CONTENTS

Preface v

Chapter 1
Introduction to Systems Analysis and Design 1

Introduction 1
The Systems Development Life Cycle 2
Planning 3
Analysis 3
Design 4
Implementation 4

Systems Development Methodologies 5
Structured Design 6
Rapid Application Development (RAD) 8
Agile Development 12
Selecting the Appropriate Development Methodology 15

Typical Systems Analyst Roles and Skills 17
Business Analyst 18
Systems Analyst 18
Infrastructure Analyst 18
Change Management Analyst 19
Project Manager 19

Basic Characteristics of Object-Oriented Systems 19
Classes and Objects 19
Methods and Messages 20
Encapsulation and Information Hiding 20
Inheritance 21
Polymorphism and Dynamic Binding 22

Object-Oriented Systems Analysis and Design (OOSAD) 23
Use-Case Driven 24
Architecture-Centric 24
Iterative and Incremental 24
Benefits of Object-Oriented Systems Analysis and Design 25

The Unified Process 25
Phases 26
Workflows 28
Extensions to the Unified Process 30

The Unified Modeling Language 34
Applying the Concepts at Patterson Superstore 36
Chapter Review 36

Chapter 2
Project Management 41

Introduction 41
Project Identification 43
System Request 44
Feasibility Analysis 45
Technical Feasibility 45
Economic Feasibility 46
Organizational Feasibility 51
Project Selection 53

Traditional Project Management Tools 54
Work Breakdown Structures 55
Gantt Chart 56
Network Diagram 57

Project Effort Estimation 58
Creating and Managing the Workplan 63
Evolutionary Work Breakdown Structures and Iterative Workplans 63
Managing Scope 67
Timeboxing 68
Refining Estimates 69
Managing Risk 70

Staffing the Project 71
Characteristics of a Jelled Team 71
Staffing Plan 73
Motivation 75
Handling Conflict 76

Environment and Infrastructure Management 76
CASE Tools 77
Standards 77
Documentation 78

Applying the Concepts at Patterson Superstore 80
Chapter Review 80
PART ONE
ANALYSIS MODELING 85

Chapter 3
Requirements Determination 86

Introduction 86
Requirements Determination 87
 Defining a Requirement 87
 Requirements Definition 89
 Determining Requirements 89
 Creating a Requirements Definition 91
 Real-World Problems with Requirements Determination 91
Requirements Analysis Strategies 92
 Problem Analysis 92
 Root Cause Analysis 92
 Duration Analysis 93
 Activity-Based Costing 94
 Informal Benchmarking 94
 Outcome Analysis 95
 Technology Analysis 95
 Activity Elimination 95
Requirements-Gathering Techniques 95
 Interviews 96
 Joint Application Development (JAD) 100
 Questionnaires 104
 Document Analysis 106
 Observation 108
 Selecting the Appropriate Techniques 108
Alternative Requirements Documentation Techniques 110
 Concept Maps 110
 User Stories 112
The System Proposal 113
Applying the Concepts at Patterson Superstore 114
Chapter Review 115

Chapter 4
Business Process and Functional Modeling 119

Introduction 119
Business Process Identification with Use Cases and Use-Case Diagrams 121
 Elements of Use-Case Diagrams 121
 Identifying the Major Use Cases 126
Creating a Use-Case Diagram 127
Business Process Modeling with Activity Diagrams 129
 Elements of an Activity Diagram 131
 Guidelines for Creating Activity Diagrams 136
 Creating Activity Diagrams 137
Business Process Documentation with Use Cases and Use-Case Descriptions 140
 Types of Use Cases 141
 Elements of a Use-Case Description 141
 Guidelines for Creating Use-Case Descriptions 145
 Creating Use Case Descriptions 146
Verifying and Validating the Business Processes and Functional Models 153
 Verification and Validation through Walkthroughs 153
 Functional Model Verification and Validation 154
Applying the Concepts at Patterson Superstore 157
Chapter Review 157

Chapter 5
Structural Modeling 163

Introduction 163
Structural Models 164
 Classes, Attributes, and Operations 164
 Relationships 165
Object Identification 166
 Textual Analysis 166
 Brainstorming 167
 Common Object Lists 169
 Patterns 169
CRC Cards 172
 Responsibilities and Collaborations 172
 Elements of a CRC Card 173
 Role-Playing CRC Cards with Use Cases 174
Class Diagrams 176
 Elements of a Class Diagram 176
 Simplifying Class Diagrams 184
 Object Diagrams 184
Creating Structural Models Using CRC Cards and Class Diagrams 185
 Campus Housing Example 187
 Library Example 187
Chapter 6
Behavioral Modeling 202

Introduction 202
Behavioral Models 203
Interaction Diagrams 204
 Objects, Operations, and Messages 204
 Sequence Diagrams 204
 Communication Diagrams 216
Behavioral State Machines 221
 States, Events, Transitions, Actions, and Activities 221
 Elements of a Behavioral State Machine 222
 Creating a Behavioral State Machine 226
Crude Analysis 229
Verifying and Validating the Behavioral Model 233
Applying the Concepts at Patterson Superstore 235
Chapter Review 235

Chapter 8
Class and Method Design 280

Introduction 280
Review of the Basic Characteristics of Object Orientation 282
 Classes, Objects, Methods, and Messages 282
 Encapsulation and Information Hiding 282
 Polymorphism and Dynamic Binding 282
 Inheritance 284
Design Criteria 286
 Coupling 286
 Cohesion 289
 Connascence 292
Object Design Activities 293
 Adding Specifications 293
 Identifying Opportunities for Reuse 294
 Restructuring the Design 297
 Optimizing the Design 298
 Mapping Problem-Domain Classes to Implementation Languages 300
Constraints and Contracts 304
 Types of Constraints 306
 Elements of a Contract 306
Method Specification 314
 General Information 314
 Events 314
 Message Passing 315
 Algorithm Specifications 316
 Example 318
Verifying and Validating Class and Method Design 319
Chapter 9
Data Management Layer Design 326

Introduction 326
Object Persistence Formats 327
 Sequential and Random Access Files 327
 Relational Databases 330
 Object-Relational Databases 332
 Object-Oriented Databases 332
 NoSQL Data Stores 333
Selecting an Object Persistence Format 335
Mapping Problem Domain Objects to Object Persistence Formats 337
 Mapping Problem Domain Objects to an OODBMS Format 338
 Mapping Problem Domain Objects to an ORDBMS Format 341
 Mapping Problem Domain Objects to a RDBMS Format 344
Optimizing RDBMS-Based Object Storage 346
 Optimizing Storage Efficiency 347
 Optimizing Data Access Speed 351
 Estimating Data Storage Size 356
Designing Data Access and Manipulation Classes 357
Nonfunctional Requirements and Data Management Layer Design 360
Verifying and Validating the Data Management Layer 361
Applying the Concepts at Patterson Superstore 362
Chapter Review 362

Chapter 10
Human–Computer Interaction Layer Design 367

Introduction 367
Principles for User Interface Design 368
 Layout 369
 Content Awareness 369
 Aesthetics 370
 User Experience 371
 Consistency 371
 Minimizing User Effort 372
User Interface Design Process 372
 Use Scenario Development 373
 Navigation Structure Design 375
 Interface Standards Design 376
 Interface Design Prototyping 377
 Interface Evaluation 380
 Common Sense Approach to User Interface Design 382
Navigation Design 383
 Basic Principles 383
 Types of Navigation Controls 384
 Messages 386
 Navigation Design Documentation 387
Input Design 387
 Basic Principles 387
 Types of Inputs 390
 Input Validation 391
Output Design 392
 Basic Principles 392
 Types of Outputs 394
 Media 394
Mobile Computing and User Interface Design 395
Social Media and User Interface Design 398
Games, Multi-Dimensional Information Visualizations, and Immersive Environments 400
 Games, Gamification, and User Interface Design 400
 Multidimensional Information Visualization Design 402
 User Interface Design and Immersive Environments 404
International and Cultural Issues and User Interface Design 406
 Multilingual Requirements 406
 Color 407
 Cultural Differences 407
Nonfunctional Requirements and Human-Computer Interaction Layer Design 410
Applying The Concepts At Patterson Superstore 411
Chapter review 411
Chapter 11
Physical Architecture Layer Design 418

Introduction 418
Elements of the Physical Architecture Layer 419
Architectural Components 419
Server-Based Architectures 420
Client-Based Architectures 420
Client–Server Architectures 421
Client–Server Tiers 422
Selecting a Physical Architecture 424
Cloud Computing 426
Ubiquitous Computing and the Internet of Things 428
Green IT 431
Infrastructure Design 432
Deployment Diagram 432
Network Model 434
Hardware and System Software Specifications 438
Nonfunctional Requirements and Physical Architecture Layer Design 440
Operational Requirements 441
Performance Requirements 442
Security Requirements 444
Cultural and Political Requirements 447
Synopsis 448
Verifying and Validating the Physical Architecture Layer 449
Applying the Concepts at Patterson Superstore 450
Chapter Review 450

PART THREE
Construction, Installation, and Operations 455

Chapter 12
Construction 456

Introduction 456
Managing Programming 457
Assigning Programmers 457
Coordinating Activities 458

Managing the Schedule 458
Cultural Issues 460
Developing Documentation 462
Types of Documentation 463
Designing Documentation Structure 463
Writing Documentation Topics 465
Identifying Navigation Terms 465
Designing Tests 467
Testing and Object Orientation 468
Test Planning 469
Unit Tests 471
Integration Tests 475
System Tests 476
Acceptance Tests 477
Applying the Concepts at Patterson Superstore 478
Chapter Review 478

Chapter 13
Installation and Operations 481

Introduction 481
Cultural Issues and Information Technology Adoption 483
Conversion 485
Conversion Style 486
Conversion Location 486
Conversion Modules 487
Selecting the Appropriate Conversion Strategy 488
Change Management 489
Understanding Resistance to Change 490
Revising Management Policies 491
Assessing Costs and Benefits 492
Motivating Adoption 493
Enabling Adoption: Training 495
Post-Implementation Activities 497
System Support 497
System Maintenance 498
Project Assessment 500
Applying the Concepts at Patterson Superstore 502
Chapter Review 502

Index 507