Table of Contents

Preface to the Second Edition xvii
Preface xix
Nomenclature xxiii

1 Introduction 1

1.1 History of the Airbreathing Jet Engine, a Twentieth-Century Invention—The Beginning 1

1.2 Innovations in Aircraft Gas Turbine Engines 4
 1.2.1 Multispool Configuration 4
 1.2.2 Variable Stator 5
 1.2.3 Transonic Compressor 5
 1.2.4 Low-Emission Combustor 6
 1.2.5 Turbine Cooling 7
 1.2.6 Exhaust Nozzles 8
 1.2.7 Modern Materials and Manufacturing Techniques 8

1.3 New Engine Concepts 10
 1.3.1 Advanced Turboprop (ATP) and Geared Turbofan (GTF) 10
 1.3.2 Advanced Airbreathing Rocket Technology 11
 1.3.3 Wave Rotor Topping Cycle 12
 1.3.3.1 Humphrey Cycle versus Brayton Cycle 12
 1.3.4 Pulse Detonation Engine (PDE) 14
 1.3.5 Millimeter-Scale Gas Turbine Engines: Triumph of MEMS and Digital Fabrication 14
 1.3.6 Combined Cycle Propulsion: Engines from Takeoff to Space 15

1.4 New Vehicles 16

1.5 Summary 16

1.6 Roadmap for the Second Edition 18

References 19

Problems 20
2 Compressible Flow with Friction and Heat: A Review 21

2.1 Introduction 21
2.2 A Brief Review of Thermodynamics 22
2.3 Isentropic Process and Isentropic Flow 27
2.4 Conservation Principles for Systems and Control Volumes 28
2.5 Speed of Sound & Mach Number 35
2.6 Stagnation State 38
2.7 Quasi-One-Dimensional Flow 41
2.8 Area–Mach Number Relationship 44
2.9 Sonic Throat 45
2.10 Waves in Supersonic Flow 49
2.11 Normal Shocks 50
2.12 Oblique Shocks 54
2.13 Conical Shocks 60
2.14 Expansion Waves 63
2.15 Frictionless, Constant-Area Duct Flow with Heat Transfer 67
2.16 Adiabatic Flow of a Calorically Perfect Gas in a Constant-Area Duct with Friction 77
2.17 Friction (Drag) Coefficient C_f and D’Arcy Friction Factor f_D 91
2.18 Dimensionless Parameters 91
2.19 Fluid Impulse 95
2.20 Summary of Fluid Impulse 102
References 103
Problems 103

3 Engine Thrust and Performance Parameters 113

3.1 Introduction 113
3.1.1 Takeoff Thrust 119
3.2 Installed Thrust—Some Bookkeeping Issues on Thrust and Drag 119
3.3 Engine Thrust Based on the Sum of Component Impulse 124
3.4 Rocket Thrust 128
3.5 Airbreathing Engine Performance Parameters 129
3.5.1 Specific Thrust 129
3.5.2 Specific Fuel Consumption and Specific Impulse 130
3.5.3 Thermal Efficiency 131
3.5.4 Propulsive Efficiency 134
3.5.5 Engine Overall Efficiency and Its Impact on Aircraft Range and Endurance 137
3.6 Modern Engines, Their Architecture and Some Performance Characteristics 140
3.7 Summary 143
References 144
Problems 144
Table of Contents

4 Gas Turbine Engine Cycle Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>4.2 The Gas Generator</td>
<td>151</td>
</tr>
<tr>
<td>4.3 Aircraft Gas Turbine Engines</td>
<td>152</td>
</tr>
<tr>
<td>4.3.1 The Turbojet Engine</td>
<td>152</td>
</tr>
<tr>
<td>4.3.1.1 The Inlet</td>
<td>153</td>
</tr>
<tr>
<td>4.3.1.2 The Compressor</td>
<td>157</td>
</tr>
<tr>
<td>4.3.1.3 The Burner</td>
<td>164</td>
</tr>
<tr>
<td>4.3.1.4 The Turbine</td>
<td>168</td>
</tr>
<tr>
<td>4.3.1.5 The Nozzle</td>
<td>177</td>
</tr>
<tr>
<td>4.3.1.6 Thermal Efficiency of a Turbojet Engine</td>
<td>185</td>
</tr>
<tr>
<td>4.3.1.7 Propulsive Efficiency of a Turbojet Engine</td>
<td>194</td>
</tr>
<tr>
<td>4.3.1.8 The Overall Efficiency of a Turbojet Engine</td>
<td>196</td>
</tr>
<tr>
<td>4.3.1.9 Performance Evaluation of a Turbojet Engine</td>
<td>196</td>
</tr>
<tr>
<td>4.3.2 The Turbojet Engine with an Afterburner</td>
<td>197</td>
</tr>
<tr>
<td>4.3.2.1 Introduction</td>
<td>197</td>
</tr>
<tr>
<td>4.3.2.2 Analysis</td>
<td>200</td>
</tr>
<tr>
<td>4.3.2.3 Optimum Compressor Pressure Ratio for Maximum (Ideal) Thrust</td>
<td>203</td>
</tr>
<tr>
<td>Turbojet Engine with Afterburner</td>
<td>203</td>
</tr>
<tr>
<td>4.3.3 The Turbofan Engine</td>
<td>209</td>
</tr>
<tr>
<td>4.3.3.1 Introduction</td>
<td>209</td>
</tr>
<tr>
<td>4.3.3.2 Analysis of a Separate-Exhaust Turbofan Engine</td>
<td>210</td>
</tr>
<tr>
<td>4.3.3.3 Thermal Efficiency of a Turbofan Engine</td>
<td>215</td>
</tr>
<tr>
<td>4.3.3.4 Propulsive Efficiency of a Turbofan Engine</td>
<td>216</td>
</tr>
<tr>
<td>4.3.4 Ultra-High Bypass (UHB) Turbofan Engines</td>
<td>221</td>
</tr>
<tr>
<td>4.4 Analysis of a Mixed-Exhaust Turbofan Engine with an Afterburner</td>
<td>225</td>
</tr>
<tr>
<td>4.4.1 Mixer</td>
<td>226</td>
</tr>
<tr>
<td>4.4.2 Cycle Analysis</td>
<td>229</td>
</tr>
<tr>
<td>4.4.2.1 Solution Procedure</td>
<td>229</td>
</tr>
<tr>
<td>4.5 The Turboprop Engine</td>
<td>241</td>
</tr>
<tr>
<td>4.5.1 Introduction</td>
<td>241</td>
</tr>
<tr>
<td>4.5.2 Propeller Theory</td>
<td>242</td>
</tr>
<tr>
<td>4.5.2.1 Momentum Theory</td>
<td>242</td>
</tr>
<tr>
<td>4.5.2.2 Blade Element Theory</td>
<td>247</td>
</tr>
<tr>
<td>4.5.3 Turboprop Cycle Analysis</td>
<td>249</td>
</tr>
<tr>
<td>4.5.3.1 The New Parameters</td>
<td>249</td>
</tr>
<tr>
<td>4.5.3.2 Design Point Analysis</td>
<td>250</td>
</tr>
<tr>
<td>4.5.3.3 Optimum Power Split Between the Propeller and the Jet</td>
<td>254</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>260</td>
</tr>
</tbody>
</table>

References

Problems

5 General Aviation and Uninhabited Aerial Vehicle Propulsion System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>283</td>
</tr>
</tbody>
</table>
Table of Contents

5.2 Cycle Analysis
 5.2.1 Otto Cycle 284
 5.2.2 Real Engine Cycles 284
 5.2.2.1 Four-Stroke Cycle Engines 284
 5.2.2.2 Diesel Engines 286
 5.2.2.3 Two-Stroke Cycle Engines 288
 5.2.2.4 Rotary (Wankel) Engines 290

5.3 Power and Efficiency 293

5.4 Engine Components and Classifications 295
 5.4.1 Engine Components 295
 5.4.2 Reciprocating Engine Classifications 296
 5.4.2.1 Classification by Cylinder Arrangement 296
 5.4.2.2 Classification by Cooling Arrangement 299
 5.4.2.3 Classification by Operating Cycle 299
 5.4.2.4 Classification by Ignition Type 300

5.5 Scaling of Aircraft Reciprocating Engines 300
 5.5.1 Scaling of Aircraft Diesel Engines 306

5.6 Aircraft Engine Systems 308
 5.6.1 Aviation Fuels and Engine Knock 308
 5.6.2 Carburetion and Fuel Injection Systems 310
 5.6.2.1 Float-Type Carburetors 310
 5.6.2.2 Pressure Injection Carburetors 311
 5.6.2.3 Fuel Injection Systems 311
 5.6.2.4 Full Authority Digital Engine Control (FADEC) 311
 5.6.3 Ignition Systems 311
 5.6.3.1 Battery Ignition Systems 312
 5.6.3.2 High Tension Ignition System 312
 5.6.3.3 Low Tension Ignition System 312
 5.6.3.4 Full Authority Digital Engine Control (FADEC) 312
 5.6.3.5 Ignition Boosters 312
 5.6.3.6 Spark Plugs 313
 5.6.4 Lubrication Systems 313
 5.6.5 Supercharging 314

5.7 Electric Engines 314
 5.7.1 Electric Motors 315
 5.7.2 Solar cells 316
 5.7.3 Advanced Batteries 316
 5.7.4 Fuel cells 318
 5.7.5 State of the Art for Electric Propulsion – Future Technology 319

5.8 Propellers and Reduction Gears 319

References 322

Problems 324

6 Aircraft Engine Inlets and Nozzles 327

6.1 Introduction 327
6.2 The Flight Mach Number and Its Impact on Inlet Duct Geometry 328
Table of Contents

6.3 Diffusers 329
6.4 An Ideal Diffuser 330
6.5 Real Diffusers and Their Stall Characteristics 331
6.6 Subsonic Diffuser Performance 333
6.7 Subsonic Cruise Inlet 338
6.8 Transition Ducts 348
6.9 An Interim Summary for Subsonic Inlets 349
6.10 Supersonic Inlets 350
6.10.1 Isentropic Convergent–Divergent Inlets 350
6.10.2 Methods to Start a Supersonic Convergent–Divergent Inlet 353
6.10.2.1 Overspeeding 355
6.10.2.2 Kantrowitz–Donaldson Inlet 356
6.10.2.3 Variable-Throat Isentropic C–D Inlet 358
6.11 Normal Shock Inlets 359
6.12 External Compression Inlets 362
6.12.1 Optimum Ramp Angles 365
6.12.2 Design and Off-Design Operation 366
6.13 Variable Geometry—External Compression Inlets 368
6.13.1 Variable Ramps 368
6.14 Mixed-Compression Inlets 368
6.15 Supersonic Inlet Types and Their Performance—A Review 370
6.16 Standards for Supersonic Inlet Recovery 371
6.17 Exhaust Nozzle 373
6.18 Gross Thrust 373
6.19 Nozzle Adiabatic Efficiency 373
6.20 Nozzle Total Pressure Ratio 374
6.21 Nozzle Pressure Ratio (NPR) and Critical Nozzle Pressure Ratio (NPR_{crit.}) 374
6.22 Relation Between Nozzle Figures of Merit, \(\eta_n \) and \(\pi_n \) 376
6.23 A Convergent Nozzle or a De Laval? 376
6.24 The Effect of Boundary Layer Formation on Nozzle Internal Performance 379
6.25 Nozzle Exit Flow Velocity Coefficient 379
6.26 Effect of Flow Angularity on Gross Thrust 381
6.27 Nozzle Gross Thrust Coefficient \(C_{fg} \) 385
6.28 Overexpanded Nozzle Flow—Shock Losses 386
6.29 Nozzle Area Scheduling, \(A_g \) and \(A_g/A_8 \) 389
6.30 Nozzle Exit Area Scheduling, \(A_g/A_9 \) 391
6.31 Nozzle Cooling 394
6.32 Thrust Reverser and Thrust Vectoring 396
6.33 Hypersonic Nozzle 401
6.34 Exhaust Mixer and Gross Thrust Gain in a Mixed-Flow Turbofan Engine 404
6.35 Noise 406
6.35.1 Jet Noise 407
6.35.2 Chevron Nozzle 408
6.36 Nozzle-Turbine (Structural) Integration 409
6.37 Summary of Exhaust Systems 410
References 411
Problems 413
7
Combustion Chambers and Afterburners

7.1 Introduction 429
7.2 Laws Governing Mixture of Gases
7.3 Chemical Reaction and Flame Temperature
7.4 Chemical Equilibrium and Chemical Composition
 7.4.1 The Law of Mass Action
 7.4.2 Equilibrium Constant K_P
7.5 Chemical Kinetics
 7.5.1 Ignition and Relight Envelope
 7.5.2 Reaction Timescale
 7.5.3 Flammability Limits
 7.5.4 Flame Speed
 7.5.5 Flame Stability
 7.5.6 Spontaneous Ignition Delay Time
 7.5.7 Combustion-Generated Pollutants
7.6 Combustion Chamber
 7.6.1 Combustion Chamber Total Pressure Loss
 7.6.2 Combustor Flow Pattern and Temperature Profile
 7.6.3 Combustor Liner and Its Cooling Methods
 7.6.4 Combustion Efficiency
 7.6.5 Some Combustor Sizing and Scaling Laws
 7.6.6 Afterburner
7.7 Combustion-Generated Pollutants
 7.7.1 Greenhouse Gases, CO$_2$ and H$_2$O
 7.7.2 Carbon Monoxide, CO, and Unburned Hydrocarbons, UHC
 7.7.3 Oxides of Nitrogen, NO and NO$_2$
 7.7.4 Smoke
 7.7.5 Engine Emission Standards
 7.7.6 Low-Emission Combustors
 7.7.7 Impact of NO on the Ozone Layer
7.8 Aviation Fuels
7.9 Alternative “Drop-In” Jet Fuels (AJFs)
7.10 Combustion Instability: Screech and Rumble
 7.10.1 Screech Damper
7.11 Summary

References
Problems

8
Axial Compressor Aerodynamics

8.1 Introduction 525
8.2 The Geometry
8.3 Rotor and Stator Frames of Reference
8.4 The Euler Turbine Equation
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Axial-Flow Versus Radial-Flow Machines</td>
<td>530</td>
</tr>
<tr>
<td>8.6</td>
<td>Axial-Flow Compressors and Fans</td>
<td>532</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Definition of Flow Angles</td>
<td>534</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Stage Parameters</td>
<td>536</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Cascade Aerodynamics</td>
<td>549</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Aerodynamic Forces on Compressor Blades</td>
<td>563</td>
</tr>
<tr>
<td>8.6.5</td>
<td>Three-Dimensional Flow</td>
<td>571</td>
</tr>
<tr>
<td>8.6.5.1</td>
<td>Blade Vortex Design</td>
<td>573</td>
</tr>
<tr>
<td>8.6.5.2</td>
<td>Three-Dimensional Losses</td>
<td>585</td>
</tr>
<tr>
<td>8.6.5.3</td>
<td>Reynolds Number Effect</td>
<td>590</td>
</tr>
<tr>
<td>8.7</td>
<td>Compressor Performance Map</td>
<td>593</td>
</tr>
<tr>
<td>8.8</td>
<td>Compressor Instability – Stall and Surge</td>
<td>595</td>
</tr>
<tr>
<td>8.9</td>
<td>Multistage Compressors and Their Operating Line</td>
<td>599</td>
</tr>
<tr>
<td>8.10</td>
<td>Multistage Compressor Stalling Pressure Rise and Stall Margin</td>
<td>604</td>
</tr>
<tr>
<td>8.11</td>
<td>Multistage Compressor Starting Problem</td>
<td>612</td>
</tr>
<tr>
<td>8.12</td>
<td>The Effect of Inlet Flow Condition on Compressor Performance</td>
<td>615</td>
</tr>
<tr>
<td>8.13</td>
<td>Isometric and Cutaway Views of Axial-Flow Compressor Hardware</td>
<td>620</td>
</tr>
<tr>
<td>8.14</td>
<td>Compressor Design Parameters and Principles</td>
<td>620</td>
</tr>
<tr>
<td>8.14.1</td>
<td>Blade Design – Blade Selection</td>
<td>626</td>
</tr>
<tr>
<td>8.14.2</td>
<td>Compressor Annulus Design</td>
<td>627</td>
</tr>
<tr>
<td>8.14.3</td>
<td>Compressor Stall Margin</td>
<td>628</td>
</tr>
<tr>
<td>8.15</td>
<td>Summary</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>640</td>
</tr>
<tr>
<td>9</td>
<td>Centrifugal Compressor Aerodynamics</td>
<td>651</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>651</td>
</tr>
<tr>
<td>9.2</td>
<td>Centrifugal Compressors</td>
<td>652</td>
</tr>
<tr>
<td>9.3</td>
<td>Radial Diffuser</td>
<td>666</td>
</tr>
<tr>
<td>9.4</td>
<td>Inducer</td>
<td>670</td>
</tr>
<tr>
<td>9.5</td>
<td>Inlet Guide Vanes (IGVs) and Inducer-Less Impellers</td>
<td>673</td>
</tr>
<tr>
<td>9.6</td>
<td>Impeller Exit Flow and Blockage Effects</td>
<td>673</td>
</tr>
<tr>
<td>9.7</td>
<td>Efficiency and Performance</td>
<td>674</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>678</td>
</tr>
<tr>
<td>10</td>
<td>Aerothermo-dynamics of Gas Turbines</td>
<td>685</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>685</td>
</tr>
<tr>
<td>10.2</td>
<td>Axial-Flow Turbines</td>
<td>685</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Optimal Nozzle Exit Swirl Mach Number M_{e2}</td>
<td>698</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Turbine Blade Losses</td>
<td>702</td>
</tr>
<tr>
<td>10.2.2.1</td>
<td>Blade Profile Loss</td>
<td>703</td>
</tr>
</tbody>
</table>
Table of Contents

10.2.2.2 Secondary Flow Losses 703
10.2.2.3 Annulus Losses 705
10.2.3 Optimum Solidity 714
10.2.4 Turbine Cooling 718
10.2.4.1 Convective Cooling 723
10.2.4.2 Impingement Cooling 728
10.2.4.3 Film Cooling 729
10.2.4.4 Transpiration Cooling 732
10.3 Turbine Performance Map 733
10.4 The Effect of Cooling on Turbine Efficiency 734
10.5 Turbine Blade Profile Design 735
10.5.1 Angles 736
10.5.2 Other Blade Geometrical Parameters 737
10.5.3 Throat Sizing 737
10.5.4 Throat Reynolds Number Re_o 738
10.5.5 Turbine Blade Profile Design 738
10.5.6 Blade Vibration and Campbell Diagram 739
10.5.7 Turbine Blade and Disk Material Selection and Design Criteria 740
10.6 Stresses in Turbine Blades and Disks and Useful Life Estimation 743
10.7 Axial-Flow Turbine Design and Practices 746
10.8 Gas Turbine Design Summary 754
10.9 Summary 755
References 757
Problems 759

11

Aircraft Engine Component Matching and Off-Design Analysis 767

11.1 Introduction 767
11.2 Engine (Steady-State) Component Matching 768
11.2.1 Engine Corrected Parameters 769
11.2.2 Inlet-Compressor Matching 769
11.2.3 Compressor–Combustor Matching 771
11.2.4 Combustor–Turbine Matching 773
11.2.5 Compressor–Turbine Matching and Gas Generator Pumping Characteristics 774
11.2.5.1 Gas Generator Pumping Characteristics 777
11.2.6 Turbine–Afterburner–(Variable-Geometry) Nozzle Matching 783
11.2.6.1 Fixed-Geometry Convergent Nozzle Matching 784
11.3 Engine Off-Design Analysis 785
11.3.1 Off-Design Analysis of a Turbojet Engine 786
11.3.2 Off-Design Analysis of an Afterburning Turbojet Engine 789
11.3.3 Off-Design Analysis of a Separate-Flow Turbofan (Two-Spool) Engine 793
11.4 Unchoked Nozzles and Other Off-Design Iteration Strategies 798
11.4.1 Unchoked Exhaust Nozzle 799
11.4.2 Unchoked Turbine Nozzle 800
11.3 Turbine Efficiency at Off-Design 801
11.4 Variable Gas Properties 801
11.5 Principles of Engine Performance Testing 802
 11.5.1 Force of Inlet Bellmouth on Engine Thrust Stand 804
 11.5.1.1 Bellmouth Instrumentation 804
 11.5.1.2 The Effect of Fluid Viscosity 805
 11.5.1.3 The Force of Inlet Bellmouth on Engine Thrust Stand 806
11.6 Summary 810
References 812
Problems 813

12 Chemical Rocket and Hypersonic Propulsion 821
12.1 Introduction 821
12.2 From Takeoff to Earth Orbit 823
12.3 Chemical Rockets 824
12.4 Chemical Rocket Applications 826
 12.4.1 Launch Engines 826
 12.4.2 Boost Engines 826
 12.4.3 Space Maneuver Engines 827
 12.4.4 Attitude Control Rockets 827
12.5 New Parameters in Rocket Propulsion 827
12.6 Thrust Coefficient, C_T 830
12.7 Characteristic Velocity, c^* 833
12.8 Flight Performance 835
12.9 Multistage Rockets 845
12.10 Propulsive and Overall Efficiencies 847
12.11 Chemical Rocket Combustion Chamber 849
 12.11.1 Liquid Propellant Combustion Chambers 849
 12.11.1.1 Some Design Guidelines for Injector Plate 854
 12.11.1.2 Combustion Instabilities 855
 12.11.2 Solid Propellant Combustion Chambers 855
12.12 Thrust Chamber Cooling 862
 12.12.1 Liquid Propellant Thrust Chambers 862
 12.12.2 Cooling of Solid Propellant Thrust Chambers 868
12.13 Combustor Volume and Shape 869
12.14 Rocket Nozzles 870
 12.14.1 Multiphase Flow in Rocket Nozzles 874
 12.14.2 Flow Expansion in Rocket Nozzles 883
 12.14.3 Thrust Vectoring Nozzles 884
12.15 High-Speed Airbreathing Engines 884
 12.15.1 Supersonic Combustion Ramjet 891
 12.15.1.1 Inlet Analysis 892
 12.15.1.2 Scramjet Combustor 892
 12.15.1.3 Scramjet Nozzle 895
Table of Contents

12.16 Rocket-Based Airbreathing Propulsion 895
12.17 Summary 897
References 898
Problems 899

A. U.S. Standard Atmosphere 903
B. Isentropic Table 907
C. Normal Shock Table 924
D. Rayleigh Flow 937
E. Fanno Flow 946
F. Prandtl–Meyer Function and Mach Angle 955
G. Oblique Shock Charts 958
H. Conical Shock Charts 963
I. Cascade Data 966
J. Websites 972
K. 10-Minute Quiz 973
L. Some “Rules of Thumb” and Trends in Aircraft Propulsion 991

Index 999