INDEX

ACE-FTS. See Atmospheric Chemistry Experiment – Fourier Transform Spectrometer
Active remote sensing, 291
Advanced Earth Observing Satellite (ADEOS), 302t
Advanced Scatterometer (ASCAT), 302t
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 299, 302t
Advanced Very High Resolution Radiometer (AVHRR), 302t
Aerosol Robotic Network (AERONET), 302t
Afar triple junction, 13
Afternoon-train (A‐train), 291, 302t
AGFZ. See Azores-Gibraltar plate boundary
Airborne Volcanic Object Infrared Detector (AVOID), 302t
AIRS. See Atmospheric Infrared Sounder
Alashan block, 167, 168f, 183f, 186f, 187f
Alaska
powerful earthquakes in, 88t, 90f, 103t
Rat Islands archipelago 2014 earthquake, 149–65, 150f, 151f, 153f, 156f–163f
seismic cycle earthquake in, 108, 110f, 111
volcano hazard for, 88t
Alcantarilha, onshore tsunami sediments from, 224
Algarve Coast of Portugal
Alcantarilha, 224
Alvor, 224–25
Barranco, 225
Boca do Rio, 225
Carcavai, 223–24
central Algarve, 223–25
coastal evolution of, 221
eastern Algarve, 222–23, 223f, 223t
Furnas, 225
géotectonic setting for, 220–21, 220f
historical data of tsunamis in, 225–30
AD 382 event, 228–29, 229f
AD 1722 event, 227
AD 1755 event, 227
AD 1761 event, 226–27
eighteenth century events, 226–28
list of events, 226, 226t
revision based on tsunami deposits of, 230–35, 231t
60 BC event, 230
Martinhal, 225
onshore tsunami sediments geological imprints on, 221–22, 222f
Quarteira, 223–24
Ria Formosa, 222–23, 223f, 223t
Salgados, 224
tectonic features related to, 220f

Alpin Fault
progressive lengthening of, 69
topographic maps of, 41f
zone, localization of, 68
Altyn Tagh Fault
lithospheric strength contrasts in localization of, 68
topographic maps of, 41f
west to east development of, 69
Alvor, onshore tsunami sediments from, 224–25
Amchitka Pass, 152
Analog models, 16
Analytical modeling, 16–17
APEC forum. See Asia-Pacific Economic Cooperation forum
Arc magmas
gas-rich nature of, 85
silica-rich nature of, 85
ASCAT. See Advanced Scatterometer
ASEAN. See Association of Southeast Asian Nations
Asia-Pacific Economic Cooperation (APEC) forum, 96
Askja volcano, 88t
Assam-Tibet, powerful earthquake in, 88t, 90f, 92. See also Tibetan plateau
Association of Southeast Asian Nations (ASEAN), 96
ASTER. See Advanced Spaceborne Thermal Emission and Reflection Radiometer
Atlantic-type rifts, 15
Atlantis transform
bathymetric maps of, 55f
RMBA maps of, 55f
ATLID. See Atmospheric Lidar
Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS), 302t, 304
Atmospheric Infrared Sounder (AIRS), 299, 300f, 301t, 302t, 304, 305f
Atmospheric Lidar (ATLID), 302t
A‐train. See Afternoon‐train
AVHRR. See Advanced Very High Resolution Radiometer
AVOID. See Airborne Volcanic Object Infrared Detector
Axial Seamount
bathymetric data of, 242, 242t, 243f, 244f, 246f
eruptions characteristics of, 250
gerelogical line interpretation (right) of, 246f
location of, 241
morphology of, 253–55
recent eruption history of, 246–50, 247f, 249f
ridge's influence on morphology of, 245–46
seafloor displacement in, 246–50, 247f, 249f

Plate Boundaries and Natural Hazards, Geophysical Monograph 219, First Edition.
Edited by João C. Duarte and Wouter P. Schellart.
© 2016 American Geophysical Union. Published 2016 by John Wiley & Sons, Inc.
Axial Seamount (cont'd)
summit caldera of, 249f
3D perspective of, 244f, 247f
Azores archipelago
elevation and bathymetry map of, 272f
low-altitude coastal zones of, 273t
nine volcanic islands in, 272
Pico-São Jorge channel of, 271–84
Azores-Gibraltar plate boundary (AGFZ), tectonic features related to, 220f
Back-arc basins, 15
Bai kal rift, 16
crust-mantle coupling in, 17, 18f
Banda Aceh earthquake, 115t
Band Residual Difference (BRD) method, 298, 302t
BAS. See British Antarctic Survey
Basalt magma, 84
BBR. See Broad-Band Radiometer
Bezymianny volcano, 88t
areas devastated by historical blasts from, 265f
Boca do Rio, onshore tsunami sediments from, 225
BOGSATs (Bunch Of Guys Sitting Around a Table), 106
BRD method. See Band Residual Difference method
Brightness Temperature Difference (BTD), 302t
British Antarctic Survey (BAS), 302t
Broad-Band Radiometer (BBR), 302t
Brown Bear Seamount
bathymetric data of, 242, 242t, 243f, 244f
géological line interpretation of, 251f
location of, 241
morphology of, 253–55
northwestern section of, 250
slope failure activity of, 255
southeastern section of, 251
3D perspective of, 244f
western side of, 251–52
BTD. See Brightness Temperature Difference
Bunch Of Guys Sitting Around a Table. See BOGSATs
Calbuco volcano, satellite observations for eruption of, 301t
CALIOP. See Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO. See Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
Carcavai, onshore tsunami sediments from, 223–24
Carlsberg Ridge (CR), 79f
Cascade, powerful earthquake in, 88t, 90f
CATS. See Cloud-Aerosol Transport System
CDTI. See Centro para el Desarrollo Tecnológico Industrial
CEA. See China Earthquake Administration
Center for Volcanology and Geological Hazard Mitigation (CVGHM), 259
precursory activity suggested by, 261
Centre National d'Etudes Spatiales (CNES), 302t
Cerro Azul/Quizapu volcano, 88t
CE seamounts. See Cobb-Eickelberg seamounts
Chaiten volcano, satellite observations for eruption of, 301t
Chile
Calbuco volcano of, 301t
Chaiten volcano of, 301t
depth range of earthquake in, 150
forecast success for earthquake in, 115t
powerful earthquakes in, 88t, 90f, 103t–104t
Puyehue-Cordon Caulle volcano in, 301t
seismic cycle earthquake in, 108, 109f
tsunami hazard for, 89t
volcano hazard for, 88t
China
deadliest earthquake in, 88t, 90f
roaming earthquakes in, 131–32
China Earthquake Administration (CEA), 172
China Meteorological Administration (CMA), 302t
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), 302t
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), 291, 302t
Cloud-Aerosol Transport System (CATS), 291, 302t
Cloud Profiling Radar (CPR), 291, 302t
CMA. See China Meteorological Administration
CNES. See Centre National d’Etudes Spatiales
Cobb-Eickelberg seamounts (CE)
chain overview of, 242–45
eruption history of, 241–56
location of, 241
morphology of, 253–55
Cobb Seamount
bathymetric data for, 242, 242t, 243f, 244f
géological line interpretation of, 252f
location of, 241
morphology of, 253–55
radiometric age of, 252
slope failure activity in, 255
summit plateau of, 253
3D perspective of, 244f
Colombia, Ecuador-Colombia margin earthquake, 111–12, 111f
Continental drift, 2
Continental transform fault
deeply rooted fault zone in, 40
natural observations of, 40–42, 41f
numerical models of
Dead Sea Transform, 50–54, 52f, 53f
elastic-plastic continuum model, 42, 43f
evolution of transtensional fault systems with low-viscosity, 46, 47f
generalized, 42–46, 43f, 44f, 45f, 47f
pull-apart basins development in, 44–46, 45f
San Andreas Fault, 46–50, 49f, 51f
2D finite-element thin plate, 48
visco-elastic-plastic finite element, 43–44, 44f
rheological weakness in, 68
seismicity of, 66–67, 66f
topographic maps of five major, 41f
Convergent plate boundaries, 3, 5, 77
buoyancy forces associated with, 39
schematic representation of, 5f
Convergent plate margins

- benefits of, 94, 94f
- earthquake in, 82–83, 83f
 - magnitude of, 82
- megathrust, 83
- recent history of, 87–93, 88t, 90f
- Richter scale, 82
- seismogenic zone of, 82, 83f
- subduction-related, 82, 101–19, 102f, 103t–104t, 104f, 105f, 106f, 107f, 110f, 111f, 113f, 114f, 115f, 116f, 117f
- generalized cross section of, 81f
- map showing world's, 79f
- natural hazards associated with, 77–96, 94f
- plate tectonic theory and, 78–80
- rapid uplift and erosion associated with, 93
- 3D nature of subduction zone in, 80
- tsunami hazard associated with, 82–83, 83f, 87
- volcano hazard associated with, 83–87
- recent history of, 87–93, 88t, 89t, 91f

Coquimbo earthquake, 115t

Core, 78

Corn Seamount

- bathymetric map of, 243f
- 3D perspective of, 244f

Cosiguina volcano, 88t

Courant-Friedrich-Levy condition, 278

CPR. See Cloud Profiling Radar

CR. See Carlsberg Ridge

Cross-track Infrared Sounder (CrIS), 302t

Crust, 78

Crust-mantle coupling, 17–19, 18f

CVGHM. See Center for Volcanology and Geological Hazard Mitigation

Dead Sea Transform (DST)

- drop down numerical model of, 53, 53f
- heat-flow paradox associated with, 54
- localization of, 68
- numerical models of, 50–54, 52f, 53f
- slow softening rate models for, 52
- surface studies of, 50
- 3D thermomechanical model of, 52
- topographic maps of, 41f
- 2D thermomechanical model of, 50–51, 52f

Deutsches Zentrum für Luft- und Raumfahrt (DLR), 302t

Differential Optical Absorption Spectroscopy (DOAS), 298, 302t

Divergent boundaries, 77

Divergent plate boundaries, 3

- buoyancy forces associated with, 39
- schematic representation of, 5f

DLR. See Deutsches Zentrum für Luft- und Raumfahrt

DOAS. See Differential Optical Absorption Spectroscopy

Drop down numerical model, DST in, 53, 53f

DST. See Dead Sea Transform

Earth

- compositional layers of, 78, 78f
- plate tectonics of, 77–78, 78f

EarthCARE. See Earth Cloud, Aerosols and Radiation Explorer

Earth Cloud, Aerosols and Radiation Explorer (EarthCARE), 302t

Earth Observing Satellites (EOS), 291, 302t

Earth Polychromatic Imaging Camera (EPIC), 302t

Earthquake hazard assessment

- forecasting weather analogy with, 135–36, 135f, 136f
- Fukushima in, 106
- historic earthquake records in, 137
- Japanese example of, 126, 127f, 128f
- mapping challenge with, 126–28, 130f, 131f, 131t
- maximum magnitude in, 133–35, 134f, 135f
- model of probability increases with time, 137
- next earthquake prediction in, 136–39, 136f, 137f, 138f, 139f
- North Africa example in, 130–31, 132f, 133f
- paradox of, 125–26, 127f, 128f, 129f
- plate tectonics knowledge with poor, 123–45
- PSHA algorithm in, 125
- seismic gap concept in, 125
- seismic hazard maps in, 125, 129f
- space-time variability in, 130–33, 132f, 133f
- suggested approaches for
 - assess map performance, 140–41, 143f
 - assess uncertainty estimates, 140, 141f, 142f
 - develop methods for updating maps, 141–44, 144f
 - incorporate uncertainty, 144–45, 144f
 - time-dependent recurrence model in, 137
- Tohoku earthquake in, 124, 126, 127f, 131, 133, 135
- uncertainties in, 128–30, 131t
- variability in recurrence intervals for, 137f

Earthquakes

- continental transform fault seismicity and, 66–67, 66f
- convergent margins with, 82–83, 83f
- El Asnam, 131, 132f
- greatest magnitude, 88t, 90f, 92
- Kant's understanding of, 2
- Lisbon earthquake of 1755, 1–2
- logical reasoning to understand causes of, 2
- magnitude of, 82
- magnitudes of, 6
- megathrust, 83, 102
- oceanic transform fault seismicity and, 67–68
- plate boundaries and associated, 6, 79
- Rat Islands archipelago 2014, 149–65, 150f, 151f, 153f, 156f–163f
- recent history of, 87–93, 88t, 90f
- Richter scale of, 82
- rifts with synrift, 25–26
- San Francisco, 124
- Sanrikuoki, 149
- seismogenic zone of, 82, 83f
- subduction-related, 82, 101–19, 102f, 103t–104t, 104f, 105f, 106f, 107f, 110f, 111f, 113f, 114f, 115f, 116f, 117f
- ten deadliest, 88t, 92
Earthquakes (cont’d)

Tohoku, 124, 126, 127f, 131, 133, 135

2004 Sumatra-Andaman, 5, 8

Earth Radiation Budget Satellite (ERBS), 302t

East African rift

crust-mantle coupling in the, 17

Okavango rift arm of, 13

Eastern California shear zone (ECSZ), present-day crustal dynamics in, 49f
topographic map of, 41f

East Pacific Rise (EPR), 79f

ECRIS. See European Cenozoic rift system

ECSZ. See Eastern California shear zone

Ecuador

powerful earthquake in, 88t, 90f

powerful earthquakes in, 103t

volcano hazard for, 89t

Ecuador-Colombia margin, seismic cycle earthquake in, 111–12, 111f

El Asnam earthquake, 131, 132f

Elastic-plastic continuum model, 42, 43f

Environmental Satellite (ENVISAT), 302t

EOS. See Earth observing satellites

EPIC. See Earth Polychromatic Imaging Camera

EPR. See East Pacific Rise

Equatorial Atlantic rift, 23f

ERBS. See Earth Radiation Budget Satellite

ERS. See European Remote-sensing Satellite

ESA. See European space agency

EUMETSAT. See European Organization for the Exploitation of Meteorological Satellites

European Cenozoic rift system (ECRIS), upper Rhine Graben portion of, 16

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), 302t

European Remote-sensing Satellite (ERS), 302t

European Space Agency (ESA), 291, 302t

Eyjafjallajökull volcano, satellite observations for eruption of, 301t

Faial island

low-altitude coast of, 273t

precollapse topography of, 275

Fast velocity direction (FVD), eastern Himalayan syntaxis, 179

Fiji, depth range of earthquake in, 150

Freezing wax models. See Thermomechanical models

Fukushima earthquake hazard, 106

Furnas, onshore tsunami sediments from, 225

FVD. See Fast velocity direction

Galunggung volcano, 89t

Garlock Fault (GF), present-day crustal dynamics in, 49f

GCM. See General circulation model

GEMS. See Geostationary Environmental Monitoring Spectrometer

General circulation model (GCM), 290, 302t

Geostationary Environmental Monitoring Spectrometer (GEMS), 302t

Geostationary Meteorological Satellite (GMS), 302t

Geostationary Operational Environmental Satellite (GOES), 302t

GF. See Garlock Fault

Gibraltar subduction zone, 204

GLE. See Lisbon earthquake of 1755

Global Ozone Monitoring by Occultation of Stars (GOMOS), 302t

Global Ozone Monitoring Experiment (GOME), 302t

Global Volcanism Program (GVP), 302t

GMS. See Geostationary Meteorological Satellite

GOES. See Geostationary Operational Environmental Satellite

GOME. See Global Ozone Monitoring Experiment

GOMOS. See Global Ozone Monitoring by Occultation of Stars

Grímsvötn volcano, satellite observations for eruption of, 301t

Guatemala, volcano hazard for, 88t, 89t

GVP. See Global Volcanism Program

Hainan volcano, 168f

Haiti

deadliest earthquake in, 88t, 90f

earthquake on mapped fault, 131

magnitude of earthquake, 133

seismic hazard maps for, 129f

Halogen Occultation Experiment (HALOE), 302t

Hawaii, volcano hazard for, 89t

Heat-flow paradox, 54

Hetao rift (HTR), 168f

High-resolution Infrared Radiation Sounder (HIRS), 302t

HIRS. See High-resolution Infrared Radiation Sounder

Hokkaido

depth range of earthquake in, 150

powerful earthquakes in, 103t–104t

Honshu

powerful earthquakes in, 103t–104t

seismic cycle earthquake in, 112–14, 114f

Horseshoe thrust fault (HTF)

IAM seismic profile cutting across, 198f, 204

interference area, 199f, 207

“Hot-spot” volcanoes, 85

HTF. See Horseshoe thrust fault

HTR. See Hetao rift

Hudson volcano, 88t

Human-made hazards, 80

IAM. See Iberian Atlantic Margin

IASI. See Infrared Atmospheric Sounding Interferometer

IASI-Next Generation (IASI-NG), 302t

IATA. See International Air Transport Association

Iberian Atlantic Margin (IAM), 194

location of profiles in, 198f

plate tectonics framework in, 194f

seismic profiles, 197f

ICAO. See International Civil Aviation Organization
Iceland
Eyjafjallajökull volcano in, 301t
Grímsvötn volcano in, 89t, 301t
volcano hazard for, 84–85, 88t, 89t

Indonesia
145 active volcanoes of, 259
depth range of earthquake in, 150
Kelut volcano in, 301t
Merapi volcano in, 259–67, 261f, 262t, 263f, 264f, 265f, 266f, 267f, 301t
powerful earthquake in, 88t, 90f
volcano hazard for, 88t, 89t

Infrared Atmospheric Sounding Interferometer (IASI), 302t
International Air Transport Association (IATA), 302t
International Civil Aviation Organization (ICAO), 302t
International Space Station (ISS), 291, 302t
Iquique earthquake, 115t
Iran, deadliest earthquake in, 88t, 90f
Iss. See International Space Station
Italy, volcano hazard for, 89t

Japan
depth range of earthquake in, 150
earthquake assessment paradox seen in, 126, 127f, 128f
forecast success for earthquake in, 115t
Fukushima, 106
government hazard map, 127f, 128f
Honshu, 103t–104t, 150
Nankai Trough, 106–8, 107f, 127f, 136f
northern trench (Honshu), 103t–104t
seismic cycle earthquake in, 112–14, 114f
powerful earthquakes in, 88t, 90f, 103t–104t
Tohoku earthquake, 124, 126, 127f, 131, 133, 135
tsunami hazard for, 89t
volcano hazard for, 89t

Japanese space agency (JAXA), 291, 302t
Japan Meteorological Agency (JMA), 302t
JAXA. See Japanese space agency
JdFR. See Juan de Fuca ridge
Jinggu earthquake, magnitude and deaths from, 169t
JMA. See Japan Meteorological Agency
Juan de Fuca ridge (JdFR)
Cobb-Eickelberg seamounts in, 241–56
map showing, 79f

Kamchatka
powerful earthquakes in, 88t, 90f, 103t
tsunami hazard for, 89t
Kangding earthquake, magnitude and deaths from, 169t
Kant, Immanuel, earthquake understanding by, 2
Kasatochi volcano
satellite observations for eruption of, 301t
SO₂ retrievals for, 298f
Katmai-Novarupta volcano, 88t
Kelut volcano, 89t
satellite observations for eruption of, 301t
Kenya rift, 13
Kilauea volcano, 89t
Kinarejo, 263–64, 263f
Korea Meteorological Administration (KMA), 303t
Kraktau volcano, 88t, 89t
Kunlun earthquake, magnitude and deaths from, 169t
Kunlun Fault, 167, 168f, 183, 183f, 187f
localization of, 68
Kunlun-Qilian fold zone, 168f, 179
Kurile Isl.
forecast success for earthquake in, 115t
powerful earthquakes in, 88t, 90f, 103t–104t
Kurile trench, 131
Lesser Antilles, volcano hazard for, 89t
Lisbon earthquake of 1755
active thrust-wrench fault interference as explanation for, 204–11
experimental modeling insight with, 205, 206f
stress transfer and multirupture associated with, 205–9, 207f, 208f
explanation for, 193–213
fault location uncertainty associated with, 194
NE-SW thrust system related with, 194, 201f
plate tectonics framework of, 195f
previously seismogenic sources, 213
quantitative seismogenic potential associated with, 209–11, 210f
scaling of law for, 210f
seismogenic sources previously proposed for Gibraltar subduction zone, 204
NW directed thrust fault system, 202–3
SWIM strike-slip fault system, 203–4
tectonic setting of SW Iberian offshore and, 194–202
earthquakes and focal mechanisms in, 199f
interpretative schematic cross section of, 197f
morphotectonic map of SWIM in, 198f
seismicity in, 196f
seismicity parameters of earthquakes in, 197t
WNW-ESE strike-slip system related with, 199, 201f

Longmenshan (LMS) fault, 167, 168f
Ludian earthquake
aftershocks from, 177–79
deaths from, 169t, 176
magnitude of, 169t
mainshock of, 179
Map view of sequence for 2014, 178f
rupture direction of, 179
Lushan earthquake
distributions of, 173f
magnitude and deaths caused by, 169t
mainshock and aftershocks associated with, 170
mechanism of, 172
P and S wave velocity of, 169–70, 170f
Magma-poor rifted margins, 19
Magmatic segmentation, 21
magnitude of, 1
Mantle, 78
Martinhal, onshore tsunami sediments from, 225
Maule earthquake, 115t
Megathrust earthquake, 83
factors proposed to control, 102
Mentawai earthquake, 115t
Merapi volcano
areas devastated by historical blasts from, 265f
eruption overview for, 260–67, 261f, 262t, 263f, 264f, 265f, 266f, 267f
exclusion zone for, 260–61, 261f
hazard map for, 260
lava dome growth, 259
management of crises, 259
satellite observations for eruption of, 301t
2010 eruption of, 259–68
atypical explosivity of, 268
deposit outlines from, 263f
directed surges into Kinarejo from, 263–64, 263f
distal PDC overspill associated with, 266–67, 267f
dome growth associated with, 267
dynamic pressures associated with, 264f
fatalities, 261–63
impacted villages, 263
impact on vegetation and buildings, 266, 266f
initial explosions, 264
phenomena and impacts for stages of, 262t
preventative evacuations, 266
proximal high-energy PDCs associated with, 264–66, 264f, 265f, 266f
spatial coverage of distal area affected by, 267f
structural damage, 263
VEI of, 259
Meteorological Operational (MetOp), 303t
Mexico, powerful earthquakes in, 103t
Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), 303t
Microwave Limb Sounder (MLS), 303t
Mid-Atlantic Ridge, bathymetry patterns comparison for, 70f
Midocean ridges (MOR), terrestrial plate tectonics with, 54
Mindanao, powerful earthquakes in, 103t
Minxian earthquake, magnitude and deaths, 169t
MIPAS. See Michelson Interferometer for Passive Atmospheric Sounding
MLS. See Microwave Limb Sounder
Moderate-resolution Imaging Spectroradiometer (MODIS), 303t
MOR. See Midocean ridges
Mount St. Helens volcano, 7, 88t
areas devastated by historical blasts from, 265f
Multifunctional Transport Satellite (MTSAT), 303t
Nabro volcano, satellite observations for eruption of, 301t
NAF. See North Anatolian Fault
Nankai Trough
earthquake history of, 136f
Japanese government hazard map showing, 127f
seismic cycle earthquake in, 106–8, 107f
National Oceanic and Atmospheric Administration (NOAA), 303t
National Weather Service (NWS), snowstorm warning by, 124
Natural hazards
convergent plate margins, 77–96, 94f
defined, 80
plate boundaries, 1, 8
earthquakes, 6
tsunamis, 6–7
volcanoes, 7
rifts with
seismicity, 26
submarine landslides, 26–29, 27f, 28f
synrift earthquakes, 25–26
tsunami hazard, 26–29, 28f
volcanism, 25–26
North Africa plate boundary earthquake hazard assessment for, 130–31, 132f, 133f
North Anatolian Fault (NAF)
east to west propagation of, 69
lithospheric strength contrasts in localization of, 68
topographic maps of, 41f
North frontal thrust system (NFTS), 207
NRL. See Naval Research Laboratory
Numerical modeling, 17
NW directed thrust fault system, SW Iberian offshore seismogenic events in, 202–3
NWS. See National Weather Service
OBH. See Ocean bottom hydrophones
Oblique rifts, 21
stress and fault evolution in, 22f
Ocean bottom hydrophones (OBH), 248
Oceanic spreading process, thermomechanical modeling of long-term, 59–64, 60f, 61f, 62f, 63f
Oceanic transform faults
controversial origin of, 55
crustal structure in, 54
distinct architecture of, 54
gravity signature in, 54, 55f
growth of, 65f
incipient spreading models for, 62–63, 62f, 63f
initial stages of evolution of, 69
models of, 56–64, 56f
long-term numerical, 59–64, 60f, 61f, 62f, 63f
short-term numerical, 57–58, 58f
Netherlands Agency for Aerospace Programmes (NIVR), 303t
New Britain, powerful earthquakes in, 103t
Nevado del Ruiz volcano, 89t, 93
New Britain, powerful earthquakes in, 103t
New Madrid seismic zone (NMSZ), 132, 133f
hazard maps for, 139f
New Zealand, volcano hazard for, 88t
NFTS. See North frontal thrust system
N. Guinea, powerful earthquakes in, 103t
Nias earthquake, 115t
Nicaragua, volcano hazard for, 88t
NIVR. See Netherlands Agency for Aerospace Programmes
NMSZ. See New Madrid seismic zone
NOAA. See National Oceanic and Atmospheric Administration
North Atlantic shelf earthquake hazard assessment for, 130–31, 132f, 133f
North Anatolian Fault (NAF)
inspired by...
natural observations of, 54–56, 55f
oceanic spreading associated with, 59–64, 60f, 61f, 62f, 63f
orthogonal ridge-transform model for, 56f
plates rifting and, 57–58, 58f
prototransform fault orientation changes in, 59, 61f
rheological weakness associated with, 68
ridge-transform spreading pattern associated with, 59, 60f
rotational ridge-transform model for, 56f
seismicity of, 67–68
thermomechanical (freezing wax) models of, 56–57, 56f
transform-free model of slow asymmetric spreading for, 56f
OCO. See Orbiting Carbon Observatory
Okavango rift arm, 13
Ogmok volcano, satellite observations for eruption of, 301t
OMI. See Ozone Monitoring Instrument
OMPS. See Ozone Mapping and Profiler Suite; Ozone Mapping and Profile Suite
Optical, Spectroscopic and Infrared Remote Imaging System (OSIRIS), 303t, 304
Orbiting Carbon Observatory (OCO), 303t
Ordos block, 167, 186f
Orthogonal ridge-transform model, oceanic transform faults in, 56f
OSIRIS. See Optical, Spectroscopic and Infrared Remote Imaging System
Ozone Mapping and Profiler Suite (OMPS), 298, 303t
Ozone Mapping and Profile Suite (OMPS), 303t
Ozone Monitoring Instrument (OMI), 298, 303t
Pacific-Antarctic Ridge (PAR), 79f
Pakistan, tsunami hazard for, 89t
Pallet Creek, variability in earthquake recurrence intervals for, 137f
Pangea, 15f
PAR. See Pacific-Antarctic Ridge
Passive remote sensing, 291, 296
PDCs. See Pyroclastic density currents
Peak ground acceleration (PGA), 141f
Peleé volcano, 89t, 93
areas devastated by historical blasts from, 265f
Peru
depth range of earthquake in, 150
forecast success for earthquake in, 115t
powerful earthquake in, 88t, 90f
powerful earthquakes in, 103t–104t
tsunami hazard for, 89t
PGA. See Peak ground acceleration
Philippines
depth range of earthquake in, 150
powerful earthquakes in, 103t
tsunami hazard for, 89t
volcano hazard for, 88t
Pico island
flank collapse, 281–83, 282f
geological map of, 274f
low-altitude coast of, 273t
precollapse topography of, 275
Pico-São Jorge channel
elevation and bathymetry map of, 272f
low-altitude coastal zones of, 273t
volcanic collapse tsunami effects on, 271–84
Pinatubo volcano, 88t
Pipe Seamount
bathymetric map of, 243f
3D perspective of, 244f
Pisco earthquake, 115t
Plate boundaries
Azores-Gibraltar, 220f
convergent, 3, 5, 5f, 39, 77
coverage percentage of Earth's surface, 3
divergent, 3, 5f, 39
Earthquakes in, 6, 79
Earth's, 101
emergence of concept of, 2–3
faults in, 131f
history of concept of, 2–3
map of, 4f
natural hazards associated with, 1, 8
earthquakes, 6
tsunamis, 6–7
volcanoes, 7
North Africa, 130–31, 132f, 133f
strike-slip structures associated with, 39
three types of, 3, 5f
transform, 5, 5f, 39–70, 41f, 43f, 44f, 45f, 47f, 49f, 51f, 52f, 53f
volcanoes in, 7, 79
Plates
global tectonic model of 12 rigid, 3
modern conception of, 3
rifting in, 57–58, 58f
rigidity of, 3
thin plate model, 48
Wilson's paper, 3
Plate tectonics
basic concepts of, 78–80
convergent margins and, 78–80
discovery of, 124
earthquake assessment mapping challenge associated with, 126
earthquake hazard maps not better with improved knowledge of, 123–45
Earth's, 77–78, 78f
Iberian Atlantic Margin framework related with, 194f
Lisbon earthquake framework associated with, 195f
magnitude of earthquake associated with, 133–35, 134f
map of plates, 4f
mid-ocean ridges associated with, 54
seven great plates of, 78–79, 79f
South West Iberian Margin surveys framework associated with, 194f
space-based geodesy and, 124
SW Iberian offshore framework associated with, 195f
transform plate boundaries intrinsic to, 39
velocities of plates, 4f
POAM. See Polar Ozone and Aerosol Measurement
Polar Ozone and Aerosol Measurement (POAM), 303t
Portugal. See also Algarve Coast of Portugal
powerful earthquake in, 88t, 90f
tsunami hazard for, 89t
Postorogenic rifts, 16
Postrift sedimentation, 25, 25f
Probabilistic seismic hazard assessment (PSHA) algorithm, 125
PSHA algorithm. See Probabilistic seismic hazard assessment algorithm
Pull-apart basins development, 44–46, 45f
Puyehue-Cordon Caulle volcano, satellite observations for eruption of, 301t
Pyroclastic density currents (PDCs)
 historical volcanic blasts and related, 265f
 impacts and deposits left by, 260
 Merapi volcano, 259–60
distal overspill, 266–67, 267f
proximal high-energy, 264–66, 264f, 265f, 266f
Pyroclastic flows, 7
Pyroclastics, 86
Quaidam basin, 167, 168f, 179
Quarteira, onshore tsunami sediments from, 222–24
Rat Islands archipelago 2014 earthquake, 149–65
 aftershock sequence of, 151f
 Amchitka Pass associated with, 152
depth range of, 150
 finite-fault modeling for, 154–60
 average stress drop variation in, 162f
 five inverted slip distributions in, 156f
 Green's functions in, 154–55
 moment rate functions comparison in, 163f
 P and SH waves in, 154, 159f
 radiation efficiency variation in, 162f
 residual waveform misfit in, 157f
 shallowly dipping fault plane in, 158f, 162f
 SH ground motions and GPS ground motions in, 161f
 slip models from inversions in, 158–59
 steeply dipping fault plane in, 160f, 162f
 geographic features of, 150f
 ground motion records available for, 152
 incomplete slip partitioning in, 151
 intraslab events associated with, 149
 large earthquakes from 1900 to 2014 near, 151f
 long-period point-source solutions for, 152–54, 153f
 Rayleigh waves associated with, 152, 153f
 seismic radiated energy associated with, 160–61
 W-phase inversions associated with, 152, 153f
Red River fault, 167, 168f, 176f, 177f
Remote sensing of volcanic eruptions, 289–314
 active, 291, 296
 satellite, 290–91, 292t–295t
 IR measurements in, 299, 300f
 UV measurements in, 296–99
 volcanic ash detection with, 306–8
 SO2 measurements in, 289–90
 recent advances in, 299–305, 301t–303t, 305f
timeline of journal articles relating to, 297f
 volcanic ash in, 289–90, 306–8
Residual mantle Bouguer gravity anomaly (RMBA), 55f
Resolution Ridge, localization of, 68
Rhine Graben, crust-mantle coupling in, 17, 18f
Ria Formosa, onshore tsunami sediments from, 222–23,
 223f, 223t
Richter scale, 82
Rifted margin basins, global overview map showing, 14f
Rifted margins
 magma-poor, 19
 sedimentary basins straddling continental, 25f
 seismicity, 26
 submarine basins straddling continental, 27f
 volcanic, 19
Rifts
 Atlantic-type, 15
 back-arc, 15
 crust-mantle coupling associated to, 17–19, 18f
 East African, 13
 episodes during Pangea dispersal, 15f
 geodynamic processes influencing, 13–29
 global overview map of, 14f
 Kenya, 13
 magma-poor and magma-rich end-members associated to, 19
 migration of, 19–21
 crustal viscosity associated with, 19
 numerical model of, 20f
 steady-state, 20
 modeling approaches to
 analog models, 16
 analytical modeling, 16–17
 numerical modeling, 17
 natural hazard associated to
 seismicity, 26
 submarine landslides, 26–29, 27f, 28f
 synrift earthquakes, 25–26
 tsunami hazard, 26–29, 28f
 volcanism, 25–26
 nonorthogonal architecture of continental, 55
 oblique extension in, 21, 22f
 postorogenic, 16
 sedimentation in
 postrift, 25, 25f
 synrift, 24–25
 segmentation of, 21
 strength, 16, 23–24, 23f, 24f
 symmetry of, 18f
 synorogenic, 15–16
 tectonic environment classification of, 15–16
INDEX 331

tectonic forces associated with, 16
three dimensions, 21–24
two dimensions, 17–21
Rio Grande rift, crust-mantle coupling associated with, 17
RMBA. See Residual mantle Bouguer gravity anomaly
Romania, depth range of earthquake in, 150
Rotational ridge-transform model, oceanic transform faults in, 56f
Rupture zone, magnitude of earthquake related to size of, 102
Russia
Sarychev Peak volcano of, 301t
volcano hazard for, 88t
Ryukyu Is., tsunami hazard for, 89t
SAF. See San Andreas Fault
SAGE. See Stratospheric Aerosol and Gas Experiment
Salgados, onshore tsunami sediments from, 224
SAM. See Stratospheric Aerosol Measurement
San Andreas Fault (SAF)
umerical models of, 46–50, 49f, 51f
present-day crustal dynamics in, 49f
present-day tectonic regime of, 46
progressive lengthening of, 69
San Francisco earthquake model of, 124, 125f
strain localization modeled for, 48–50, 49f
strike-slip deformation in, 46
thermomechanical model of, 50
thin-plate model of, 48
3D mechanical model of, 48
thrust-wrench fault interference in, 208f
topographic maps of, 41f
2D finite-element thin plate model of, 48
variability in earthquake recurrence intervals for, 137f
San Francisco earthquake, 124
San Jacinto Fault (SJF), present-day crustal dynamics in, 49f
Sanrikuoki earthquake, 149
Santa Maria volcano, 88t, 89t
SAOD. See Stratospheric Aerosol Optical Depth
São Jorge island, low-altitude coast of, 273t
Sarychev Peak volcano, satellite observations for eruption of, 301t
Satellite Pour l’Observation de la Terre (SPOT), 303t
Satellite remote sensing, 290–91, 292t–295t
IR measurements in, 299, 300f
UV measurements in, 296–99
volcanic ash detection with, 306–8
SBUV. See Solar Backscatter Ultraviolet Spectrometer
Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), 303t
Scientific Satellite (SCISAT), 303t
Sedimentation
global thickness map showing, 25f
post rift, 25, 25f
rift, 24–25, 25f
synrift, 24
Segmentation, of rifts, 21
SE Indian Ridge (SEIR), 79f
Seismic cycle
earthquake recurrence in, 105–10
models regarding, 105
slip versus time and stress versus time for, 106f
Seismic gap concept, 125
Seismic hazard maps
challenge making, 126–28, 130f, 131f, 131t
comparison of, 130f
construction based on, 125
earthquake assessment with, 125, 129f
Haiti, 129f
Japanese government, 127f, 128f
New Madrid zone, 139f
North Africa, 132f
probability density function assumptions for, 136
shaking predicted in subregions with, 143f
uncertainty in, 139
Seismicity
of continental transform fault, 66–67, 66f
oceanic transform faults, 67–68
parameters of earthquakes, 197t
rifts with, 26
subduction-related earthquake distribution of, 102f
SW Iberian offshore, 196f
Seismogenesis, structural heterogeneity’s effects on, 179–83, 180f, 181f, 182f
Seismogenic zone, 82, 83f
Sendaie earthquake, 115t
1755 great Lisbon earthquake. See Lisbon earthquake of 1755
SEVIRI. See Spinning Enhanced Visible and Infrared Imager
Shanxi rift (SXR), 168f
Sichuan basin, 167, 176f, 179, 186f, 187f
V anomalies under, 183
map of regional tectonics for, 168f
P and S wave velocity in, 170f
upper-mantle tomography beneath, 183f
Siqueiros transform, RMBA maps for, 55f
SJF. See San Jacinto Fault
SNPP. See Suomi National Polar-orbiting Partnership
SNSB. See Swedish National Space Board
SO2 AIRS IR retrieval of, 300f
importance of measuring, 289–90
recent advances in remote sensing of, 299–305, 301t–303t, 305f
Solar Backscatter Ultraviolet Spectrometer (SBUV), 303t
Solomon Islands
depth range of earthquake in, 150
forecast success for earthquake in, 115t
powerful earthquakes in, 103t–104t
Soufrière Hills volcano
areas devastated by historical blasts from, 265f
satellite observations for eruption of, 301t
Southeast Indian Ridge, 70f
South West Iberian Margin (SWIM), 194
detailed morphotectonic map of, 198f
earthquakes and focal mechanisms in, 199f
illustration of tectonic evolution in the, 200f
plate tectonics framework of, 194f
South West Iberian Margin (SWIM) (cont'd)
strike-slip and thrust systems in, 201f, 202
strike-slip fault system in, 203–4
surveys, 194
Spinning Enhanced Visible and Infrared Imager
(SEVIRI), 303t
SPOT. See Satellite Pour l’Observation de la Terre
St. Cruz Isl., powerful earthquakes in, 103t
Stratospheric Aerosol and Gas Experiment
(SAGE), 303t
Stratospheric Aerosol Measurement (SAM), 303t
Stratospheric Aerosol Optical Depth (SAOD), 303t
Strike-slip faults
San Andreas Fault, 46
seismic hazard associated with, 64–68, 66f
South West Iberian Margin, 203–4
Strike-slip structures
transform plate boundaries with, 39
WNW-ESE strike-slip system, 199, 201f
Subduction-related earthquake, 82, 101–19
Alaska subduction zone, 108, 110f, 111
Chile subduction zone, 108, 109f
clustering in past decade of, 101
distribution of shallow seismicity, 102f
downdip limit in, 104
Ecuador-Colombia margin, 111–12, 111f
forecast of, 115–16, 115f
global plate age versus subduction velocity for, 116f
Honshu, 112–14, 114f
list of great, 103t–104t
Nankai Trough, 106–8, 107f, 136f
northern Japan trench (Honshu), 112–14, 114f
recurrence interval versus subduction velocity for, 117f
recurrence of, 105–10, 117f
seismic cycle associated with, 105–10, 106f, 110f, 111f, 113f, 114f, 115f
slip versus time and stress versus time for, 106f
Sumatra margin, 112, 113f
surface area of fault versus magnitude in, 105f
updip limit in, 104
Subduction zone
behavior of, 117–18
cross section sketch of, 104f
Earth’s plate boundaries with, 101
Gibraltar, 204
recurrence intervals for earthquakes in, 117
rupture zone size of, 102
seismically active regions with, 101, 102f
thermal limits in, 104f
3D nature of convergent margin, 80
Submarine landslides
rifts with, 26–29, 27f, 28f
tsunami propagation modeling of, 28f
Sumatra
forecast success for earthquake in, 115t
powerful earthquakes in, 88t, 90f, 92, 104t
seismic cycle earthquake in, 112, 113f
tsunami hazard for, 89t
Sumatra-Andaman earthquake of 2004, 5, 8
Suomi National Polar-orbiting Partnership (SNPP), 303t
Swedish National Space Board (SNSB), 303t
SW Iberian offshore
interpretative schematic cross section of, 197f
Lisbon earthquake and tectonic setting in, 194–202
plate tectonics framework of, 195f
seismicity in, 196f
seismicity parameters of earthquakes in, 197t
seismogenic sources previously proposed for
Gibraltar subduction zone, 204
NW directed thrust fault system, 202–3
SWIM strike-slip fault system, 203–4
tectonic evolution of, 199, 200f, 201f
SWIM. See South West Iberian Margin
SW Indian Ridge (SWIR), map showing, 79f
SXR. See Shanxi rift
Synorogenic rifts, 15–16
Synrift sedimentation, 24
Syria, deadliest earthquake in, 88t, 90f
Tambora volcano, 88t, 89t
Tarawera volcano, 88t
Tavurur volcano, satellite observations for eruption of, 301t
Tectonic plates. See Plate tectonics
Tectonic segmentation, 21
Television and Infrared Observation Satellite (TIROS), 303t
Temperature of Lower Troposphere (TLT), 303t
TEMPO. See Tropospheric Emissions: Monitoring of Pollution
Tengchong volcano, 185f, 187, 187f
géodynamic model showing, 187f
last eruption of, 167
map of regional tectonics, 168f
tomography beneath eastern Tibet and, 183, 183f, 184f, 186f
Yingjiang earthquake, 173, 175–76, 175f, 176f
Terceira island, low-altitude coast of, 273t
TES. See Tropospheric Emission Spectrometer
Thermal Infrared Multispectral Scanner (TIMS), 299, 303t
Thermal Infra-Red Sensor (TIRS), 303t
Thermomechanical (freezing wax) models, oceanic transform faults in, 56–57, 56f
Thrust-wrench fault interference
cascading multirupture versus simultaneous whole length failure associated with, 210–11
cascading time constraints associated with, 212
earthquake recurrence period associated with, 212
Lisbon earthquake of 1755 explained by, 204–11
experimental modeling insight into, 205, 206f
previously seismogenic sources, 213
quantitative seismogenic potential associated with, 209–11, 210f
stress transfer and multirupture associated with, 205–9, 207f, 208f
San Andreas Fault associated with, 208f
scaling of law of, 210f
seismological data compliance with, 212
tsunamigenic sources compliance with, 212
Tibet, powerful earthquake in, 88t, 90f, 92

Tibetan plateau
 Alashan block in, 167, 168f, 183f, 186f, 187f
 checkerboard resolution test results for mantle beneath, 181f
 comparison of models for, 185f
 cross sections of P wave tomography beneath, 181–83, 182f
 earthquake sequences in, 167–88
 formation of, 167
 geodynamic model beneath, 187f
 Hainan volcano in, 168f
 Hetao rift in, 168f
 Kunlun fault in, 167, 168f, 183, 183f, 187f
 Kunlun-Qilian fold zone in, 168f, 179
 Ludian earthquake in, 169t, 176–79, 178f
 Lushan earthquake in, 169–70, 169t, 170f, 172, 173f
 map of regional tectonics for, 168f
 Ordos block in, 167, 186f
 P wave tomography at 630 km depth for, 184f
 P wave tomography of mantle beneath, 180f, 181
 Qaidam basin in, 167, 168f, 179
 recent large earthquakes in, 169t
 Red River fault in, 167, 168f, 176f, 177f
 Shanxi rift in, 168f
 Sichuan basin in, 167, 168f, 170f, 176f, 179, 183, 183f,
 186f, 187f
 structural heterogeneity in eastern, 176–88
 discussion and interpretations for, 183–88
 effects on seismogenesis for, 179–83, 180f, 181f, 182f
 tectonic blocks composing, 167
 Tengchong volcano in, 167, 168f, 173, 175–76, 175f, 176f,
 183, 183f, 184f, 185f, 186f, 187, 187f
 3D views of P wave tomography for, 186f
 Wenchuan earthquake in, 169–72, 169t, 170f, 171f
 Xianshuihe fault in, 167
 Xiaojiang fault in, 167, 168f, 177f, 183, 183f, 187f
 Yingjiang earthquake in, 169t, 172–76, 174f, 175f, 176f, 177f

Tibetrecent large earthquakes, 169t

TIMS. See Thermal Infrared Multispectral Scanner
TIROS. See Television and Infrared Observation Satellite
TIROS Operational Vertical Sounder (TOVS), 303t
TIRS. See Thermal Infra-Red Sensor
TLT. See Temperature of Lower Troposphere
Tohoku earthquake, 124, 126
 forecasting weather analogy with, 135
 Japanese government hazard map showing, 127f
 magnitude of, 133
 plate motion occurring aseismically, 131
TOMS. See Total Ozone Mapping Spectrometer
Tonga
 depth range of earthquake in, 149–50
 powerful earthquakes in, 103t–104t
Total Ozone Mapping Spectrometer (TOMS), 296–98, 303t
TOVS. See TIROS Operational Vertical Sounder
Transform boundaries, 77
Transform-free model of slow asymmetric spreading, oceanic transform faults in, 56f

Transform plate boundaries, 5, 39–70
 continental
 deeply rooted fault zone in, 40
 natural observations of, 40–42, 41f
 numerical models of, 42–54, 43f, 44f, 45f, 47f, 49f, 51f,
 52f, 53f
 seismicity of, 66–68, 66f
 topographic maps of five major, 41f
 oceanic
 growth of transform faults in, 65f
 models of, 56–64, 56f, 58f, 60f, 61f, 62f, 63f
 natural observations of, 54–56, 55f
 oceanic spreading associated with, 59–64, 60f, 61f,
 62f, 63f
 plates rifting associated with, 57–58, 58f
 prototransform fault orientation changes in, 59, 61f
 ridge-transform spreading pattern related with, 59, 60f
 plate tectonics with, 39
 schematic representation of, 5f
 seismic hazard associated with, 64–68, 66f
 strike-slip structures associated with, 39

Tropospheric Emissions: Monitoring of Pollution (TEMPO), 303t
Tropospheric Emission Spectrometer (TES), 303t

Tsunamis
 Algarve Coast of Portugal, 219–35
 coastal risk studies benefit, 219
 convergent margins, 82–83, 83f, 87
 environmental impact of, 7
 historical data of Algarve Coast, 225–30
 AD 382 event, 228–29, 229f
 AD 1722 event, 227–28
 AD 1755 event, 227
 AD 1761 event, 227–28
 eighteenth century events, 226–28
 list of events, 226, 226f
 revision based on tsunami deposits of, 230–35, 231t
 60 BC event, 230
 Holocene sedimentary record for research on, 219
 Lisbon earthquake associated, 1, 193
 nineteen deadliest, 89f, 92f, 93
 onshore sediments from
 Alcantarilha, 224
 Algarve Coast, geological imprints, 221–22, 222f
 Alvor, 224–25
 Barranco, 225
 Boca do Río, 225
 Carcavai, 223–24
 central Algarve, 223–25
 eastern Algarve, 222–23, 223f, 223t
 Furnas, 225
 Martinhal, 225
 Quarteira, 223–24
 revision historical data based on, 230–35, 231t
 Ria Formosa, 222–23, 223f, 223t
 Salgados, 224
 western Algarve, 225
 Pico flank collapse, 281–83, 282f
Tsunamis (cont’d)
plate boundaries with associated, 6–7
propagation modeling of submarine landslides, 28f
recent history of, 87–93, 89f, 92f
rifts with hazard of, 26–29, 28f
Sanrikuoki earthquake associated, 149
seismogenic zone associated, 82, 83f
2004 Sumatra-Andaman earthquake associated, 5
undersea landslides associated, 6
volcanic island collapse associated, 271–84
generation, propagation, and impact in, 278–81, 279f,
280f, 281f
geological setting for, 273–74, 274f
limitations of study on, 283–84
morphological analysis for, 274–77, 276f–277f
numerical modeling for, 277–78, 278t
reconstruction of structure in analysis of, 274–77,
276f–277f
regional propagation of waves caused by, 280f
tsunami potential and hazard associated with
generation, propagation, and impact in, 278–81, 279f,
280f, 281f
regional propagation of waves caused by, 280f
tsunami potential and hazard associated with
generation, propagation, and impact in, 278–81, 279f,
280f, 281f
numerical modeling for, 277–78, 278t
regional propagation of waves caused by, 280f
V-shaped morphology channeling debris flow, 282f
Tungurahua volcano, 89t
2D finite-element thin plate model, 48
2004 Sumatra-Andaman earthquake, 5, 8
UARS. See Upper Atmosphere Research Satellite
Unzen volcano, 89t
Upper Atmosphere Research Satellite (UARS), 303t
Upper-troposphere lower-stratosphere (UTLS), 299, 303t
VAAC. See Volcanic Ash Advisory Center
Vanuatu earthquake, 115t
VATDM. See Volcanic Ash Transport and Dispersion Model
VEI. See Volcanic explosivity index
Vesuvius volcano, 89t
VIIRS. See Visible/Infrared Imager Radiometer Suite
Visco-elasto-plastic finite element model, 43–44, 44f
Visible/Infrared Imager Radiometer Suite (VIIRS), 303t
Volcanic ash, 7
AIRS ash detection, 305f
aviation hazards associated with, 308–10, 308f, 310f
future directions for, 312–13
importance of measuring, 289–90
satellite detection of, 306–8
recent advances in, 307–8
reverse absorption in, 306–7
Volcanic Ash Advisory Center (VAAC), 303t
Volcanic Ash Transport and Dispersion Model (VATDM), 303t
Volcanic eruptions
climatic impact of, 310–12, 311f
future directions, 313
remote sensing of, 289–314
active, 291
future directions for, 312–14
passive, 291, 296
satellite, 290–91, 292t–295t, 296–99, 300f, 306–8
SO, measurements in, 289–90, 299–305, 301t–303t, 305f
timeline of journal articles related to, 297f
volcanic ash in, 289–90
Volcanic explosivity index (VEI), 86–87, 260, 303t
Merapi volcano, 2010 eruption, 259
Volcanic island collapse
Pico flank collapse, 281–83, 282f
limitations of study on, 283–84
similar case studies compared to, 283
tsunami effects caused by, 271–84
generational setting for, 273–74, 274f
morphological analysis of, 274–77, 276f–277f
reconstruction of structure in analysis of, 274–77,
276f–277f
tsunami potential and hazard associated with
generation, propagation, and impact in, 278–81, 279f,
280f, 281f
numerical modeling for, 277–78, 278t
regional propagation of waves caused by, 280f
V-shaped morphology channeling debris flow, 282f
Volcanic rifted margins, 19
Volcanoes
Alaska, 88t
Askja, 88t
Axial Seamount, 241, 242, 242t, 243f, 244f, 246–50, 246f,
247f, 249f, 253–55
c（cont’d）
Kelut, 89t, 301t
Kilauea, 89t
Kraktau, 88t, 89t
in Lesser Antilles, 89t
magmatic plumbing systems, 84f
Merapi, 259–67, 261f, 262t, 263f, 264f, 265f, 266f, 267f, 301t
mid-ocean ridge, 7, 84
Mount St. Helens, 7, 88t, 265t
Nabro, 301t
Nevado del Ruiz, 89t, 93
in New Zealand, 88t
in Nicaragua, 88t
Okmok, 301t
Pelée, 89t, 93
in Philippines, 88t
Pinatubo, 88t
plate boundaries associated with, 7, 79
Puyehue-Cordon Caulle, 301t
pyroclastic flows associated with, 7
pyroclastics, 86
recent history of, 87–93, 88t, 89t, 91f
rifts, 25–26
in Russia, 88t, 301t
Santa Maria, 88t, 89t
Sarychev Peak, 301t
silica-rich nature of arc magmas in, 85
size of arc volcanoes, 85–86
Soufrière Hills, 265f, 301t
Tambora, 88t, 89t
Tarawera, 88t
Tavurvur, 301t
Tengchong, 167, 168f, 173, 175–76, 175f, 176f, 183, 183f, 184f, 185f, 186f, 187, 187f
thirteen deadliest eruptions since 1631, 89t, 91f, 93
threat of, 7
transform plate boundaries, 85
Tungurahua, 89t
twelve most violent eruptions since 1815, 88t, 91f, 93
Unzen, 89t
Vesuvius, 89t

Wenchuan earthquake
magnitude and deaths from, 169t
magnitude of, 133
mainshock and aftershocks associated with, 170
P and S wave velocity associated with, 169–70, 170f
predominant thrusting component, 169
Sichuan-Yunnan region before and after, 169
structural features associated with, 171–72, 171f
tomographic results in map view, 171f
Woodlark basin, comparison of natural data with incipient spreading models for, 62, 62f

Xianshuihe fault, 167
Xiaojiang fault, 167, 168f, 177f, 183, 183f, 187f

Yingjiang earthquake
magnitude and deaths from, 169t
Map views of P-wave seismic tomography associated with, 175f
seismic stations recording, 177f
seismotectonics of, 172
small earthquakes and aftershocks associated with, 173, 174f
Tengchong volcano associated with, 173, 175–76, 175f, 176f
velocity structure for, 173

Yushu earthquake, magnitude and deaths from, 169t

Zero offset transforms, 56