Contents

Preface xxix
Acknowledgments xxxi
Trademarks and Copyrights xxxiii
Copyright Permissions xxxv
About the Companion Website xxxix

Chapter 1 Introduction to Microcontrollers and This Book
1.1 Microcontroller Configuration and Structure 2
1.2 The ARM® Cortex®-M4 Microcontroller System 3
1.3 The TM4C123GH6PM Microcontroller Development Tools and Kits 4
1.4 Outstanding Features About This Book 5
1.5 Who This Book Is For 5
1.6 What This Book Covers 6
1.7 How This Book Is Organized and How to Use This Book 8
1.8 How to Use the Source Code and Sample Projects 9
1.9 Instructors and Customers Supports 11

Chapter 2 ARM® Microcontroller Architectures
2.1 Overview and Introduction 13
2.2 Introduction to ARM® Cortex®-M4 MCU 15
2.2.1 The Architecture of ARM® Cortex®-M4 MCU 17
2.2.1.1 The ARM® MCU Architecture 17
2.2.1.2 The Architecture of the ARM® Cortex®-M4 Core (CPU) 20
2.2.1.2.1 The Register Bank in the Cortex®-M4 Core 21
2.2.1.2.2 The Special Registers in the Cortex®-M4 Core 22
2.2.1.3 The Architecture of the Floating-Point Registers 25
2.3 The Memory Architecture 27
2.3.1 The Memory Map 28
2.3.2 The Stack Memory 29
2.3.3 The Program Models and States 32
2.3.4 The Memory Protection Unit (MPU) 33
2.4 The Nested Vectored Interrupt Controller (NVIC) Architecture 34
2.4.1 The Nested Vectored Interrupt Controller (NVIC) Features 35
2.4.2 Exception and Interrupt Sources 35
2.4.3 Exception Priority Levels and Mask Registers 35
2.4.4 Respond and Process Exceptions and Interrupts 36
2.4.5 Exception and Interrupt Vector Table 37
2.5 The Debug Architecture 37
2.6 Introduction to Tiva™ C Series ARM® Cortex®-M4 MCU-TM4C123GH6PM 38
2.6.1 TM4C123GH6PM Microcontroller Overview 39
2.6.2 TM4C123GH6PM Microcontroller On-Chip Memory Map 40
 2.6.2.1 The System Peripherals 42
 2.6.2.2 The On-Chip Peripherals 42
 2.6.2.3 Interfaces to External Parallel Peripherals 44
 2.6.2.4 Interfaces to External Serial Peripherals 44
2.6.3 TM4C123GH6PM Microcontroller General-Purpose Input–Output (GPIO) Module 44
 2.6.3.1 The System Clock 45
 2.6.3.2 The General Configuration Procedures for GPIO Peripherals 47
 2.6.3.3 Tiva™ TM4C123GH6PM GPIO Architecture 47
 2.6.3.3.1 The Port Control Register (GPIOPCTL) 49
 2.6.3.3.2 The Data Control Registers 49
 2.6.3.3.3 The Mode Control Registers 49
 2.6.3.3.4 The Commit Control Registers 51
 2.6.3.3.5 The Interrupt Control Registers 51
 2.6.3.3.6 The Pad Control Registers 52
 2.6.3.3.7 The Identification Registers 55
 2.6.3.4 The Initialization and Configuration of TM4C123GH6PM GPIO Ports 55
2.6.4 TM4C123GH6PM Microcontroller System Controls 57
 2.6.4.1 Device Identification 58
 2.6.4.2 Reset Control 59
 2.6.4.2.1 The Power-On Reset 60
 2.6.4.2.2 The External Reset 61
 2.6.4.2.3 The Brown-Out Reset (BOR) 61
 2.6.4.2.4 The Software Reset 61
 2.6.4.2.5 The Watchdog Timer Reset 62
 2.6.4.3 Non-Maskable Interrupt Control 63
 2.6.4.4 Clock Control 64
 2.6.4.5 Other System Controls 67
 2.6.4.5.1 The Run Mode 67
 2.6.4.5.2 The Sleep Mode 68
 2.6.4.5.3 The Deep-Sleep Mode 68
 2.6.4.5.4 The Hibernate Mode 68
 2.6.4.5.5 The System Timer (SysTick) 69
 2.6.4.5.6 System Control Block (SCB) 70
 2.6.4.6 System Clock Initialization and Configuration 71
2.7 Introduction to Tiva™ C Series LaunchPad™ TM4C123GXL Evaluation Board 72
2.8 Introduction to EduBASE ARM® Trainer 77
2.9 Chapter Summary 77
Homework 79
Chapter 3 ARM® Microcontroller Development Kits

3.1 Overview and Introduction 83
3.2 The Entire Tiva™ TM4C123G-based Development System 84
3.3 Download and Install Development Suite and Specified Firmware 86
3.4 Introduction to the Integrated Development Environment—Keil® MDK μVersion5 87
 3.4.1 The Keil® MDK-ARM® for the MDK-Cortex-M Family 88
 3.4.2 General Development Flow with MDK-ARM® 89
 3.4.3 Warming Up Keil® MDK Cortex-M Kit with Example Projects 91
 3.4.4 The Functions of the Keil® MDK-ARM® μVersion®5 GUI 95
 3.4.4.1 The File Menu 97
 3.4.4.2 The Edit Menu 98
 3.4.4.3 The Project Menu 101
 3.4.4.4 The Flash Menu 121
 3.4.4.5 The Debug Menu 121
 3.4.4.6 The Peripherals Menu 123
 3.4.4.7 The Tools Menu 124
 3.4.4.8 The SVCS Menu 125
 3.4.4.9 The Window Menu 126
 3.4.4.10 The Help Menu 126
3.5 Embedded Software Development Procedure 127
3.6 The Keil® ARM®-MDK μVision5 Debugger and Debug Process 128
 3.6.1 The ARM® μVision5 Debug Architecture 129
 3.6.2 The ARM® Debug Adaptor and Debug Adaptor Driver 130
 3.6.3 Tiva™ C Series LaunchPad™ Debug Adaptor and Debug Adaptor Driver 132
 3.6.4 The ARM® μVersion5 Debug Process 133
 3.6.5 The ARM® Trace Feature 134
 3.6.5.1 Some Useful Trace Features Provided by Cortex®-M4 MCU 135
 3.6.6 The ARM® Instruction Set Simulator 136
 3.6.7 The ARM® Programs Running from SRAM 137
 3.6.8 ARM® Optimizations 139
3.7 The TivaWare™ for C Series Software Suite 140
 3.7.1 The TivaWare™ C Series Software Package 142
 3.7.1.1 The Peripheral Driver Library (DriverLib) 143
 3.7.1.2 The Boot Loader 144
 3.7.1.3 The Utilities 144
 3.7.2 TivaWare™ C Series for TM4C123G LaunchPad™ Evaluation Kit 145
 3.7.2.1 TivaWare™ C Series LaunchPad™ Evaluation Software Package 145
3.8 The TivaWare™ for C Series Utilities and Other Supports 147
 3.8.1 Additional Utilities Provided by TivaWare™ for C Series 148
 3.8.1.1 The LMFlash Programmer 148
 3.8.1.2 The UniFlash 149
 3.8.1.3 The FTDI Drivers 149
 3.8.1.4 The IQMath Library 149
 3.8.1.5 TivaWare™ for C Series CMSIS Support 150
3.9 Program Examples 151
3.10 Chapter Summary 152
Homework 152

Chapter 4 ARM® Microcontroller Software and Instruction Set 155

4.1 Overview and Introduction 155
4.2 Introduction to ARM® Cortex®-M4 Software Development Structure 156
4.3 Introduction to ARM® Cortex®-M4 Assembly Instruction Set 157
 4.3.1 The ARM® Cortex®-M4 Assembly Language Syntax 158
 4.3.2 The ARM® Cortex®-M4 Pseudo Instructions 160
 4.3.3 The ARM® Cortex®-M4 AddressingModes 161
 4.3.3.1 The Immediate Offset Addressing Mode 162
 4.3.3.1.1 Regular Immediate Offset Addressing Mode 162
 4.3.3.1.2 Pre-Indexed Immediate Offset Addressing Mode 163
 4.3.3.1.3 Post-Indexed Immediate Offset Addressing Mode 163
 4.3.3.1.4 Regular Immediate Offset Addressing Mode with Unprivileged Access 163
 4.3.3.2 The Register Offset Addressing Mode 164
 4.3.3.3 The PC-Relative Addressing Mode 165
 4.3.3.4 Load and Store Multiple Registers Addressing Mode 167
 4.3.3.5 PUSH and POP Register Addressing Mode 170
 4.3.3.6 Load and Store Register Exclusive Addressing Mode 170
 4.3.3.7 Inherent Addressing Mode 171
 4.3.3.8 Addressing Mode Summary 171
 4.3.4 The ARM® Cortex®-M4 Instruction Set Categories 172
 4.3.4.1 Data Moving Instructions 172
 4.3.4.2 Arithmetic Instructions 174
 4.3.4.3 Logic Instructions 176
 4.3.4.4 Shift and Rotate Instructions 178
 4.3.4.5 Data Conversion Instructions 179
 4.3.4.6 Bit-Field Processing Instructions 182
 4.3.4.7 Compare and Test Instructions 186
 4.3.4.8 Program Flow Control Instructions 187
 4.3.4.9 Saturation Instructions 191
 4.3.4.10 Exception-Related Instructions 193
 4.3.4.11 Sleep Mode Instructions 194
 4.3.4.12 Memory Barrier Instructions 194
 4.3.4.13 Miscellaneous Instructions 195
 4.3.4.14 Unsupported Instructions 196
 4.4 ARM® Cortex®-M4 Software Development Procedures 196
 4.5 Using C Language to Develop ARM® Cortex®-M4 Microcontroller Applications 197
 4.5.1 The Standard Data Types Used in Intrinsic Functions 198
 4.5.2 The CMSIS-Core-Specific Intrinsic Functions 200
 4.5.3 The Keil® ARM® Compiler-Specific Intrinsic Functions 202
 4.5.4 Inline Assembler 204
Chapter 5 ARM® Microcontroller Interrupts and Exceptions 261

5.1 Overview and Introduction 261
5.2 Exceptions and Interrupts in the ARM® Cortex®-M4 MCU System 263
 5.2.1 Exception and Interrupt Types 265
 5.2.2 Exceptions and Interrupts Management 265
 5.2.3 Exception and Interrupt Processing 268
 5.2.3.1 Exception and Interrupt Inputs and Pending Status 269
 5.2.3.2 Exception and Interrupt Vector Table 270
 5.2.3.3 Definitions of the Priority Levels 271
5.3 Exceptions and Interrupts in the TM4C123GH6PM Microcontroller System 273
 5.3.1 Local Interrupt Configurations and Controls for GPIO Pins 273
 5.3.1.1 Initialize and Configure GPIO Interrupt Control Registers 274
 5.3.2 Local Interrupt Configurations and Controls for GPIO Ports 276
 5.3.2.1 The NVIC Interrupt Priority-Level Registers 276
 5.3.2.2 The NVIC Interrupt Set Enable Registers 280
5.3.3 Global Interrupt Configurations and Controls 281
5.3.4 The Vector Table and Vectors Used in the TM4C123GH6PM MCU 282
5.3.5 The GPIO Interrupt Handling and Processing Procedure 284
5.4 Developing GPIO Port Interrupt Projects to Handle GPIO Interrupts 285
5.4.1 Two Software Packages Used in the TM4C123GH6PM MCU System 286
5.4.1.1 The TivaWare™ Software Package (TWSP) 286
5.4.1.1.1 Two Header Files Used in the TM4C123GH6PM MCU System 288
5.4.1.1.2 The Register Driver Definition Header File in the TivaWare™ Software Package 289
5.4.1.1.3 The CMSIS Cortex-M4 Peripheral Layer Header File for TM4C123GH6PM 289
5.4.1.2 The CMSIS Core Software Package (CMSISCSP) 290
5.4.2 Using DRA Programming Model to Handle GPIO Interrupts 290
5.4.2.1 Create a New Project GPIOInt and the Header File 291
5.4.2.2 Create a New C Code File GPIOInt and Add It into the Project 292
5.4.2.3 Set Up the Environment to Compile and Link the Project 294
5.4.3 Using CMSIS Core Macros for NVIC Registers to Handle GPIO Interrupts 294
5.4.3.1 Popular Data Structures Defined in the CMSIS Core Header File 295
5.4.3.2 IRQ Numbers Defined in the TivaWare™ System Header File 297
5.4.3.3 The NVIC Macros Defined in the TivaWare™ System Header Files 299
5.4.3.4 The NVIC Structure Defined in the CMSIS Core Header File 300
5.4.3.5 Building Sample Project to Use CMSIS Core Macros for NVIC to Handle Interrupts 302
5.4.3.6 Create a New Project NVICInt and Add the C Code File 303
5.4.4 Using TivaWare™ Peripheral Driver Library API Functions to Handle GPIO Interrupts 306
5.4.4.1 NVIC API Functions Defined in the TivaWare™ Peripheral Driver Library 306
5.4.4.2 GPIO Interrupt-Related API Functions in the TivaWare™ Peripheral Driver Library 308
5.4.4.3 Building Sample Project to Use Peripheral Driver Library to Handle Interrupts 309
5.4.4.4 Create a New Project SDInt and Add the C Code File 310
5.4.4.5 Configuring the Environments and Run the Project 312
5.4.5 Using CMSIS Core Access Functions to Handle GPIO Interrupts 313
5.4.5.1 Building Sample Project to Use CMSIS Core Functions to Handle Interrupts 314
5.4.5.2 Create a New Project CMSISInt and Add the C Code File 314
5.4.5.3 Configure the Environments and Run the Project 316
5.5 Comparison Among Four Interrupt Programming Methods 317
5.6 Chapter Summary 318
Homework 319
Chapter 6 ARM® Microcontroller Memory System 333

6.1 Overview and Introduction 333
6.2 Memory Architecture in the TM4C123GH6PM MCU System 334
6.2.1 Static Random Access Memory (SRAM) 336
6.2.2 Flash Memory 336
6.2.2.1 Basic Operations of the Flash Memory 337
6.2.2.2 The 32-Word Flash Memory Write Buffer 338
6.2.2.3 Flash Control Registers 339
6.2.2.4 Boot Configuration Register (BOOTCFG) 339
6.2.2.5 Flash Memory Address Register (FMA) 341
6.2.2.6 Flash Memory Data Register (FMD) 342
6.2.2.7 Flash Memory Control Register (FMC) 342
6.2.2.8 Flash Memory Control 2 Register (FMC2) 342
6.2.2.9 The Flash Write Buffer Valid Register (FWBVAL) 343
6.2.2.10 Flash Controller Raw Interrupt Status Register (FCRIS) 344
6.2.2.11 Flash Controller Interrupt Mask Register (FCIM) 346
6.2.2.12 Flash Controller Masked Interrupt Status and Clear Register (FCMISC) 346
6.2.2.13 Other Control Registers Related to Flash Memory Control 349
6.2.3 Flash Memory Protection Control 349
6.2.4 Internal Read-Only Memory (ROM) 351
6.2.4.1 The Boot Loader 352
6.2.4.2 The TivaWare™ Peripheral Driver Library 352
6.2.4.3 The ROM Control Register (RMCTL) 354
6.2.4.4 The ROM Software Map Register (ROMSWMAP) 354
6.2.5 Electrical Erased Programmable Read-Only Memory (EEPROM) 354
6.2.5.1 EEPROM Initialization and Configuration 356
6.2.5.2 Most Important Control Registers Used in the EEPROM Module 357
6.2.5.2.1 The EEPROM Current Block Register (EEBLOCK) 357
6.2.5.2.2 The EEPROM Current Offset Register (EOFFSET) 357
6.2.5.2.3 EEPROM Done Status Register (EEDONE) 357
6.2.5.2.4 EEPROM Support Control and Status Register (EESUPP) 359
6.2.5.2.5 EEPROM Protection Register (EEPROM) 359
6.2.5.3 Other Important Control Registers Used in the EEPROM Module 360
6.3 Memory Map in TM4C123GH6PM MCU System 361
6.4 Bit-Band Operations 362
6.4.1 The Mapping Relationship Between the Bit-Band Region and the Bit-Band Alias Region 365
6.4.2 The Advantages of Using the Bit-Band Operations 365
6.4.3 An Illustration Example of Using Bit-Band Alias Addresses 367
6.4.4 Bit-Band Operations for Different Data Sizes 369
6.4.5 Bit-Band Operations Built in C Programs 369
6.5 Memory Requirements and Memory Properties 370
6.5.1 Memory Requirements 371
6.5.2 Memory Access Attributes 372
6.5.3 Memory Endianness 373
 6.5.3.1 The Little Endian Format 374
 6.5.3.2 The Big Endian Format 374
6.6 Memory System Programming Methods 375
 6.6.1 The API Functions Used for Flash Memory Programming 376
 6.6.2 The API Functions Used for EEPROM Programming 378
6.7 Memory System Programming Projects 380
 6.7.1 Flash Memory Programming 380
 6.7.1.1 Programming Flash Memory for Multiple Words with DRA Method (Polled) 380
 6.7.1.1.1 The Operational Sequence of the Programming Flash Memory 380
 6.7.1.1.2 The Programming Macros for Flash Memory Registers and Parameters 381
 6.7.1.1.3 Build the Project to Program Multiple Words for Flash Memory 382
 6.7.1.1.4 Build and Run the Project to Perform Erase and Write Operations 386
 6.7.1.2 Programming Flash Memory for Multiple Words with the DRA Method (Interrupt Driven) 388
 6.7.1.2.1 The Erase and Write Interrupts Processing Procedure 389
 6.7.1.2.2 Special Features Utilized in the Project 390
 6.7.1.2.3 Build the Project to Program Multiple Words for Flash Memory with Interrupts 390
 6.7.1.2.4 Set Up the Environment to Build and Run the Project 396
 6.7.1.3 Programming Flash Memory for Buffered Words with the DRA Method 397
 6.7.1.3.1 The Buffer Words Programming Procedure 397
 6.7.1.3.2 Develop the Buffer Words Programming Project DRAFlashBuffer 398
 6.7.1.3.3 Build and Set Up the Environment to Run the Project 400
6.7.2 EEPROM Programming 401
 6.7.2.1 Special Features in the EEPROM Programming Process 401
 6.7.2.2 EEPROM Programming Operational Sequence 402
 6.7.2.2.1 Configure and Set Up EEBLOCK and EEOFFSET Registers 403
 6.7.2.2.2 Implement and Update the EEBLOCK and EEOFFSET Registers 404
6.7.3 Three Kinds of System Header Files in the TM4C123GH6PM MCU System 405
 6.7.3.1 The Register Driver Definitions Header File TM4C123GH6PM.h 405
 6.7.3.2 The CMSIS Cortex®-M4 Peripheral Hardware Layer Header File TM4C123GH6PM.h 406
 6.7.3.3 System Header Files for All Internal Peripherals and System Control Devices 406
 6.7.3.4 Enable the EEPROM Module in Run Mode and Reset EEPROM 407
6.7.4 Build Example EEPROM Programming Projects 408
6.7.4.1 Programming EEPROM with the DRA Method (Polling-Driven) 408
 6.7.4.1.1 Create the Header File DRAEEPROMPoll.h 408
 6.7.4.1.2 Create the Source File DRAEEPROMPoll.c 409
 6.7.4.1.3 Set Up the Environment to Build and Run the Project 413
6.7.4.2 Programming EEPROM with the DRA Method (Interrupt-Driven) 414
 6.7.4.2.1 Modify the Header File DRAEEPROMInt.h 416
 6.7.4.2.2 Modify the Source File DRAEEPROMInt.c 417
 6.7.4.2.3 Set Up the Environment to Build and Run the Project 419
6.8 Chapter Summary 420
Homework 421

Chapter 7 ARM® Cortex®-M4 Parallel I/O Ports Programming 433
7.1 Overview and Introduction 433
7.2 GPIO Module Architecture and GPIO Port Configuration 434
7.3 GPIO Port Control Registers 437
 7.3.1 GPIO Port Initialization and Configuration 438
7.4 On-Board Keypad Interface Programming Project 440
 7.4.1 The Keypad Interfacing Programming Structure 441
 7.4.2 Create the Keypad Interfacing Programming Project (Polling-Driven) 442
 7.4.2.1 Create the C Source File DRAKeyPadPoll.c 443
 7.4.3 Set Up the Environment to Build and Run the Project 446
7.5 Analog-to-Digital Converter Programming Project 446
 7.5.1 ADC Modules in the TM4C123GH6PM MCU System 446
 7.5.2 ADC Module Architecture and Functional Block Diagram 447
 7.5.3 ADC Module Components and Signal Descriptions 448
 7.5.3.1 Analog Input Signals and GPIO Analog Control Registers 449
 7.5.3.1.1 GPIO Alternate Function Select (GPIOAFSEL) Register 450
 7.5.3.1.2 GPIO Digital Enable (GPIODEN) Register 450
 7.5.3.1.3 GPIO Analog Mode Select (GPIOAMSEL) Register 451
 7.5.3.2 Sample Sequencer Controls and Their Control Registers 451
 7.5.3.2.1 ADC Sample Sequencer Input Multiplexer Select (ADCSSMUXn) Register 452
 7.5.3.2.2 ADC Sample Sequencer Control (ADCSSCTLn) Register 454
 7.5.3.2.3 ADC Active Sample Sequencer (ADCASTSS) Register 458
 7.5.3.2.4 ADC Processor Sample Sequencer Initiate (ADCPSSI) Register 459
 7.5.3.2.5 ADC Sample Sequencer Result FIFO (ADCSSFIFO) Register 460
 7.5.3.3 ADC Module Control Functions and Related Registers 461
 7.5.3.3.1 ADC Module Clocking 461
 7.5.3.3.2 ADC Interrupt Request and Handling 463
 7.5.3.3.3 Sampling Events and Trigger Sources 467
 7.5.3.3.4 DMA Operations 470
 7.5.4 Analog-to-Digital Converter 470
7.5.4.1 Voltage Reference and Resolutions 471
7.5.4.2 Differential Input Mode 471
7.5.4.3 Internal Temperature Sensor 472

7.5.5 Initialization and Configuration 473
7.5.5.1 ADC-Related GPIO Ports Initialization 473
7.5.5.2 ADC Module Initialization 474
7.5.5.3 Sample Sequencers Initialization 474

7.5.6 Build the Analog-to-Digital Converter Programming Project 475
7.5.6.1 ADC Module in EduBASE ARM® Trainer 475
7.5.6.2 Create the ADC Programming Project (Polling-Driven) 476
7.5.6.3 Create the Source File DRAADCp01l.c 476
7.5.6.4 Set Up the Environment to Build and Run the Project 479

7.5.7 ADC Module API Functions Provided in the TivaWare™ Peripheral Driver Library 480
7.5.7.1 Configuring and Handling the Sample Sequencers API Functions 481
7.5.7.2 Configuring and Controlling the Processor Trigger API Functions 481
7.5.7.3 Configuring and Processing the ADC Interrupt API Functions 483
7.5.7.4 Build an Example ADC Project Using API Functions 484

7.6 PWM-Controlled DC and Step Motors Programming Project 486
7.6.1 The PWM Principle and Implementations 487
7.6.2 PWM Modules in the TM4C123GH6PM MCU System 487
7.6.2.1 The PWM Generator Block 488
7.6.2.1.1 The PWM Counter (Timer) 488
7.6.2.1.2 The PWM Comparators 488
7.6.2.1.3 The PWM Output Signals Generator 489
7.6.2.1.4 The Dead-Band Generator 490

7.6.3 PWM Generator Functional Block Diagram 490
7.6.3.1 PWM Generator Block Control Register (PWMnCTL) 491
7.6.3.2 PWM Generator Block Load Register (PWMnLOAD) 493
7.6.3.3 PWM Generator Block Count Register (PWMnCOUNT) 493
7.6.3.4 PWM Generator Block Comparator A Register (PWMnCMPA) 493
7.6.3.5 PWM Generator Block Comparator B Register (PWMnCMPB) 494
7.6.3.6 PWM Generator A Register (PWMnGENA) 494
7.6.3.7 PWM Generator B Register (PWMnGENB) 495
7.6.3.8 PWM Generator Dead-Band Control Register (PWMnDBCTL) 496
7.6.3.9 PWM Generator Dead-Band Rising-Edge Delay Register (PWMnDBRISE) 497
7.6.3.10 PWM Generator Dead-Band Falling-Edge Delay Register (PWMnDBFALL) 497
7.6.3.11 PWM Interrupt and Trigger Enable Register (PWMnINTEN) 498
7.6.3.12 PWM Raw Interrupt Status Register (PWMnRIS) 498
7.6.3.13 PWM Interrupt Status and Clear Register (PWMnISC) 499
7.6.3.14 PWM Fault Source n Register (PWMnFLTSRCn) 501

7.6.4 PWM Module Architecture and Functional Block Diagram 502
7.6.4.1 The Control and Status Block 503
7.6.4.1.1 The Run-Mode Clock Configuration Register (RCC) 504
7.6.4.1.2 The PWM Master Control Register (PWMCTL) 504
7.6.4.1.3 The PWM Timer Base Synchronous Register (PWMSYNC) 504
7.6.4.1.4 The PWM Status Register (PWMSTATUS) 505
7.6.4.1.5 The PWM Peripheral Properties Register (PWMPP) 505
7.6.4.2 The Output Control Block 505
7.6.4.2.1 The PWM Output Enable Register (PWMENABLE) 505
7.6.4.2.2 The PWM Output Inversion Register (PWMINVERT) 506
7.6.4.2.3 The PWM Output Fault Register (PWMFAULT) 506
7.6.4.2.4 The PWM Fault Condition Value Register (PWMFAULTVAL) 507
7.6.4.2.5 The PWM Enable Update Register (PWMENUPD) 507
7.6.4.3 The Interrupt Control Block 507
7.6.4.3.1 The PWM Interrupt Enable Register (PWMINTEN) 508
7.6.4.3.2 The PWM Raw Interrupt Status Register (PWMRIS) 509
7.6.4.3.3 The PWM Interrupt Status and Clear Register (PWMISC) 509
7.6.5 PWM Module Components and Signal Descriptions 509
7.6.5.1 PWM Signal Description 510
7.6.5.2 Synchronization Methods 511
7.6.5.3 Fault Conditions 512
7.6.6 PWM Module Initialization and Configuration 513
7.6.6.1 Initialize and Configure the Clock Source for PWM Module and GPIO Ports 513
7.6.6.2 Initialize and Configure GPIO Ports and Pins Related to PWM Modules 513
7.6.6.3 Initialize and Configure the PWM Module and Generators 514
7.6.7 PWM Module Architecture in the EduBASE ARM® Trainer 515
7.6.8 Build an Example PWM Programming Project 516
7.6.8.1 Create a PWM Application Project DRAPWM 517
7.6.8.2 Set Up the Environment to Build and Run the Project 520
7.7 The PWM API Functions in the TivaWare™ Peripheral Driver Library 521
7.7.1 PWM Modules and Generators Configuration and Set Up Control Functions 521
7.7.2 PWM Output Control Functions 523
7.7.3 PWM Interrupt and Fault Control Functions 523
7.8 Chapter Summary 525
Homework 527
8.3.3.3 MICROWIRE Frame 559
8.3.4 SSI Module Components and Signal Descriptions 560
 8.3.4.1 SSI Control Signals and GPIO SSI Control Registers 560
 8.3.4.2 SSI Module Bit Rate Generation and Clock Control 562
 8.3.4.3 SSI Module Control/Status and FIFO Control 564
 8.3.4.3.1 SSI Control 1 Register (SSICR1) 564
 8.3.4.3.2 SSI Status Register (SSISR) 565
 8.3.4.3.3 SSI Data Register (SSIDR) 565
 8.3.4.3.4 FIFO Operations 566
 8.3.4.4 SSI Module Interrupt and DMA Control 567
 8.3.4.4.1 SSI Interrupt Mask Register (SSIIM) 568
 8.3.4.4.2 SSI Raw Interrupt Status Register (SSIPRIS) 569
 8.3.4.4.3 SSI DMA Control Register (SSIDMACR) 569
 8.3.4.5 SSI Module Transmit/Receive Logic Control 570
 8.3.4.6 SSI Modules Initialization and Configurations 570
 8.3.4.6.1 SSI-Module-Related GPIO Ports Initialization 570
 8.3.4.6.2 SSI Module Initialization and Configuration 571
 8.3.4.6.3 SSI Module Clock Source and Bit Rate Initialization and
 Configuration 571
8.3.5 Build the On-Board LCD Interface Programming Project 572
 8.3.5.1 SSI Module Interface for the LCD in EduBASE ARM® Trainer 572
 8.3.5.2 The Serial Shift Register 74VHC595 573
 8.3.5.3 The LCD Module TC1602A and LCD Controller SPLC780 574
 8.3.5.3.1 Interfacing Control Signals Between the MCU and the
 SPLC780 576
 8.3.5.3.2 Control and Interface Programming for SPLC780 578
 8.3.5.3.3 LCD Programming Instruction Structure and Sequence 580
 8.3.5.4 Build the Example LCD Interfacing Project 583
 8.3.5.4.1 Create a Direct Register Access LCD Project DRALCD 584
 8.3.5.4.2 Create the Header File DRALCD.h 584
 8.3.5.4.3 Create the C Source File DRALCD.c 585
 8.3.5.4.4 Set Up the Environment to Build and Run the Project 589
8.3.6 Build On-Board 7-Segment LED Interface Programming Project 589
 8.3.6.1 Structure of 7-Segment LEDs 589
 8.3.6.2 SSI Module Interface for the 7-Segment LED in the EduBASE ARM®
 Trainer 590
 8.3.6.3 Build the Example LED Interfacing Project 592
 8.3.6.3.1 Create a Direct Register Access LED Project DRALED 593
 8.3.6.3.2 Create the C Source File DRALED.c 593
 8.3.6.3.3 Set Up the Environment to Build and Run the Project 595
8.3.7 Build Digital-to-Analog Converter Programming Project 595
 8.3.7.1 SSI Module Interface for the DAC-MCP4922 in the EduBASE ARM®
 Trainer 595
 8.3.7.2 The Operations and Programming for MCP4922 DAC 596
 8.3.7.3 The Analog-to-Digital Converter TLC-548 598
 8.3.7.4 Build the Example DAC Interfacing Project 599
 8.3.7.4.1 Create a Direct Register Access DAC Project DRADAC 600
8.3.7.4.2 Create the Header File DRADAC.h 600
8.3.7.4.3 Create the C Source File DRADAC.c 600
8.3.7.4.4 Set Up the Environment to Build and Run the Project 603

8.3.8 SSI API Functions Provided by TivaWare™ Peripheral Driver Library 604
8.3.8.1 The SSI Module Initialization and Configuration Functions 604
8.3.8.2 The SSI Module Control and Status Functions 605
8.3.8.3 The SSI Module Data Processing Functions 606
8.3.8.4 The SSI Module Interrupt Source and Processing Functions 607
8.3.8.5 Build an Example Project to Interface Serial Peripherals Using the SSI Module 608
8.3.8.5.1 Create a New Software Driver Model Project SDLCD 608
8.3.8.5.2 Create the Header File SDLCD.h 608
8.3.8.5.3 Create the C Source File SDLCD.c 608

8.4 Inter-Integrated Circuit (I2C) Interface 611
8.4.1 I2C Module Bus Configuration and Operational Status 612
8.4.2 I2C Module Architecture and Functional Block Diagram 613
8.4.3 I2C Module Data Transfer Format and Frame 614
8.4.4 I2C Module Operational Sequence 614
8.4.4.1 I2C Module Works in the Master Transmit Mode 614
8.4.4.2 I2C Module Works in the Master Receive Mode 616
8.4.4.3 I2C Module Works in the Slave Transmit and Receive Modes 616
8.4.5 I2C Module Major Operational Components and Control Signals 618
8.4.6 I2C Module Running Speeds (Clock Rates) and Interrupts 620
8.4.6.1 I2C Module High-Speed Mode 621
8.4.6.2 I2C Module Interrupts Generation and Processing 621
8.4.6.2.1 I2C Master Interrupts 622
8.4.6.2.2 I2C Slave Interrupts 622
8.4.7 I2C Interface Control Signals and GPIO I2C Control Registers 622
8.4.8 I2C Module Control Registers and Their Functions 623
8.4.8.1 I2C Module Master Control Registers 623
8.4.8.1.1 I2C Master Slave Address Register (I2CMSA) 623
8.4.8.1.2 I2C Master Control/Status Register (I2CMCS) 624
8.4.8.1.3 I2C Master Data Register (I2CMDR) 624
8.4.8.1.4 I2C Master Timer Period Register (I2CMTPR) 624
8.4.8.1.5 I2C Master Configuration Register (I2CMCR) 625
8.4.8.1.6 I2C Master Clock Low Timeout Count Register (I2CMCLKOCNT) 625
8.4.8.1.7 I2C Master Bus Monitor Register (I2CMBMON) 626
8.4.8.1.8 I2C Master Interrupt Mask Register (I2CMIMR) 626
8.4.8.1.9 I2C Master Raw Interrupt Status Register (I2CMRIS) 626
8.4.8.1.10 I2C Master Masked Interrupt Status Register (I2CMMIS) 626
8.4.8.1.11 I2C Master Interrupt Clear Register (I2CMICR) 627
8.4.8.2 I2C Module Slave Control Registers 627
8.4.8.2.1 I2C Slave Own Address Register (I2CSOAR) 627
8.4.8.2.2 I2C Slave Control Status Register (I2CSCSR) 627
8.4.8.2.3 I2C Slave Data Register (I2CSDR) 628
8.4.8.2.4 I2C Slave Own Address 2 Register (I2CSOAR2) 628
8.4.8.2.5 I2C Slave ACK Control Register (I2CSACKCTL) 628
8.4.8.2.6 I2C Slave Interrupt Mask Register (I2CSIMR) 629
8.4.8.2.7 I2C Slave Raw Interrupt Status Register (I2CSRIS) 629
8.4.8.2.8 I2C Slave Masked Interrupt Status Register (I2CSMIS) 629
8.4.8.2.9 I2C Slave Interrupt Clear Register (I2CSICR) 629

8.4.9 I2C Module Initializations and Configurations 630
8.4.9.1 Initializations and Configurations for the I2C-Related GPIO Pins 630
8.4.9.2 Initializations and Configurations for the I2C Module 630

8.4.10 Build an Example I2C Module Project 631
8.4.10.1 The BQ32000 Real Time Clock (RTC) 631
8.4.10.2 The Interface Between the BQ32000 and EduBASE ARM® Trainer 633
8.4.10.3 Create a DRA Model I2C Project DRAI2C 634
8.4.10.4 Create the Source File DRAI2C 634
8.4.10.5 Set Up the Environment to Build and Run the Project 638

8.4.11 I2C API Functions Provided by TivaWare™ Peripheral Driver Library 639
8.4.11.1 Master Operations 639
8.4.11.2 I2C Module Status and Initialization API Functions 640
8.4.11.3 I2C Module Sending and Receiving Data API Functions 641

8.5 Universal Asynchronous Receivers/Transmitters (UARTs) 642
8.5.1 Asynchronous Serial Communication Protocols and Data Framing 642
8.5.2 Asynchronous Serial Interface Architecture and Functional Block Diagram 643
8.5.3 UART Module Operations and Control Registers 645
8.5.3.1 Transmit/Receive Logic and Data Transmission and Receiving 645
8.5.3.2 UART Modem Handshake Support 645
8.5.3.3 UART FIFO Operations 647
8.5.3.4 UART Interrupts and DMA Control 648
8.5.3.5 UART Serial IR (SIR) Support 649
8.5.3.6 9-Bit UART Mode 649
8.5.3.7 UART Module Clock Control and Baud Rate Generation Registers 650
8.5.3.8 UART Module Control/Status and FIFO Control Registers 651
8.5.3.8.1 UART Control Register (UARTCTL) 651
8.5.3.8.2 UART Line Control Register (UARTLCRH) 653
8.5.3.8.3 UART Receive Status/Error Clear Register (UARTRSR/UARTECR) 653
8.5.3.8.4 UART Data Register (UARTDR) 654
8.5.3.8.5 UART Flag Register (UARTFR) 655
8.5.3.9 UART Module Interrupt and DMA Control Registers 655
8.5.3.9.1 UART Interrupt FIFO Level Select (UARTIFLS) Register 656
8.5.3.9.2 UART Raw Interrupt Status (UARTRIS) Register 656
8.5.3.9.3 UART Interrupt Mask (UARTIM) Register 656
8.5.3.9.4 UART Masked Interrupt Status (UARTMIS) Register 657
8.5.3.9.5 UART Interrupt Clear Register (UARTICR) 657
8.5.3.9.6 UART DMA Control (UARTDMACTL) Register 657

8.5.4 UART Module Control Signals and Related GPIO Pins 658
8.5.5 UART Module Initializations and Configurations 659
 8.5.5.1 Initialize and Configure the UART-Related GPIO Ports and Pins 659
 8.5.5.2 Initialize and Configure Clock Source and Baud Rate for the UART Module 659
 8.5.5.3 Initialize and Configure the UART Module 660

8.5.6 Build an Example UART Module Project 660
 8.5.6.1 Create a New UART Module Project DRAUART 661
 8.5.6.2 Create a New C Source File 661
 8.5.6.3 Set Up the Environment to Build and Run the Project 664

8.5.7 The UART API Functions Provided by the TivaWare™ Peripheral Driver Library 664
 8.5.7.1 Clock Source for the Baud Rate Generator API Functions 665
 8.5.7.2 Configure and Control the UART Modules API Functions 666
 8.5.7.3 UART Send and Receive Data API Functions 667
 8.5.7.4 UART Interrupt Handling API Functions 667

8.6 Chapter Summary 668

Homework 669

Chapter 9 ARM® Cortex®-M4 Timer and USB Programming 691

9.1 Overview and Introduction 691

9.2 General-Purpose Timers 692
 9.2.1 The GPTM Architecture and Functional Block Diagram 693
 9.2.2 The General-Purpose Timer Module Components 694
 9.2.2.1 Prescaler Registers 695
 9.2.2.2 Match Registers 695
 9.2.2.3 Shadow Registers 695
 9.2.3 The General-Purpose Timer Module Operational Modes 695
 9.2.3.1 One-Shot and Periodic Timer Mode 696
 9.2.3.2 Periodic Snapshot Timer Mode 698
 9.2.3.3 Wait-for-Trigger Mode 699
 9.2.3.4 Real-Time Clock Timer Mode 699
 9.2.3.5 Input Edge-Count Mode 699
 9.2.3.6 Input Edge-Time Mode 700
 9.2.3.7 PWM Mode 702
 9.2.3.8 DMA Mode 703
 9.2.3.9 Synchronizing GP Timer Blocks 703
 9.2.3.10 Concatenated Modes 703
 9.2.4 The General-Purpose Timer Module Registers 704
 9.2.4.1 Timer A Control Register Group 704
 9.2.4.1.1 GPTM Configuration Register (GPTMCFG) 705
 9.2.4.1.2 GPTM Control Register (GPTMCTL) 705
 9.2.4.1.3 GPTM Timer A Mode Register (GPTMTAMR) 705
 9.2.4.1.4 GPTM Timer A Interval Load Register (GPTMTAILR) 705
 9.2.4.1.5 GPTM Timer A Match Register (GPTMTAMATCHR) 706
 9.2.4.1.6 GPTM Timer A Prescale Register (GPTMTAPR) 707
9.2.4.1.7 GPTM Timer A Prescale Match Register (GPTMTAPMR) 708
9.2.4.1.8 GPTM Timer A Prescale Snapshot Register (GPTMTAPS) 708
9.2.4.2 Timer A Status Register Group 708
9.2.4.2.1 GPTM Timer A Register (GPTMTAR) 708
9.2.4.2.2 GPTM Timer A Value Register (GPTMTAV) 709
9.2.4.2.3 GPTM Timer A Prescale Value Register (GPTMTAPV) 709
9.2.4.3 Timers A and B Interrupt and Configuration Register Group 709
9.2.4.3.1 GPTM Interrupt Mask Register (GPTMIMR) 710
9.2.4.3.2 GPTM Raw Interrupt Status Register (GPTMRIS) 711
9.2.4.3.3 GPTM Masked Interrupt Status Register (GPTMMIS) 711
9.2.4.3.4 GPTM Interrupt Clear Register (GPTMICR) 711
9.2.4.3.5 GPTM Synchronize Register (GPTMSYNC) 711
9.2.4.3.6 GPTM Peripheral Properties Register (GPTMPP) 711
9.2.5 The General-Purpose Timer Module GPIO-Related Control Signals 712
9.2.6 The General-Purpose Timer Module Initializations and Configurations 713
9.2.6.1 Initialization and Configuration for One-Shot/Periodic Timer Mode 714
9.2.6.2 Initialization and Configuration for Input Edge-Count Mode 714
9.2.6.3 Initialization and Configuration for Input Edge-Time Mode 715
9.2.6.4 Initialization and Configuration for Real-Time Clock (RTC) Mode 716
9.2.6.5 Initialization and Configuration for PWM Mode 716
9.2.7 Build an Example General Purpose Timer Project 717
9.2.8 Popular Implementations on GPTM Modules 718
9.2.8.1 Input Edge-Count Implementations 719
9.2.8.2 Input Edge-Time Implementations 721
9.2.8.3 PWM Implementations 723
9.2.9 The API Functions Used for General-Purpose Timer Module 727
9.2.9.1 The API Functions Used for GPTM Module Configurations and Controls 727
9.2.9.2 The API Functions Used for GPTM Module Contents and Related Operations 727
9.2.9.3 The API Functions Used for GPTM Module Interrupt Handling 730
9.2.9.4 An Implementation of Using Timer API Functions to Measure PWM Pulses 731
9.3 Watchdog Timers 732
9.3.1 The Watchdog Timer Architecture and Functional Block Diagram 734
9.3.2 The Watchdog Timer Operational Sequence and Timing Access 735
9.3.3 The Watchdog Timer Registers 735
9.3.3.1 The Watchdog Module Control and Content Registers 735
9.3.3.1.1 Watchdog Timer Control Register (WDTCTL) 736
9.3.3.1.2 Watchdog Timer Load Register (WDTLOAD) 736
9.3.3.1.3 Watchdog Timer Value Register (WDTVALUE) 736
9.3.3.1.4 Watchdog Timer Lock Register (WDTLOCK) 736
9.3.3.1.5 Watchdog Timer Test Register (WDTTEST) 737
9.3.3.2 The Watchdog Module Interrupt Handling Registers 737
9.3.3.2.1 Watchdog Raw Interrupt Status Register (WDTRIS) 737
9.3.3.2.2 Watchdog Masked Interrupt Status Register (WDTMIS) 737
9.3.3.2.3 Watchdog Interrupt Clear Register (WDTICR) 737
9.3.3.2.4 Watchdog Timer Software Reset Register (SRWD) 738
9.3.4 The Watchdog Timer Module Initializations and Configurations 738
9.3.5 Build an Example Watchdog Timer Project 739
9.3.6 The API Functions Used for Watchdog Timer Modules 739
9.3.6.1 The API Functions Used to Configure and Control the Watchdog Timers 740
9.3.6.2 The API Functions Used to Handle Interrupts of the Watchdog Timers 742
9.3.6.3 An Implementation Example of Using API Functions to Control the Watchdog Timer 743

9.4 Universal Serial Bus (USB) Controller 743
9.4.1 The Hardware Configuration of the USB Devices 744
9.4.2 The USB Components and Operational Sequence 745
9.4.3 The Serial Interface Protocol of the USB Communications 747
9.4.4 The USB Interface Used in the Embedded System 748
9.4.5 The USB in the TM4C123GH6PM MCU System 749
9.4.5.1 USB Working as a Device 749
9.4.5.1.1 IN Transactions as a Device 750
9.4.5.1.2 OUT Transactions as a Device 751
9.4.5.1.3 Other Device Functions 752
9.4.5.2 USB Working as a Host 754
9.4.5.2.1 IN Transactions as a Host 755
9.4.5.2.2 OUT Transactions as a Host 755
9.4.5.2.3 Transactions Scheduling 756
9.4.5.2.4 Other Host Functions 756
9.4.5.3 The OTG Mode 757
9.4.5.3.1 Using OTG to Start a Session 758
9.4.5.3.2 Using OTG to Perform Detecting Activity 759
9.4.5.3.3 Using OTG to Perform Host Negotiation 759
9.4.5.4 The USB Module Functional Block Diagram 759
9.4.5.5 The USB Module Control Signals 760
9.4.6 The USB Registers 761
9.4.6.1 USB Host-Related Registers 762
9.4.6.2 USB Device-Related Registers 763
9.4.6.3 USB Host/Device-Related Registers 764
9.4.6.4 USB FIFO-Related Registers 765
9.4.6.5 USB-Interrupt-Related Registers 771
9.4.7 The USB Initializations and Configurations 774
9.4.7.1 Enable and Clock the USB Controller and Related GPIO Ports and Pins 774
9.4.7.2 USB Control Pins Configurations 774
9.4.7.3 Endpoint Configurations 775
9.4.8 A USB Implementation Example Project 775
9.4.9 The USB API Functions Provided by the TivaWare™ Peripheral Driver Library 780
10.4.1.2 Identify the DC Motor Dynamic Model with Identification Toolbox™ 876
10.4.2 Design the PID Controller Using the MATLAB® Control System Toolbox™ 878
10.4.3 Simulate the PID Control System Using the MATLAB® SIMULINK® 881
10.4.4 Build the Control Software to Implement the PID Controller 883
10.5 The Fuzzy Logic Closed-Loop Control System 887
10.5.1 The Fuzzification Process 887
10.5.2 Design of Control Rules 889
10.5.3 The Defuzzification Process 889
10.5.4 Apply the Fuzzy Logic Controller to the DC Motor Control System 891
10.5.5 Build the Fuzzy Logic Control Project Fuzzy-Control 894
10.5.5.1 Create the Header File Fuzzy-Control.h 894
10.5.5.2 Create the C Source File Fuzzy-Control.c 895
10.5.5.3 Set Up Environments to Build and Run the Project 898
10.6 The Analog Comparators 899
10.6.1 The Analog Comparator Architecture and Functional Block Diagram 899
10.6.2 The Control Registers Used in the Analog Comparator Modules 899
10.6.3 The Voltage Reference Registers Used in the Analog Comparator Modules 900
10.6.4 The Interrupt Processing Registers Used in the Analog Comparator Modules 903
10.6.5 The Input and Output Control Signals Used in the Analog Comparators 903
10.6.6 The Initialization and Configuration Process for the Analog Comparator 904
10.6.7 Build a Project to Test the Functions of the Analog Comparator Module 904
10.6.8 Set Up the Environments to Build and Run the Project 907
10.7 Chapter Summary 908
Homework 909

Chapter 11 ARM® Floating Point Unit (FPU) 927

11.1 Overview and Introduction 927
11.2 Three Types of the Floating-Point Data 928
 11.2.1 The Half-Precision Floating-Point Data 928
 11.2.2 The Single-Precision Floating-Point Data 930
 11.2.3 The Double-Precision Floating-Point Data 932
11.3 The FPU in the Cortex®-M4 MCU 934
 11.3.1 The Architecture of the Floating-Point Registers 934
 11.3.2 The FPU Operational Modes 937
11.4 Implementing the Floating-Point Unit 938
 11.4.1 Floating-Point Support in CMSIS-Core 938
 11.4.2 Floating-Point Programming in the TM4C123GH6PM MCU System 939
 11.4.2.1 FPU in the Direct Register Access Model 940
 11.4.2.2 FPU in the Software Driver Model 942
 11.4.3 An FPU Example Project Using the Direct Register Access Model 942
11.5 Chapter Summary 946
Homework 946
Chapter 12 ARM® Memory Protection Unit (MPU) 951

12.1 Overview and Introduction 951
12.2 Implementation of the MPU 952
 12.2.1 Memory Regions, Types, and Attributes 953
 12.2.2 MPU Configuration and Control Registers 953
 12.2.2.1 The MPU Type Register (MPUTYPE) 954
 12.2.2.2 The MPU Control Register (MPUCTRL) 954
 12.2.2.3 The MPU Region Number Register (MPUNUMBER) 956
 12.2.2.4 MPU Region Base Address Register (MPUBASE) 956
 12.2.2.5 The MPU Region Attribute and Size Register (MPUATTR) 957
12.3 Initialization and Configuration of the MPU 959
12.4 Building A Practical Example MPU Project 960
 12.4.1 Create a New DRA Model MPU Project DRAMPUP 960
 12.4.2 Set Up the Environment to Build and Run the Project 963
12.5 The API Functions Provided by the TivaWare™ Peripheral Driver Library 964
 12.5.1 The MPU Set Up and Status API Functions 965
 12.5.1.1 The API Function MPURegionSet() 966
 12.5.2 The MPU Enable and Disable API Functions 967
 12.5.3 The MPU Interrupt Handler Control API Functions 968
12.6 Chapter Summary 969

Homework 970

Index 975

About the Author 987