance, internal of wires 39, 51, 65, 79
 Impedance parameters
 Incident fields 36, 350, 351
 Incident waves 109, 199
 Indirect approach 35, 153
 Induced currents 51, 153, 300, 341, 343, 345
 Inductance matrix:
 definition of 162, 182
 Input impedance 117, 122, 134, 135, 230, 284, 285, 299, 304
Integral
 equation formulation 35, 36, 226, 230, 234, 240, 253, 254, 258, 288, 321, 322
 transform 21
Interference 163, 339
Internal inductance
 surface impedance 39
Internal inductance matrix 162

k
 Kirchhoff’s laws, transmission-line networks 298, 300, 400
Lagrange’s polynomials 45
Lagrangian formulation 45
Laplace’s equation
 finite difference method 353
 finite element method 353, 354
 transverse fields 63
Laplace transform
 in lossy line solution 63, 77
Lightning
 effects 237
 protection 237, 253, 311, 312
Lightning rod, modeling of, 225, 230–237. See also Grounding
Local nodes, finite element method (FEM) 110, 137, 138, 211, 313, 341, 353, 365
Lorentz Gauge 62, 76, 155, 168, 207, 239
Loss: conduction
 polarization 342
Lossy MTLs, decoupled 182
Low frequency field, effects of 353–354

Magnetic flux density vector 10, 19, 343
Matrix
 dense 353, 366
 finite element 356–357, 381
 global system 367
 ideal system 257, 284
 symmetric 27–29, 354
Maxwell’s equations
 differential form 10, 13, 19, 26, 33, 116
 frequency domain 169, 225, 288
 integral form 10, 11, 15, 117, 238
Method of characteristics
 for lossy MTLs 182
Method of images
dielectric half space 184, 186, 199, 200
Method of Moments (MoM)
 incident field illumination 133, 227, 368
Mixed termination representation
 incident field illumination 133
terminal constraints 134
Mode voltages and currents
 frequency domain 162, 212
Modified image theory (MIT) 77, 89, 109, 110, 216, 217, 289, 320
MTL equations
 frequency domain 162, 297
 lossy lines 182
 matrix form 181
 second-order form 301
time domain 213

Nonuniform line: approximate representation of
 definition of 347
 examples of 347
Numerical recipes
 $n + 1$ wires, inductance matrix 162

Ohm’s law 361, 388
Overhead lines. see Transmission lines above

Permittivity: complex
 or free space 235
Pocklington integral equation 36, 38, 44, 54, 64–65, 156, 240
Point matching technique 139, 264
Polarization charge 342
Polarization loss 158
Potential
 electric scalar 25, 28, 37, 51, 61
 magnetic scalar 28
Index

magnetic vector 25, 26, 28, 37, 61–63, 67, 77, 169, 207
retarded 25–26
wave equation 26, 76
Power flow 21
Poynting theorem 20, 29–30
Printed circuit board (Cont.) effective
dielectric
Galerkin method potential 137
inductance matrix 162, 182
Propagation constant
of the TEM mode 72
two-conductor line 184

q
Quadratic form, finite element method 139
Quasistatic
computational sample 35
formulation 361

r
Radiated
emission 35
field 26, 117, 120, 126, 155, 160, 161, 165, 166
susceptibility 35
Radiation
efficiency 387
intensity 348
ionizing 339, 340
nonionizing 339, 349
pollution
power density 344, 349, 350
Radio base station antenna 348
Receptor circuit, three-conductor line 87, 154, 162
Reference conductor, of MTL 57
Reflection coefficients
current 253, 254, 288
two-conductor line 36, 154, 206, 253, 256, 289
voltage 253, 254, 288
Reflection coefficient matrix 154, 206
Resistance matrix, definition of 183
Resistance, wires 153, 183, 243, 315, 325

s
Scattered fields 36, 51, 87, 154
Scattered voltage, definition 39, 45
Shielded MTLs, parameters of 94, 301
Sidefire excitation, incident field
illumination 37, 61, 388
Similarity transformation, phasor MTL
equation solution 182
Singularity 110, 358
Skin depth 12
Skin effect 186
Specific absorption 342
Subdomain expansion functions 136, 137
Superposition 168
Surface impedance, conductive half
space 39, 255

T
TEM mode of propagation, properties of 72
Thin wire
frequency domain (FD) 62, 72, 77, 133, 153, 169, 187, 205
time domain (TD) 64, 65, 78, 153, 167, 168, 185, 205, 216
Thin wire-free space (FD)
coated wire
BEM solution
computational example 360
near field 360
horizontal array
BEM solution
Computational example 360
isoparametric 353
linear 35, 178, 264
loop antenna
Thin wire-free space (FD) (contd.)
 BEM solution
 computational example 360
 single wire
 BEM solution
 isoparametric 353
 linear 35, 178, 264
 computational examples 360
 vertical array
 computational examples 360
Thin wire-free space (TD)
 computational examples 360
 energy measures
 numerical solution 86, 115, 133, 136, 167
 single wire
 electric field 87, 155, 168, 238
 nonlinear loading
 numerical solution 86, 115, 133, 136, 167
 resistive loading
 numerical solution 87, 95, 175, 300
 two coupled wires
 numerical solution 86, 115, 133, 136, 167
Thin wire-lossy half space-(FD)
 multiple wire
 computational examples 360
 single wire
 BEM solution 178
 computational examples 95
 electric field 87, 155, 168, 238
 reflection coefficient 206
 Sommerfeld integral approach 238
Thin wire-lossy half-space (TD)
 array
 numerical solution 86, 115, 133, 136, 167
 computational examples 360
 single wire
 electric field 87, 155, 168, 238
 nonlinear loading 167, 168, 205
 numerical solution 86, 115, 133, 136, 167
 resistive loading 168, 205
 two coupled wires
 numerical solution 86, 115, 133, 136, 167
 Time-Shift operator 174
 Transient
 phenomena 34
 response
 computational example 83, 223, 242, 323
 Transmission coefficients, voltage 54
 Transmission-line equations,
 two-conductor line 182
 Transmission-line networks 163
 Transmission lines-above ground (FD)
 computational examples 153
 telegrapher's equations 154
 Transmission lines-above ground (TD)
 computational examples 153
 Transmission lines-below ground (FD)
 computational examples 236
 formulation 205
 numerical solution 114
 Transmission lines-below ground (TD)
 computational examples 236
 energy measures 340
 formulation 87, 205, 230, 238
 numerical solution 87
 Triangular elements 371, 379, 389, 390
 Tube, transmission-line network 163
 Two-conductor line
 equivalent circuit 41, 55, 56, 68, 82
 frequency-domain solution 63, 66
 incident field illumination 46, 342
 input impedance of 299
 lossless line equations 41, 44, 68, 71
 phasor voltage and current of 30
power flow on 21
propagation constant of 184
series solution 325
time-domain solution 154, 213

u
UHF communications 193
Uniform line Uniform plane wave:
 frequency-domain characterization 133, 162, 219
 time-domain characterization 71, 83, 103, 168, 185, 219, 223

v
Velocities of propagation, of modes 187
Visual Numerics 193
Voltage: definition of two-conductor line 40, 54, 66
Voltages, of MTL 162

w
Wave equations, frequency domain 77, 153, 219
Weighted residual approach 137, 175, 177, 180, 211, 242, 257, 322, 356, 357, 367, 379, 391
Wide-separation approximations:
 printed circuit board 13
Wire:
 antenna 34, 35, 87, 115, 120, 132, 133, 153, 163, 168, 205, 216, 242, 243, 392, 394
 electric field of 135, 136, 213
 internal inductance of 41, 55, 56, 68, 70, 82, 93, 162, 183, 325
 magnetic field of 14, 35, 36, 51, 61, 74, 86, 87, 93, 117, 153, 154, 160, 162, 165, 167, 205–223, 342
 resistance of 71, 153, 183, 186, 187, 243, 315, 325
 scatterer 78, 82, 84, 127, 168, 216, 218
 voltage of 36, 39, 40, 51, 54
Wire above ground line:
 capacitance of 42, 43
 inductance of 42, 43

y
Yagi-Uda array 190