Contents

List of contributors, xvii
Preface, xxi

Section 1 An introduction to the human tissue microbiome, 1

1 The human microbiota: an historical perspective, 3
 Michael Wilson
 1.1 Introduction: the discovery of the human microbiota: why do we care?, 3
 1.2 The importance of the indigenous microbiota in health and disease, 3
 1.2.1 The indigenous microbiota and human disease, 4
 1.2.2 The indigenous microbiota and human health, 4
 1.3 The development of technologies for characterising the indigenous microbiota, 8
 1.3.1 Light microscopy, 9
 1.3.2 Electron microscopy, 11
 1.3.3 Culture-based approaches to microbial community analysis, 12
 1.4 Culture-independent approaches to microbial community analysis, 29
 1.5 Determination of microbial community functions, 31
 1.6 Closing remarks, 32
 Take-home message, 32
 References, 33

2 An introduction to microbial dysbiosis, 37
 Mike Curtis
 2.1 Definition of dysbiosis, 37
 2.2 The ‘normal’ microbiota, 38
 2.3 Main features of dysbiosis, 45
 2.4 Conclusions, 49
 Take-home message, 53
 Acknowledgment, 53
 References, 53

3 The gut microbiota: an integrated interactive system, 55
 Hervé M. Blottière and Joël Doré
 3.1 Introduction, 55
 3.2 Who is there, how is it composed?, 56
 3.3 A system in interaction with food, 58
 3.4 A system highly impacted by the host, 61
 3.5 A system in interaction with human cells, 62
 3.6 Conclusion: an intriguing integrated interactive system
deserving further study, 63
 Take-home message, 63
 References, 63
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The oral microbiota, 67</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>William G. Wade</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction, 67</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Composition of the oral microbiome, 68</td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Archaea, 68</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fungi, 68</td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Protozoa, 68</td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>Viruses, 69</td>
<td></td>
</tr>
<tr>
<td>4.2.5</td>
<td>Bacteria, 69</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>The oral microbiota in health, 71</td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Evolution of the oral microbiota, 71</td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Role of oral bacteria in health, 72</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Role of oral microbiome in disease, 73</td>
<td></td>
</tr>
<tr>
<td>4.4.1</td>
<td>Dental caries, 73</td>
<td></td>
</tr>
<tr>
<td>4.4.2</td>
<td>Gingivitis, 74</td>
<td></td>
</tr>
<tr>
<td>4.4.3</td>
<td>Oral bacteria and non-oral disease, 74</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Future outlook, 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Take-home message, 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References, 76</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The skin microbiota, 81</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Patrick L.J.M. Zeeuwen and Joost Schalkwijk</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Normal skin, 81</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Skin diseases, 83</td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>Atopic dermatitis, 83</td>
<td></td>
</tr>
<tr>
<td>5.2.2</td>
<td>Psoriasis, 84</td>
<td></td>
</tr>
<tr>
<td>5.2.3</td>
<td>Acne, 85</td>
<td></td>
</tr>
<tr>
<td>5.2.4</td>
<td>Rosacea, 85</td>
<td></td>
</tr>
<tr>
<td>5.2.5</td>
<td>Seborrheic dermatitis and dandruff, 86</td>
<td></td>
</tr>
<tr>
<td>5.2.6</td>
<td>Primary immunodeficiencies, 86</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental studies, 87</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Dynamics of the skin microbiome, 87</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Axillary skin microbiome transplantation, 89</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Mouse skin microbiome studies, 89</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Concluding remarks, 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Take-home message, 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References, 90</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Metagenomic analysis of the human microbiome, 95</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Luis G. Bermúdez-Humarán</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction, 95</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>The human microbiome, 96</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Changes in microbiota composition during host life cycles, 97</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>The human microbiome and the environment, 98</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Disease and health implications of microbiome, 99</td>
<td></td>
</tr>
<tr>
<td>6.5.1</td>
<td>The skin microbiota, 99</td>
<td></td>
</tr>
<tr>
<td>6.5.2</td>
<td>The airway microbiome, 99</td>
<td></td>
</tr>
<tr>
<td>6.5.3</td>
<td>Vaginal microbiome, 100</td>
<td></td>
</tr>
<tr>
<td>6.5.4</td>
<td>Gut microbiota and disease, 101</td>
<td></td>
</tr>
<tr>
<td>6.5.5</td>
<td>Metabolic disorders (obesity/diabetes), 103</td>
<td></td>
</tr>
</tbody>
</table>
6.6 Conclusions, 105
Take-home message, 105
References, 106

Section 2 Microbiota-microbiota and microbiota-host interactions in health and disease, 113

7 Systems biology of bacteria-host interactions, 115
Almut Heinken, Dmitry A. Ravcheev and Ines Thiele
7.1 Introduction, 115
7.2 Computational analysis of host-microbe interactions, 118
 7.2.1 Analysis of metagenomic data, 118
 7.2.2 Metabolic reconstruction through comparative genomics, 119
7.3 Network-based modeling, 121
 7.3.1 Topological network modeling, 121
 7.3.2 Constraint-based modeling, 123
 7.3.3 Metabolic reconstructions of human metabolism, 124
 7.3.4 Constraint-based modeling of host-microbe interactions, 124
7.4 Other computational modeling approaches, 127
 7.4.1 Ordinary differential equation (ODE) models, 127
 7.4.2 Kinetic modeling, 128
7.5 Conclusion, 129
Take-home message, 130
Acknowledgments, 130
References, 131

8 Bacterial biofilm formation and immune evasion mechanisms, 139
Jessica Snowden
8.1 Introduction, 139
8.2 Biofilms in human disease, 139
8.3 Biofilm formation, 141
8.4 Immune responses to biofilms, 143
 8.4.1 Innate immune responses, 144
 8.4.2 Adaptive immune responses, 146
 8.4.3 Fibroblasts, epithelial cells and other immune responses, 147
8.5 Biofilm immune evasion strategies, 147
8.6 Vaccines and biofilm therapeutics, 148
8.7 Conclusions, 149
Take-home message, 149
References, 150

9 Co-evolution of microbes and immunity and its consequences for modern-day life, 155
Markus B. Geuking
9.1 Introduction, 155
9.2 Symbiosis in eukaryotic evolution, 156
9.3 Evolution of the (innate and adaptive) immune system, 157
 9.3.1 Immune proteins, 157
 9.3.2 Evolution of adaptive immunity, 158
 9.3.3 Two separate adaptive immune systems evolved, 158
9.4 Hygiene hypothesis, 159
9.5 What drives the composition of the microbiota?, 160
9.6 The pace of evolution, 161
Take-home message, 162
References, 162

10 How viruses and bacteria have shaped the human genome: the implications for disease, 165
Frank Ryan
10.1 Genetic symbiosis, 165
10.2 Mitochondria: symbiogenesis in the human, 167
10.3 Viral symbiogenesis, 169
10.4 HERV proteins, 172
Take-home message, 174
References, 174

11 The microbiota as an epigenetic control mechanism, 179
Boris A. Shenderov
11.1 Introduction, 179
11.2 Background on epigenetics and epigenomic programming/reprogramming, 180
11.3 Epigenomics and link with energy metabolism, 184
11.4 The microbiota as a potential epigenetic modifier, 185
11.5 Epigenetic control of the host genes by pathogenic and opportunistic microorganisms, 188
11.6 Epigenetic control of the host genes by indigenous (probiotic) microorganisms, 189
11.7 Concluding remarks and future directions, 191
Take-home message, 193
References, 193

12 The emerging role of propionibacteria in human health and disease, 199
Holger Brüggemann
12.1 Introduction, 199
12.2 Microbiological features of propionibacteria, 199
12.3 Population structure of \textit{P. acnes}, 201
12.4 Propionibacteria as indigenous probiotics of the skin, 202
12.5 Propionibacteria as opportunistic pathogens, 203
12.6 Host interacting traits and factors of propionibacteria, 205
12.7 Host responses to \textit{P. acnes}, 206
 12.7.1 Innate immune responses, 206
 12.7.2 Adaptive immune responses, 207
 12.7.3 Host cell tropism of \textit{P. acnes}, 208
12.8 \textit{Propionibacterium}-specific bacteriophages, 208
12.9 Concluding remarks, 209
Take-home message, 210
References, 210
Section 3 Dysbioses and bacterial diseases: Metchnikoff’s legacy, 215

13 The periodontal diseases: microbial diseases or diseases of the host response?, 217

 Luigi Nibali
 13.1 The tooth: a potential breach in the mucosal barrier, 217
 13.2 The periodontium from health to disease, 217
 13.3 Periodontitis: one of the most common human diseases, 219
 13.4 Periodontal treatment: a non-specific biofilm disruption, 220
 13.5 Microbial etiology, 220
 13.6 The host response in periodontitis, 221
 13.7 Conclusions, 223
 Take-home message, 223
 References, 223

14 The polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis, 227

 George Hajishengallis and Richard J. Lamont
 14.1 Introduction, 227
 14.2 A (very) polymicrobial etiology of periodontitis, 229
 14.3 Synergism among periodontal bacteria, 230
 14.4 Interactions between bacterial communities and epithelial cells, 232
 14.5 Manipulation of host immunity, 233
 14.6 Conclusions, 237
 Take-home message, 238
 References, 239

15 New paradigm in the relationship between periodontal disease and systemic diseases: effects of oral bacteria on the gut microbiota and metabolism, 243

 Kazuhisa Yamazaki
 15.1 Introduction, 243
 15.2 Association between periodontal and systemic diseases, 244
 15.2.1 Periodontal disease and diabetes, 244
 15.2.2 Periodontal disease and atherosclerotic vascular diseases, 245
 15.2.3 Periodontal disease and rheumatoid arthritis, 246
 15.2.4 Periodontal disease and non-alcoholic fatty liver disease, 246
 15.2.5 Periodontal disease and pre-term birth, 247
 15.2.6 Periodontal disease and obesity, 248
 15.2.7 Periodontal disease and cancer, 248
 15.2.8 Periodontal disease and inflammatory bowel disease, 249
 15.3 Issues in causal mechanisms of periodontal disease for systemic disease, 249
 15.3.1 Endotoxemia (bacteremia), 249
 15.3.2 Inflammatory mediators, 251
 15.3.3 Autoimmune response from molecular mimicry, 251
 15.4 New insights into the mechanisms linking periodontal disease and systemic disease, 252
 15.5 Effect of oral administration of P. gingivalis on metabolic change and gut microbiota, 252
16 The vaginal microbiota in health and disease, 263

S. Tariq Sadiq and Phillip Hay

16.1 What makes a healthy microbiota, 263
 16.1.1 How does the vaginal microbiota mediate healthiness?, 264
 16.1.2 Establishment of the vaginal microbiota, 264
 16.1.3 The role of host genetic variation on vaginal health, 264
 16.1.4 Impact of age, menstrual cycle and environmental factors on vaginal health, 265

16.2 The vaginal microbiota in disease, 265
 16.2.1 Bacterial vaginosis, 265
 16.2.2 Clinical consequences of altered vaginal microbiota (see Figure 1), 268
 16.2.3 Vaginal microbiota and transmission and susceptibility to HIV infection, 269

16.3 Conclusions, 269
 Take-home message, 269
 References, 270

Section 4 Dysbioses and chronic diseases: is there a connection?, 273

17 Reactive arthritis: the hidden bacterial connection, 275

John D. Carter

17.1 Introduction, 275
17.2 Reactive arthritis, 276
17.3 Pathophysiology of ReA, 277
17.4 Questions remain, 279
17.5 Conclusion, 280
 Take-home message, 280
 References, 280

18 Rheumatoid arthritis: the bacterial connection, 283

Jacqueline Detert

18.1 Preclinical rheumatoid arthritis, 283
18.2 Predisposition to RA, 284
18.3 MCH-HLA and genetic predisposition to RA, 284
18.4 Molecular mimicry in RA, 285
18.5 Innate immune system and RA, 285
18.6 Bystander activation and pattern recognition receptors, 286
18.7 Antibodies and neoepitopes, 287
18.8 Superantigens, 287
18.9 LPS, 287
18.10 Bacterial DNA and peptidoglycans, 288
18.11 Heat-shock proteins, 288
18.12 Toll-like and bacterial infections, 288
18.13 Proteus mirabilis, 288
18.14 Porphyromonas gingivalis and RA, 289
18.15 Gastrointestinal flora and RA, 290
18.16 Smoking, lung infection and RA, 291
18.17 Where to go from here?, 291
Take-home message, 291
References, 292

19 Inflammatory bowel disease and the gut microbiota, 301
 Nik Ding and Ailsa Hart
 19.1 The microbiota in inflammatory bowel disease, 301
 19.2 Dysbiosis and IBD pathogenesis, 301
 19.3 Environmental factors affecting microbiome composition, 302
 19.3.1 Diet, 302
 19.3.2 Age, 303
 19.4 Genetics and application to the immune system and dysbiosis in IBD, 303
 19.5 An overview of gut microbiota studies in IBD, 305
 19.6 Specific bacterial changes in IBD, 306
 19.6.1 Potentiators, 306
 19.6.2 Protectors, 307
 19.6.3 Anti-inflammatory effects of microbiota (functional dysbiosis), 308
 19.7 Functional composition of microbiota in IBD, 308
 19.8 Challenges, 310
 19.9 Conclusion, 310
 Take-home message, 310
 References, 310

20 Ankylosing spondylitis, klebsiella and the low-starch diet, 317
 Alan Ebringer, Taha Rashid and Clyde Wilson
 20.1 Introduction, 317
 20.2 Clinical features of AS, 317
 20.3 Gut bacteria and total serum IgA, 318
 20.4 Molecular mimicry in AS, 319
 20.5 Pullulanase system and collagens, 320
 20.6 Specific antibodies to Klebsiella in AS patients, 321
 20.7 The low-starch diet in AS, 322
 20.8 Conclusions, 324
 Take-home message, 325
 References, 325

21 Microbiome of chronic plaque psoriasis, 327
 Lionel Fry
 21.1 Introduction, 327
 21.2 Microbiota in psoriasis, 329
 21.2.1 Bacteria, 329
 21.2.2 Fungi, 330
 21.3 Variation of microbiota with site, 331
 21.4 Swabs versus biopsies, 331
 21.5 Psoriatic arthritis, 331
21.6 Microbiome and immunity, 332
21.7 Evidence that the skin microbiome may be involved in the pathogenesis of psoriasis, 332
 21.7.1 Psoriasis and Crohn’s disease, 332
 21.7.2 Genetic factors, 333
 21.7.3 Innate immunity, 333
21.8 New hypothesis on the pathogenesis of psoriasis, 334
Take-home message, 334
References, 335

22 Liver disease: interactions with the intestinal microbiota, 339
 Katharina Brandl and Bernd Schnabl
 22.1 Introduction, 339
 22.2 Non-alcoholic fatty liver disease, 339
 22.3 Qualitative and quantitative changes in the intestinal microbiota, 340
 22.4 Endotoxin, 341
 22.5 Ethanol, 342
 22.6 Choline, 342
 22.7 Alcoholic liver disease, 343
 22.7.1 Qualitative and quantitative changes in the intestinal microbiome, 343
 22.7.2 Contribution of dysbiosis to alcoholic liver disease, 344
 Take-home message, 346
 References, 346

23 The gut microbiota: a predisposing factor in obesity, diabetes and atherosclerosis, 351
 Frida Fåk
 23.1 Introduction, 351
 23.2 The “obesogenic” microbiota: evidence from animal models, 351
 23.3 The “obesogenic” microbiota in humans, 352
 23.4 A leaky gut contributing to inflammation and adiposity, 352
 23.5 Obesity-proneness: mediated by the gut microbiota?, 353
 23.6 Bacterial metabolites provide a link between bacteria and host metabolism, 353
 23.7 Fecal microbiota transplants: can we change our gut bacterial profiles?, 354
 23.8 What happens with the gut microbiota during weight loss?, 354
 23.9 The “diabetic” microbiota, 355
 23.9.1 Type I diabetes and the gut microbiota, 355
 23.9.2 Type II diabetes, 355
 23.10 The “atherosclerotic” microbiota, 356
 23.11 Conclusions, 357
 Take-home message, 357
 References, 357

24 The microbiota and susceptibility to asthma, 361
 Olawale Salami and Benjamin J. Marsland
 24.1 Introduction, 361
 24.2 The microenvironment of the lower airways, 361
24.3 Development of the airway microbiota in the neonate, 362
 24.3.1 Intrauterine microbial exposure and airway microbiota, 362
 24.3.2 Perinatal events and airway microbiota, 363
 24.3.3 Breast milk as a source of airway microbiota, 364
 24.3.4 Airborne microbiota and airway microbiota, 364
24.4 Upper airway microbiota, 364
24.5 What constitutes a healthy airway microbiota, 365
24.6 Microbiota and asthma, 365
24.7 Dietary metabolites and asthma, 366
24.8 Conclusion, future perspectives and clinical implications, 367
Take-home message, 367
References, 367

25 Microbiome and cancer, 371
 Ralph Francescone and Débora B. Vendramini-Costa
25.1 Introduction, 371
25.2 Microbiome and cancer: where is the link?, 374
25.3 Microbiome and barrier disruption, 376
25.4 Microbiome and different types of cancer, 377
 25.4.1 Colon cancer, 377
 25.4.2 Skin cancer, 378
 25.4.3 Breast cancer, 379
 25.4.4 Liver cancer, 379
 25.4.5 Local microbes affecting distant cancers, 381
25.5 Microbiota and metabolism: the good and the bad sides, 382
25.6 Chemotherapy, the microbiome and the immune system, 384
25.7 Therapeutic avenues, 385
 25.7.1 Modulation of bacterial enzyme activity, 385
 25.7.2 Antibiotics, 386
 25.7.3 Pre- and probiotics, 386
 25.7.4 Fecal transplantation, 386
25.8 Unresolved questions and future work, 387
Take-home message, 387
References, 387

26 Colorectal cancer and the microbiota, 391
 Iradj Sobhani and Séverine Couffin
26.1 Introduction, 391
26.2 Colon carcinogenesis and epidemiological data, 392
 26.2.1 Human carcinogenesis model, 392
 26.2.2 Age-related risk in the general population, 393
 26.2.3 Gene- and familial-related risks, 393
 26.2.4 Environment-related risk, 394
26.3 The microbiota, 394
26.4 Bacteria and CRCs links, 395
 26.4.1 Historical data, 395
 26.4.2 Clinical data, 396
 26.4.3 Experimental data and mechanisms involved, 397
Contents

26.5 Hypotheses and perspectives, 402
Take-home message, 405
References, 405

27 The gut microbiota and the CNS: an old story with a new beginning, 409
Aadil Bharwani and Paul Forsythe
27.1 Introduction, 409
27.2 The microbiota-gut-brain axis: a historical framework, 410
27.3 The microbiota-gut-brain axis: an evolutionary perspective, 411
27.4 The gut microbiota influence on brain and behavior, 413
27.5 Microbes and the hardwired gut brain axis, 415
 27.5.1 The vagus, 416
 27.5.2 The enteric nervous system, 417
27.6 Hormonal pathways to the brain, 418
27.7 Microbes and immune pathways to the brain, 420
27.8 Metabolites of the microbiota: short-chain fatty acids, 421
27.9 Clinical implications of the microbiota-gut-brain axis, 422
27.10 Conclusion, 422
Take-home message, 423
References, 423

28 Genetic dysbiosis: how host genetic variants may affect microbial biofilms, 431
Luigi Nibali
28.1 The holobiont: humans as supra-organisms, 431
28.2 Genetic variants in the host response to microbes, 432
 28.2.1 Bacterial recognition pathway, 432
 28.2.2 Bacterial proliferation, 433
28.3 Genetic dysbiosis, 434
 28.3.1 Genetic dysbiosis of oral biofilm, 435
 28.3.2 Genetic dysbiosis of gut biofilm, 435
 28.3.3 Genetic dysbiosis of skin biofilm, 436
 28.3.4 Genetic dysbiosis of vaginal biofilm, 437
28.4 Summary and conclusions, 438
Take-home message, 438
References, 438

Section 5 Mirroring the future: dysbiosis therapy, 443

29 Diet and dysbiosis, 445
Mehrbod Estaki, Candice Quin and Deanna L. Gibson
29.1 Introduction, 445
29.2 Coevolution of the host-microbiota super-organism, 445
29.3 Gut microbiota in personalized diets, 446
29.4 The evolution of diet, 447
29.5 Plasticity of the microbiota and diet, 447
29.6 Interaction among gut microbiota, host and food, 448
29.7 Consequences of diet-induced dysbiosis for host health, 450
29.8 The role of gut microbes on the digestion of macronutrients, 451
 29.8.1 Carbohydrates, 451
 29.8.2 Proteins, 451
 29.8.3 Lipids, 452
29.9 Diet induces dysbiosis in the host, 452
 29.9.1 Protein, 453
 29.9.2 Carbohydrates, 453
 29.9.3 Lipids, 454
29.10 The effect of maternal diet on offspring microbiota, 456
29.11 The effects of post-natal diet on the developing microbiota of neonates, 457
 29.11.1 Breast milk, 457
 29.11.2 Formula, 458
29.12 Conclusion, 459
Take-home message, 459
Host-food, 460
References, 460

30 Probiotics and prebiotics: what are they and what can they do for us?, 467
Marie-José Butel, Anne-Judith Waligora-Dupriet
30.1 The gut microbiota, a partnership with the host, 467
30.2 Probiotics, 467
 30.2.1 Probiotics, a story that began a long time ago, 467
 30.2.2 What are probiotics?, 468
 30.2.3 How do probiotics work?, 468
 30.2.4 Safety of probiotics, 469
30.3 Prebiotics, 470
 30.3.1 What are prebiotics?, 470
 30.3.2 How do prebiotics work?, 471
30.4 Synbiotics, 471
30.5 Pro-, pre-, and synbiotics in human medicine today, 471
 30.5.1 Pro- and prebiotics and infectious diarrhea, 471
 30.5.2 Pro- and prebiotics and inflammatory bowel diseases, 472
 30.5.3 Pro- and prebiotics and irritable bowel syndrome, 473
 30.5.4 Pro- and prebiotics and allergy, 474
 30.5.5 Pro- and prebiotics and obesity and diabetes, 475
 30.5.6 Other indications, 475
 30.5.7 Pre- and probiotics in pediatrics, 476
30.6 Concluding remarks, 477
Take-home message, 478
References, 478

31 The microbiota as target for therapeutic intervention in pediatric intestinal diseases, 483
Andrea Lo Vecchio and Alfredo Guarino
31.1 Introduction, 483
31.2 Use of probiotics in pediatric intestinal diseases, 484
 31.2.1 Acute diarrhea, 484
 31.2.2 Inflammatory bowel diseases, 486