## CONTENTS

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Bioblasts, Cytomikrosomen and Chondriosomes: A Short Incomplete History of Plant Mitochondrial Research  
*David C. Logan and Iain Scott*  
1.1 Discovery  
1.2 Complexity of nomenclature  
1.2.1 Discoveries of mitochondria in plants  
1.3 Mitochondria are dynamic  
1.4 Mitochondrial function and outputs  
1.4.1 Vital staining of mitochondria with Janus green B and identification of mitochondria as sites of redox  
1.5 Mitochondrial DNA  
1.6 Mitochondria, photosynthesis and carbon cycling  
1.7 A trigger for death  
1.8 Known knowns, known unknowns and unknown unknowns of mitochondrial biology  
References  

2 Mitochondrial DNA Repair and Genome Evolution  
*Alan C. Christensen*  
2.1 Plant mitochondrial genomes are large and variable  
2.1.1 Low mutation rates in genes  
2.1.2 Genome Organization  
2.1.3 Genome replication  
2.2 The mutational burden hypothesis  
2.2.1 Problems with the MBH and mutation rate measurements  
2.3 DNA repair-based hypothesis  
2.4 Additional mechanisms of DNA repair  
2.4.1 Mismatch repair and *MSH1*  
2.4.2 Nucleotide excision repair  
2.5 Outcomes of DNA repair  
2.6 How repair processes affect genome evolution  
2.7 Unanswered questions  
Acknowledgements  
References  

CONTENTS

<table>
<thead>
<tr>
<th>List of Contributors</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Bioblasts, Cytomikrosomen and Chondriosomes: A Short Incomplete History of Plant Mitochondrial Research  
*David C. Logan and Iain Scott*  
1.1 Discovery  
1.2 Complexity of nomenclature  
1.2.1 Discoveries of mitochondria in plants  
1.3 Mitochondria are dynamic  
1.4 Mitochondrial function and outputs  
1.4.1 Vital staining of mitochondria with Janus green B and identification of mitochondria as sites of redox  
1.5 Mitochondrial DNA  
1.6 Mitochondria, photosynthesis and carbon cycling  
1.7 A trigger for death  
1.8 Known knowns, known unknowns and unknown unknowns of mitochondrial biology  
References  

2 Mitochondrial DNA Repair and Genome Evolution  
*Alan C. Christensen*  
2.1 Plant mitochondrial genomes are large and variable  
2.1.1 Low mutation rates in genes  
2.1.2 Genome Organization  
2.1.3 Genome replication  
2.2 The mutational burden hypothesis  
2.2.1 Problems with the MBH and mutation rate measurements  
2.3 DNA repair-based hypothesis  
2.4 Additional mechanisms of DNA repair  
2.4.1 Mismatch repair and *MSH1*  
2.4.2 Nucleotide excision repair  
2.5 Outcomes of DNA repair  
2.6 How repair processes affect genome evolution  
2.7 Unanswered questions  
Acknowledgements  
References  

CONTENTS
3 The Cross-Talk Between Genomes: How Co-Evolution Shaped Plant Mitochondrial Gene Expression 33
Françoise Budar and Hakim Mireau

3.1 Introduction 33

3.2 Evidence showing the versatility of factors involved in plant mitochondria gene expression 35
  3.2.1 Transcription 35
  3.2.2 RNA maturation 38
  3.2.3 RNA editing 41
  3.2.4 Intron splicing 44

3.3 Mitochondrial gene expression: co-evolution makes sense 46
  3.3.1 Co-evolution of cytoplasmic male sterility 46
  3.3.2 Most Rf genes encode PPR proteins 48

3.4 Co-evolution scenarios 50

3.5 Conclusion and perspectives 54
References 54

4 The Dynamic Chondriome: Control of Number, Shape, Size and Motility of Mitochondria 67
David C. Logan and Gaël Paszkiewicz

4.1 Introduction 67

4.2 Motility 68
  4.2.1 Actin-mediated displacement 68
  4.2.2 Microtubules 70

4.3 Number 71
  4.3.1 Division 71
  4.3.2 A dynamin-independent division mechanism? 80
  4.3.3 Fusion 81

4.4 The chondriostat: mitochondrial dynamics during development and following modification of cell environment 86

4.5 Mitochondrial quality control and regulation of dynamics to enable selective degradation of mitochondria 88
  4.5.1 The mitophagy apparatus 89
  4.5.2 FRIENDLY/Clu-type proteins 92

4.6 Case study: mitochondrial dynamics during germination 94
  4.6.1 The germination process 94
  4.6.2 The chondriome during germination 96

4.7 Conclusions 99
Acknowledgements 99
References 99
5 Metal Homeostasis in Plant Mitochondria  
*Gianpiero Vigani and Marc Hanikenne*

5.1 Introduction 111
5.2 Iron 114
  5.2.1 Heme and Fe-S clusters 114
  5.2.2 Fe binding proteins 117
  5.2.3 Fe transport 119
5.3 Copper 121
5.4 Zinc 123
5.5 Manganese 125
5.6 Trace metals in plant mitochondria 128
5.7 Metallome perturbation within mitochondria 129
5.8 Conclusions 132

Acknowledgements 132
References 133

6 RNA Metabolism and Transcript Regulation  
*Michal Zmudjak and Oren Ostersetzer-Biran*

6.1 Introduction 143
6.2 The mitochondrial transcription machinery 145
  6.2.1 Analyses of mitochondrial promoter regions 146
  6.2.2 RNA polymerases 147
  6.2.3 Co-factors of the mitochondria transcription machinery 148
6.3 Post-transcriptional RNA processing 151
  6.3.1 Trimming, RNA end-processing and decay in plant mitochondria 151
  6.3.2 RNA editing 155
  6.3.3 Splicing of mitochondrial group II introns 159

Acknowledgements 168
References 168

7 Mitochondrial Regulation and Signalling in the Photosynthetic Cell: Principles and Concepts  
*Iris Finkemeier and Markus Schwarzländer*

7.1 Introduction 185
7.2 Regulation of protein functions within plant mitochondria 187
  7.2.1 Regulation of transcription and translation within mitochondria 188
  7.2.2 Regulation of nuclear gene expression 189
  7.2.3 Regulation of cytosolic translation and protein import into mitochondria 192
7.2.4 Regulation of protein turnover within mitochondria 194
7.2.5 Regulation of function and activity of mitochondrial proteins by post-translational modifications and small molecules 195
7.2.6 Regulation of mitochondrial number and organization as set by motility, fission, fusion and mitophagy 207

7.3 Integration of chloroplast and mitochondrial regulation and signalling 209
7.3.1 Mitochondria and chloroplasts make up a joint operational unit in the light 209
7.3.2 Operational integration of mitochondria and chloroplasts requires interdependent regulation 210
7.3.3 Does the concept of ‘mitochondrial retrograde signalling’ need rethinking for green plant cells? 211

Acknowledgements 214
References 214

8 Mitochondrial Biochemistry: Stress Responses and Roles in Stress Alleviation 227
Richard P. Jacoby, A. Harvey Millar and Nicolas L. Taylor 227

8.1 Introduction 227
8.2 Plant mitochondrial oxidative stress 228
8.2.1 Accumulation of ROS in mitochondria 228
8.2.2 ROS-induced lipid peroxidation in mitochondria 230
8.2.3 Metallome changes during oxidative stress 231
8.2.4 Proteome changes during oxidative stress 232
8.3 Plant mitochondrial roles in harsh environments and in a changing climate 234
8.3.1 Mitochondrial roles under temperature stress 236
8.3.2 The roles of mitochondria in mediating drought tolerance 237
8.3.3 Mitochondrial respiration and salinity stress 240
8.4 Stress-dissipating roles of plant mitochondrial metabolism and products 243
8.4.1 Mitochondrial impact on photosynthetic functions during environmental stress 243
8.4.2 Root-specific mitochondrial processes mediating tolerance to unfavourable soil conditions 245
8.4.3 Cellular survival during and following stress requires mitochondrial metabolism and its products 246
8.5 Future perspectives 247
Acknowledgements 247
References 247
9 Ecophysiology of Plant Respiration

Néstor Fernández Del-Saz and Miquel Ribas-Carbo

9.1 Introduction

9.2 What is respiration?

9.3 The CO₂/O₂ paradigm

9.4 O₂ consumption

9.4.1 Measuring O₂ uptake of organs

9.4.2 The regulation of O₂ uptake

9.4.3 Plant respiration at the ecosystem scale

9.5 CO₂ production

9.5.1 Measuring organ CO₂ production

9.5.2 IRGA

9.5.3 Environmental effects on CO₂ measurement

9.5.4 Plant and ecosystem scale

9.5.5 Open top chambers (small-community studies)

9.5.6 Free-air CO₂ enrichment

9.6 Carbon balance

9.6.1 Ecosystem carbon balance (eddies)

9.6.2 Global carbon balance

References

10 Photorespiration – Damage Repair Pathway of the Calvin–Benson Cycle

Hermann Bauwe

10.1 Introduction

10.2 Photorespiration prevents potential damage from a side reaction of RuBP carboxylase

10.3 Plant photorespiratory carbon metabolism

10.3.1 Glycolate 2-phosphate becomes dephosphorylated to glycolate

10.3.2 Glycolate is converted into glycine in the peroxisome

10.3.3 Glycolate oxidation

10.3.4 H₂O₂ degradation

10.3.5 Transamination of glyoxylate to glycine

10.3.6 Mitochondrial reactions combine two molecules of glycine to form serine and CO₂

10.3.7 Back in the peroxisome, hydroxypyruvate is produced from serine and becomes oxidized to glycerate

10.3.8 Back in the chloroplast, 3PGA is formed to replenish the Calvin–Benson cycle

10.4 Interaction of photorespiration with other aspects of metabolism

10.4.1 Plant photorespiratory nitrogen cycle

10.4.2 TCA cycle and oxidative phosphorylation
10.5 Improving photosynthesis 322
   Acknowledgement 323
   References 324

11 Mitochondria and Cell Death 343

   Olivier Van Aken

   11.1 Introduction 343
   11.2 Conservation of mitochondrial PCD pathways in plants 344
   11.3 The role of mitochondrial ROS in plant PCD 347
   11.4 Non-ROS-related molecules and plant PCD 350
   11.5 An update on the mitochondrial permeability transition pore 351
   11.6 Senescence, autophagy and PCD 354
   11.7 Interactions between mitochondria and chloroplasts during PCD 355
   11.8 Conclusions 357
      Acknowledgements 359
      References 360

Index 373