CONTENTS

2.1.5 Redlich–Kwong Equation of State 24

2.2 Thermodynamics 25
 2.2.1 Ideal Gas 27
 2.2.2 Real Gas 29

2.3 Transport Properties 31
 2.3.1 Viscosity 31
 2.3.2 Diffusion Coefficients 35
 2.3.3 Thermal Conductivity 38
 2.3.4 Ideal Gases 38

References 42

3 FLUID KINEMATICS 45

3.1 Path to Conservation Equations 46

3.2 System and Control Volume 48
 3.2.1 Extensive and Intensive Variables 48
 3.2.2 Reynolds Transport Theorem 49
 3.2.3 Substantial Derivative 52
 3.2.4 Substantial Derivative of a Scalar Field 53
 3.2.5 Fluid Acceleration, Substantial Derivative of Velocity 55

3.3 Stress and Strain Rate 58

3.4 Fluid Strain Rate 59
 3.4.1 The z-r Projection 60
 3.4.2 The r-θ Projection 62
 3.4.3 The z-θ Projection 64
 3.4.4 Strain-Rate Tensor 65

3.5 Vorticity 68

3.6 Dilatation 69

3.7 Stress Tensor 70
 3.7.1 Stress Vectors and Tensors 70
 3.7.2 Differential Cylindrical Element 73
 3.7.3 Stress-Tensor Symmetry 75
 3.7.4 Net Force from Stress on Control Surfaces 76
 3.7.5 Forces on a Differential Element 77

3.8 Stokes Postulates 79
 3.8.1 Static Fluid 80
 3.8.2 Principal Stress–Strain-Rate Relationships 80

3.9 Transformation from Principal Coordinates 83
 3.9.1 Physically Based Transformation 84

3.10 Stokes Hypothesis 88

3.11 Summary 88
4 Conservation Equations

4.1 Mass Continuity
- **4.1.1 Stream Function**
- **4.1.2 Axisymmetric Stream Function**
- **4.1.3 Polar Stream Function**

4.2 Navier–Stokes Equations
- **4.2.1 Constant Viscosity, General Vector Form**
- **4.2.2 Cylindrical Coordinates, Constant Viscosity**
- **4.2.3 Incompressible Flow**
- **4.2.4 Incompressible, Constant Viscosity**

4.3 Species Diffusion
- **4.3.1 Mass and Mole Measures**
- **4.3.2 Diffusive Mass Flux**
- **4.3.3 Stefan–Maxwell Equations**

4.4 Species Conservation
- **4.4.1 Conservation Law for Individual Species**
- **4.4.2 Cylindrical Differential Control Volume**
- **4.4.3 Continuity in Terms of Composition Gradients**
- **4.4.4 Summation of Species Continuity**

4.5 Conservation of Energy
- **4.5.1 Heat-Transfer Rate**
- **4.5.2 Rate of Work**
- **4.5.3 Total Energy Equation in Vector Form**

4.6 Mechanical Energy

4.7 Thermal Energy
- **4.7.1 Dissipation Function**
- **4.7.2 Thermal Energy Equation**
- **4.7.3 Ideal Gas**
- **4.7.4 Cylindrical Coordinates, Ideal Gas**
- **4.7.5 Incompressible, Single-Component Fluid**

4.8 Ideal Gas and Incompressible Fluid

4.9 Conservation Equation Summary
- **4.9.1 General Vector Form**
- **4.9.2 Ideal Gas, Cylindrical Coordinates**

4.10 Pressure Filtering

4.11 Helmholtz Decomposition

4.12 Potential Flow

4.13 Vorticity Transport
- **4.13.1 Pressure and Vorticity Fields**
- **4.13.2 Stream Function and Vorticity**
- **4.13.3 Example in Polar Coordinates**
5工资 FLOWS

5.1 Nondimensionalization
5.2 Couette and Poiseuille Flows
 5.2.1 Axial Flow between Concentric Cylinders
 5.2.2 Numerical Solution
 5.2.3 Drag
 5.2.4 Viscous Dissipation
 5.2.5 Energy Balance
5.3 Hagen–Poiseuille Flow in a Circular Duct
 5.3.1 Relationship of Pressure Gradient and Friction Factor
 5.3.2 Non-Dimensional Formulation
5.4 Ducts of Noncircular Cross Section
5.5 Hydrodynamic Entry Length
5.6 Transient Flow in a Duct
5.7 Richardson Annular Overshoot
 5.7.1 Uniform Flow
 5.7.2 Zero-Mean Flow
5.8 Stokes Problems
 5.8.1 Difference Equations
 5.8.2 Explicit Euler Method
 5.8.3 Implicit Euler Method
 5.8.4 Boundary Conditions
 5.8.5 Stability and Accuracy
 5.8.6 Solution by Method of Lines
 5.8.7 Rotating-Shaft Problem
 5.8.8 Rotating-Cylinder Problem
5.9 Rotating Shaft in Infinite Media
5.10 Graetz Problem
References

6 SIMILARITY AND LOCAL SIMILARITY

6.1 Jeffery–Hamel Flow
6.2 Planar Wedge Channel

References
CONTENTS

6.2.1 Analytic Solution 198
6.2.2 Numerical Solution 199
6.2.3 Flow Behavior 200
6.2.4 Limiting Cases 201
6.2.5 Heat and Mass Transfer 202

6.3 Radial-Flow Reactors 205

6.4 Spherical Flow between Inclined Disks 206

6.5 Radial Flow between Parallel Disks 209

6.5.1 Radial Convection Included 209
6.5.2 Radial Poiseuille Flow 212

6.6 Flow between Plates with Wall Injection 214

6.6.1 Flow without Wall Injection 217
6.6.2 Equal Velocities through the Lower and Upper Plates 219
6.6.3 Injection through Only One Wall 221

References 224

7 STAGNATION FLOWS 225

7.1 Similarity in Axisymmetric Stagnation Flow 226

7.1.1 Physical Evidence for Similarity 226
7.1.2 Stagnation-Flow Regimes 228

7.2 Generalized Steady Axisymmetric Stagnation Flow 228

7.2.1 Equation Summary 230
7.2.2 Boundary Conditions 232

7.3 Semi-Infinite Domain 232

7.3.1 Inviscid Stagnation Flow 233
7.3.2 Incompressible, Isothermal Flow 234
7.3.3 Numerical Solution 238
7.3.4 Third-Order Equations 239
7.3.5 Surface Shear Stress 241
7.3.6 Surface Heat Transfer 241

7.4 Finite-Gap Stagnation Flow 242

7.4.1 Nondimensional Finite-Gap System 243
7.4.2 Vorticity Transport 246
7.4.3 Radial Inlet Velocity 248
7.4.4 Nusselt-Number Correlation 248
7.4.5 Surface Mass Transfer 250
7.4.6 Sherwood Number 252

7.5 Finite-Gap Numerical Solution 252

7.5.1 Difference Equations 253
7.5.2 Upwind Differencing 254

7.6 Rotating Disk 255

7.6.1 Boundary-Layer Thickness 259
CONTENTS

7.6.2 Nusselt Number 260
7.7 Rotating Disk in a Finite Gap 260
 7.7.1 Nusselt Number 262
 7.7.2 Starved Flow 263
 7.7.3 Inlet Swirl 265
7.8 Unified View of Axisymmetric Stagnation Flow 265
 7.8.1 Characteristic Scales 266
 7.8.2 Boundary Conditions 267
 7.8.3 Sherwood and Nusselt Numbers 268
 7.8.4 General Correlations 269
7.9 Planar Stagnation Flows 270
7.10 Opposed Flow 273
7.11 Tubular Flows 274
 7.11.1 Nondimensionalization 279
 7.11.2 Purely Radial Inflow 279
7.12 Stagnation-Flow Chemical Vapor Deposition 280
7.13 Boundary-Layer Bypass 285
References 287

8 BOUNDARY-LAYER CHANNEL FLOW 291

8.1 Scaling Arguments for Boundary Layers 292
 8.1.1 Energy and Species Equations 296
 8.1.2 Channel Boundary-Layer Summary 297
8.2 General Setting Boundary-Layer Equations 298
 8.2.1 Annular Boundary-Layer Flow 299
8.3 Boundary Conditions 299
8.4 Computational Solution 300
8.5 Introduction to the Method of Lines 302
 8.5.1 Example of Inconsistent Initial Conditions 303
8.6 Method-of-Lines Boundary-Layer Algorithm 304
 8.6.1 Temperature and Composition Effects 307
8.7 Von Mises Transformation 308
8.8 Von Mises Formulation as DAEs 311
 8.8.1 Consistent Initial Conditions 312
8.9 Hydrodynamic Entry Length 314
8.10 Physical and von Mises Coordinates 314
8.11 General von Mises Boundary Layer 315
8.12 Limitations 317
8.13 Chemically Reacting Channel Flow 318
 8.13.1 Surface Oxidation 318
References 319
11.1.1 Viscosity 372
11.1.2 Thermal Conductivity 373
11.1.3 Diffusion Coefficient 374

11.2 Molecular Interactions 375
11.2.1 Lennard-Jones Potential 376
11.2.2 Stockmayer Potential 377
11.2.3 Parameter Estimation 381
11.2.4 Interaction Parameter Combining Rules 383

11.3 Kinetic Gas Theory of Transport Properties 384
11.3.1 Kinetic Gas Theory Preliminaries 384
11.3.2 Viscosity 385
11.3.3 Thermal Conductivity 387
11.3.4 Diffusion Coefficient 389

11.4 Rigorous Theory of Transport Properties 391
11.4.1 The Boltzmann equation 391
11.4.2 Chapman-Enskog theory 395

11.5 Evaluation of Transport Coefficients 399
11.5.1 Pure Species Viscosity 399
11.5.2 Pure Species Thermal Conductivity 399
11.5.3 Binary Diffusion Coefficients 401
11.5.4 Polynomial Fits of Temperature Dependence 401
11.5.5 Mixture-Averaged Properties 402
11.5.6 Multicomponent Properties 402

11.6 Momentum and Energy Fluxes 406
11.7 Species Fluxes 406
11.7.1 Convective and Diffusive Velocities 406
11.7.2 Multicomponent Evaluation 408
11.7.3 Stefan–Maxwell Formulation 409
11.7.4 Mixture-Averaged Evaluation 409
11.7.5 Generalized Flux Driving Forces 412

11.8 Diffusive Transport Example 413

References 415

12 MASS-ACTION KINETICS 417

12.1 Gibbs Free Energy 418
12.1.1 Introduction 418
12.1.2 Pressure Dependence 419
12.1.3 Temperature Dependence 420
12.1.4 Thermochemical Reference Data 422

12.2 Equilibrium Constant 422
12.2.1 Temperature Dependence 425
12.2.2 Relation to Partition Function 425
CONTENTS

12.3 Mass-Action Kinetics 427
 12.3.1 Elementary Reactions 429
 12.3.2 General Kinetics Formulation 429
12.4 Pressure-Dependent Unimolecular Reactions 433
12.5 Bimolecular Chemical Activation Reactions 438
References 443

13 REACTION RATE THEORIES 445
 13.1 Molecular Collisions 446
 13.1.1 Energy Distribution Functions 446
 13.1.2 Collision Frequencies 449
 13.2 Collision Theory Reaction Rate Expression 453
 13.3 Transition-State Theory 457
 13.3.1 Assumptions of Transition-State Theory 457
 13.3.2 Transition-State Theory Rate Expression 458
 13.3.3 Special Cases 460
 13.4 Unimolecular Reactions 461
 13.4.1 Lindemann Theory 461
 13.4.2 Shortcomings of the Lindemann Theory 462
 13.4.3 Hinshelwood’s Theory 463
 13.4.4 QRRK Theory 466
 13.4.5 RRKM Theory 473
 13.5 Bimolecular Chemical Activation Reactions 474
 13.5.1 Bimolecular QRRK Theory 475
 13.5.2 Summary of QRRK Bimolecular Rate Theory 479
References 480

14 REACTION MECHANISMS 481
 14.1 Models for Chemistry 482
 14.1.1 Global Reactions 482
 14.1.2 Detailed Reaction Mechanisms 483
 14.1.3 Skeletal and Analytically Reduced Mechanisms 485
 14.2 Characteristics of Complex Reactions 486
 14.2.1 Elementary Reactions 486
 14.2.2 Chain Carriers 487
 14.2.3 Chain Reactions 488
 14.2.4 Chain-Branching Reactions 491
 14.3 Mechanism Development 493
 14.3.1 Sources of Information 496
 14.3.2 Experimental Techniques 498
 14.4 Combustion Chemistry 503
 14.4.1 Hydrogen Oxidation 504
CONTENTS

14.4.2 Carbon Monoxide Oxidation 505
14.4.3 Hydrocarbon Oxidation 506
14.4.4 Formation of Pollutants and Trace Species 513

References 518

15 LAMINAR FLAMES 521

15.1 Premixed Flat Flame 521
 15.1.1 Boundary Conditions 523
 15.1.2 Finite-Volume Discretization 525
 15.1.3 Computational Solution 527
 15.1.4 Mesh Adaptation 528
 15.1.5 Continuation 529

15.2 Premixed Flame Structure 530
15.3 Methane-Air Premixed Flame 534
15.4 Stagnation Flames 534
15.5 Opposed-Flow Diffusion Flames 536
15.6 Premixed Counterflow Flames 539
15.7 Arc-Length Continuation 543

References 545

16 HETEROGENEOUS CHEMISTRY 549

16.1 Taxonomy 550
 16.1.1 Domains 551
 16.1.2 Phases 552
 16.1.3 Species within Phases 552

16.2 Surface Species Naming Conventions 553
 16.2.1 Atomic Site Convention 553
 16.2.2 Open Site Convention 554
 16.2.3 Thermochemistry 555

16.3 Concentrations within Phases 555

16.4 Surface Reaction Rate Expressions 557
 16.4.1 Langmuir Adsorption Isotherm 557
 16.4.2 Competitive Adsorption 558
 16.4.3 Dissociative Adsorption 559
 16.4.4 Langmuir–Hinshelwood Kinetics 560
 16.4.5 Eley–Rideal Mechanism 561
 16.4.6 BET Isotherm 561

16.5 Thermodynamic Considerations 565
 16.5.1 Entropy 565
 16.5.2 Heat of Adsorption 566
 16.5.3 Langmuir Adsorption 567
 16.5.4 Mobile Surface Species 569
16.6 General Surface Kinetics Formalism 571
16.7 Surface-Coverage Modification of the Rate Expression 573
16.8 Sticking Coefficients 574
 16.8.1 Relationship to the Rate Constant 575
 16.8.2 Motz–Wise Correction 575
16.9 Flux-Matching Conditions at a Surface 576
16.10 Surface Species Governing Equations 577
16.11 Developing Surface Reaction Mechanisms 578
16.12 Example Reaction Mechanism 581
 16.12.1 Channel-Flow Catalytic Combustion 582
 16.12.2 Catalytic-Combustion Monolith 583
References 587

17 REACTIVE POROUS MEDIA 589
17.1 Introduction 589
17.2 Pore Characterization 591
17.3 Multicomponent Transport 593
 17.3.1 Darcy Flow 593
 17.3.2 Knudsen Diffusion 594
 17.3.3 Extended Fickian Diffusion 594
 17.3.4 Dusty-Gas Model 595
 17.3.5 Surface Diffusion 597
17.4 Mass Conservation Equations 597
17.5 Energy Conservation Equations 598
17.6 Tubular Packed-Bed Reactor 600
 17.6.1 Boundary Conditions and Solution Algorithms 601
 17.6.2 CPOX Results 603
17.7 Reconstructed Microstructures 603
17.8 Intra-Particle Pore Diffusion 607
References 609

18 ELECTROCHEMISTRY 613
18.1 Electrochemical Reactions 615
18.2 Electrochemical Potentials 618
18.3 Electrochemical Thermodynamics and Reversible Potentials 618
18.4 Electrochemical Kinetics 621
 18.4.1 Rates of Progress 622
 18.4.2 Butler–Volmer Formulation 625
 18.4.3 Butler–Volmer Functional Behavior 627
 18.4.4 Butler–Volmer Limiting Cases 628
 18.4.5 Butler–Volmer for SOFC 628
 18.4.6 Elementary and Butler–Volmer Formulations 630
18.4.7 Faradaic Heating 631
18.4.8 Thermodynamic Properties 631
18.5 Electronic and Ionic Species Transport 632
18.6 Modeling Electrochemical Unit Cells 633
18.6.1 Species Transport Equations 634
18.6.2 Charge Conservation and Electric Potentials 634
18.6.3 Fuel-Cell Polarization Models 636
18.6.4 Energy Equations 640
18.7 Principles of Composite SOFC Electrodes 641
18.8 SOFC Button-Cell Example 643
18.8.1 Polarization Characteristics 643
18.8.2 Electric Potentials and Charged Species Fluxes 644
18.8.3 Anode Gas-Phase Profiles 646
18.8.4 Anode Surface-Species Profiles 647
18.9 Chemistry and Model Development 647
References 649

A VECTOR AND TENSOR OPERATIONS 651
A.1 Vector Algebra 651
A.2 Unit Vector Algebra 652
A.3 Unit Vector Derivatives 653
A.4 Scalar Product 653
A.5 Vector Product 654
A.6 Vector Differentiation 654
A.7 Gradient 654
A.8 Gradient of a Vector 655
A.9 Curl of a Vector 656
A.10 Divergence of a Vector 656
A.11 Divergence of a Tensor 657
A.12 Laplacian 658
A.13 Laplacian of a Vector 658
A.14 Vector Derivative Identities 660
A.15 Gauss Divergence Theorem 661
A.16 Substantial Derivative 661
A.16.1 Substantial Derivative of a Vector 662
A.17 Symmetric Tensors 662
A.18 Stress Tensor and Stress Vector 663
A.19 Direction Cosines 664
A.20 Coordinate Transformations 665
A.21 Principal Axes 667
A.22 Tensor Invariants 669
A.23 Matrix Diagonalization 670
B NAVIER–STOKES EQUATIONS 671
B.1 General Vector Form 671
B.2 Stress Components 672
B.3 Cartesian Navier–Stokes Equations 674
B.4 Cartesian Navier–Stokes, Constant Viscosity 675
B.5 Cylindrical Navier–Stokes Equations 675
B.6 Cylindrical Navier–Stokes, Constant Viscosity 676
B.7 Spherical Navier–Stokes Equations 676
B.8 Spherical Navier–Stokes, Constant viscosity 677
B.9 Orthogonal Curvilinear Navier–Stokes 678
C EXAMPLE IN GENERAL CURVILINEAR COORDINATES 681
C.1 Governing Equations 681
C.1.1 Limiting Cases 685
D SMALL PARAMETER EXPANSION 687
E BOUNDARY-LAYER ASYMPTOTIC BEHAVIOR 691
E.1 Boundary-Layer Approximation 692
E.2 A Prototype for Boundary-Layer Behavior 693
F COMPUTATIONAL ALGORITHMS 697
F.1 Differential Equations from Chemical Kinetics 698
F.2 Stiff Model Problem 698
F.3 Solution Methods 700
F.3.1 Explicit Methods 701
F.3.2 Implicit Methods 704
F.3.3 Stiff ODE Software 707
F.4 Differential-Algebraic Equations 707
F.5 Solution of Nonlinear Algebraic Equations 708
F.5.1 Scalar Newton Algorithm 708
F.5.2 Newton’s Algorithm for Algebraic Systems 709
F.5.3 Illustration of the Hybrid Method 712
F.5.4 Steady-State Sensitivity Analysis 713
F.6 Continuation Procedures 715
F.6.1 Multiple Steady States 715
F.6.2 Illustration of Spurious Solutions 715
F.7 Transient Sensitivity Analysis 717
F.8 Transient Ignition Example 719
References 719
<table>
<thead>
<tr>
<th></th>
<th>MATLAB EXAMPLES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1</td>
<td>Steady-State Couette–Poiseuille Flow</td>
<td>721</td>
</tr>
<tr>
<td>G.2</td>
<td>Steady Semi-Infinite Stagnation Flow</td>
<td>723</td>
</tr>
<tr>
<td>G.3</td>
<td>Steady Finite-Gap Stagnation Flow</td>
<td>725</td>
</tr>
<tr>
<td>G.4</td>
<td>Transient Stokes Problem</td>
<td>728</td>
</tr>
<tr>
<td>G.5</td>
<td>Graetz Problem</td>
<td>729</td>
</tr>
<tr>
<td>G.6</td>
<td>Channel Boundary Layer Entrance</td>
<td>731</td>
</tr>
<tr>
<td>G.7</td>
<td>Rectangular Channel Friction Factor</td>
<td>735</td>
</tr>
</tbody>
</table>

Index 739