INDEX

A
Abstract class, 22, 164, 258
Abstraction, 258
 in object-oriented systems, 281
Accelerometers, 397, 398
Acceptance tests, 472, 477
Access control, 361
Access control requirements, defined, 445
Acknowledgment messages, 386
Action–object order, 384
Actions
 in activity diagrams, 131, 132, 317
 in behavioral state machines, 222
Action statements, 316
Activities
 in activity diagrams, 131, 132, 317
 in behavioral state machines, 222
black-hole, 136
miracle, 136
Activity-based costing, 94
Activity coordination, 458
Activity diagrams, 119, 120
 actions in, 131, 317
 activities in, 131, 317
control flows in, 131, 317
control nodes in, 132–136
decision node in, 134, 317
final-activity node in, 132–133, 317
final-flow node in, 133, 317
fork node in, 135, 317
guard condition, 134
guidelines for creating, 136–137
initial node in, 132, 317
joint node in, 136, 317
merge node in, 134, 317
object flows in, 131, 317
object nodes in, 131, 317
steps in creating, 137–140
swimlanes in, 136, 317
syntax for, 132, 317
of UML, 316
Activity elimination, 95
Actors
 average, 59
 defined, 59, 206, 217
 in interaction diagrams, 205
 primary, 142
 simple, 59
 specialized, 122
 in use-case diagrams, 121–123
Adjusted usecase points (UCP), 62
Adoption, motivating, 493–495
Aesthetics, 370–371
Aggregation association, 181–183
Aggregation relationships
 in factoring process, 257
 in structural modeling, 166
Agile development, 12–15
 criticisms, 13
 extreme programming (XP), 13–14
 principles, 12
 scrum, 14–15
A-kind-of
 in factoring, 257
 in object-oriented systems, 21
 in structural model, 165
Alexander, Christopher, 170
Algorithm specifications, 316–319
Alpha testing, 477
Alternative flows, 144
Alternative matrix, 274–275, 439
Alternative requirements documentation techniques,
 see Requirements documentation techniques, alternative
Amazon.com, 408, 445
Ambler, S. W., 30, 136, 207, 218, 226
Analysis models, 4
 balancing, 242–257
 evolving into design models, 257–262
 verifying and validating, 242–257
Analysis paralysis, 28
Analysis patterns, 294
Analysis phase, 3–4. See also Systems development
life cycle (SDLC)
 analysis strategy, 3
 requirements gathering, 4
 system proposal, 4
Analysis workflow (Unified Process), 28–29
API, see Application program interface
Appelo, J., 76
Application logic, 419
Application program interface (API), 59, 297, 469
Application service providers (ASP), 270
Application software, 420
Application system, 336–337
Approval committee, 3, 43
Architectural components, 419
Architecture-centric OOSAD, 24
Architecture design, 4
Artifact, 432, 433
As-is system, 3, 86
ASP, see Application service providers
Assemblies, 166
Association
 class, 180
 in communication diagram, 217
Association relationships
 in structural models, 166
 in use-case descriptions, 142
 in use-case diagrams, 122, 123–124
Asymmetric encryption algorithm, 446
Attributes, 165, 204, 282
 derived, 176, 300
 multivalued, 333
 in object-oriented systems, 20
 private, 176
 protected, 176
 public, 176
 visibility of, 176
Attribute sets, 333
Audit files, 330
Augmented reality (AR), 404
Authentication, 446
Authentication requirements, 445–446
 defined, 445
Authentication testing, 477
Authorization testing, 477
Availability and reliability
 requirements, 443–444
Average actors, 59
Avison, D., 91
B
Backyard recycling technique, 431
Bar-code readers, 389
Batch processing, 387–389
Batch reports, 393
Behavior, 282
Behavioral modeling, 202–235
 behavioral state machines for, 221–229
 crude analysis for, 229–232
 interaction diagrams for, 204–221
 verifying and validating, 233–234
Behavioral models, 6, 203
 balancing functional model and, 243–251
 balancing structural model and, 251–254
Behavioral state machine, 221–229, 473
 actions in, 222
 activities in, 222
 creating, 226–229
 elements of, 222–226
 events, 222
 guidelines for creating, 226
 states, 221
 transitions in, 222
Behavioral view, 24
Behavior diagrams, 34
Behaviors, 204
 in object-oriented systems, 20
Bellin, D., 167
Benchmark, 440
Benchmarking, informal, 94
Beta testing, 477
Bias minimization, 393–394
Binding technique, 23
Black-box testing, 471, 472
Black hole states, 226
Booch, Grady, 24, 25, 34
Bottom-up interviews, 98, 99
Brainstorming, 167–169
Breadth of information
 (requirements analysis), 109
Break-even point
 defined, 51
 determination, 47, 50–51
 graphing, 47
Brief description (use cases), 142
Broad and shallow menu, 384
Brynjolfsson, Erik, 429
Business analyst, 18
Business-modeling workflow (Unified Process), 28
Business need, 43, 272
Data Access and Manipulation (DAM), 260
 in factoring, 257
 in object orientation, 282
 in object-oriented systems, 19, 20
 in structural models, 164–165
 utility, 260

Class and method design, 280–321
 constraints, 304–314
 contracts, 304–314
 design criteria, 286–293
 method specification, 314–319
 object design activities, 293–304
 object orientation, characteristics of, 282–286
 verifying and validating, 319–321

Class cohesion, 290
 ideal, 291
 mixed-domain, 291
 mixed-instance, 291
 mixed-role, 291

Class diagrams
 aggregation association, 181–183
 class, 176–179
 generalization association, 181
 object diagrams, 184
 relationships, 179–181
 simplifying, 184

Class library, 297

Class-Responsibility-Collaboration (CRC) cards
 collaborations, 173
 elements of, 173–174
 role-playing, with use cases, 174–175

Class–Responsibility–Collaboration (CRC) cards
 responsibilities, 172

Classroom training, 496

Class tests, 473

Client, 259

Client-based architectures, 420–421

Client computers, 419

Client-server architectures, 421–422

Client-server tiers, 422–424

Closed-ended questions, 97, 98

Cloud computing, 426–428

Cloud services, 270

Clustering, 354–355

Coad, Peter, 286, 289

COBIT (Control Objectives for Information and related Technology), 88

Coding practices, 14

Coding standards, 78

Cognitive map, 405
Cohesion
 class, 290
 defined, 289
 generalization/specialization, 291
 ideal class, 290
 method, 289–290
Collaborations, 173, 258–259
Collectivism, 461
Color
 aesthetics, 370
 cultural meanings of, 407
Columnar data stores, 334
Combo box, 391
Command language, 384
Common object lists, 169
Communication diagrams
 creating, 219
 elements of, 216–218
 examples, 219–221
 guidelines for creating, 218–219
Communication path, 433
Compatibility, 46
Completeness check, 392
Complex actors, 59
Complex systems, 16–17
Component, 297
Computer-aided software engineering (CASE)
 benefits of, 77
 defined, 77
 repository, 77
 tools, 77
Computer-based training (CBT), 496, 497
Concept mapping, 110
Concept maps, 110–112
Conceptual model, 163
Concrete class, 21, 164, 258
Configuration and change management workflow
 (Unified Process), 30, 33–34
Confirmation message, 386
Conflict management, 76
Connascence, 292–293
Consistency, 369, 371–372
Consistency check, 392
Constantine, L. L., 30
Constraints, 304
 types of, 306
Construction, 456–477
 defined, 456
 documentation development, 462–467
 programming management, 457–461
system, 5
 test designing, 467–477
Construction phase (Unified Process), 27
Constructor operation, 176
Container classes, 260
Content awareness, 369–370
Context, 408, 460, 483
Contract, 173, 259, 294, 304
Elements of, 306–314
 fixed-price, 271
 time-and-arrangements, 271
 value-added, 271
Control and security (server-based architecture), 425
Control flows, 131, 132, 317
Controllers, 259
Control nodes
 decision node, 134
 final-activity node, 132–133
 final-flow node, 133
 fork node, 135
 initial node, 132
 joint node, 136
 merge node, 134
Conversion, 485–489. See also specific types of conversion
 location, 486–487
 modules, 487–488
 selecting, 488–489
 style of, 486
Conversion location, 486–487
 phased, 487
 pilot, 487
 simultaneous, 487
 style of, 486
Conversion modules
 modular conversion, 487–488
 whole-system conversion, 487
Conversion strategy
 cost, 489
 risk, 488–489
 time, 489
Conversion style
 direct, 486
 parallel, 486
Costs, 109
 certainty of, 494
 in conversion strategy, 489
 development, 47, 48
 of development, 424–425
 of infrastructure, 424
intangible, 48
materials, 94
operational, 47, 48
in requirements analysis, 109
of transition, 494
Costs and benefits analysis
assigning values to, 48
in change management, 492–493
financial calculations for, 51
identifying, 47–48
Coupling
defined, 286
inheritance, 289
interaction, 287–288
CRC cards, see Class-Responsibility-Collaboration (CRC) cards
Critical path method (CPM), 58
Critical task, 58
Critical thinking skills, 92
CRUDE (create, read, update, delete, or execute), 126
CRUDE analysis, 229–232
CRUDE matrix, 243, 245
Cultural and political requirements
customization requirements, 447
legal requirements, 448
synopsis, 449
Cultural differences, 407–410
Cultural issues, 406–410
and information technology, 483–484
in programming management, 460–461
Cultural requirements, 88
Custom development, 268–269
Customization, 269
Customization requirements, 447

D
DAM classes, see Data Access and Manipulation classes
Data Access and Manipulation (DAM) classes, 260, 338
designing, 357–360
Data access logic, 419
Data access speed optimization, 351–356
clustering, 354–355
denormalization, 351–354
indexing, 355–356
Database, 327
Database and file specifications, 4
Database checks, 392
Database management system (DBMS), 327
Data capture at source, 389390
Data-centered methodology, 5
Data entry operator, 389
Data management layer, 261
Data management layer design, 326–363
data access and manipulation classes, designing, 357–360
mapping problem domain objects to object persistence formats, 337–346
nonfunctional requirements and, 360–361
object persistence formats, 327–337
RDBMS-based object storage, 346–357
verifying and validating, 361–362
Data storage, 419
size of, 356–357
DBMS, see Database management system
Decision node, 132, 134, 317
Decision support systems (DSS), 336
Decomposition, 166
Default value, 390
Delay message, 386
DeMarco, T., 71
Dennis, Alan, 105
Denormalization, 351–354
Dependency
partial, 349
transitive, 351
Dependency relationship, 262, 263
Deployment diagrams, 432–434
Deployment engineering workflow, 27
Deployment workflow (Unified Process), 29, 32
Depth of information (requirements analysis), 109
Derived attributes, 176, 300
Design, 240–275
acquisition strategy, selecting, 273–275
and balancing of analysis models, 242–257
classic, avoiding, 241
custom development, 268–269
evolving analysis models into design models, 257–262
optimization, 298–300
outsourcing, 270–272
packaged software, 269–270
packages and package diagrams, 262–268
restructuring, 297–298
selecting, 272–273
strategies, 268–273
Design models, 29
evolving analysis models into, 257–262
packages and package diagrams, 262–268
Design patterns, 294, 295
Design phase. See also Systems development life cycle (SDLC)
architecture design, 4
database and file specifications, 4
design strategy, 4
program design, 4
Design prototype, 11
Design strategy, 4
Design workflows, 27, 29
Destroy operation, 179
Detail report, 395
Detail use case, 141
Development
costs, 47, 48, 424–425
incremental, 24–25
iterative, 24–25
parallel, 8
phased, 9
waterfall, 7
Digital signatures, 446
Direct conversion, 486
Direct manipulation (navigation control), 385–386
Document analysis, 106–107
Documentation, 78–79
development, 462–467
procedures manuals, 463
reference documents, 463
standards, 78
topics, 463, 465
tutorials, 463
Documentation navigation controls, 463
Documentation structure designing, 463–465
Document data stores, 334
Doing responsibilities, 172
Drop-down list box, 391
Drop-down menu, 385
DSS, see Decision support systems
Duration analysis, 93–94
Dynamic binding, 468
in object-oriented systems, 22–23, 283
Dynamic model, 204

E
Ease of development, 425
Ease of learning, 371
Ease of use, 371
Economic feasibility, 46–51. See also Feasibility analysis
break-even point determination, 50–51
cash flow determination, 48–49
costs and benefits, assigning values to, 48
costs and benefits, identifying, 47–48
net present value (NPV), 49–50
return on investment (ROI), 50
Edit checks, 391
EIS, see Executive information systems
E-JAD, see Electronic JAD
Elaboration phase (Unified Process), 27
Electronic brainstorming, 169
Electronic distribution, 104
Electronic JAD, 102
Encapsulation, 282, 468
in object-oriented systems, 20–21
in testing and object orientation, 468
Enchanted objects, 429
Encryption, 445–446
defined, 445
End-user DBMS, 327
Engineering workflows. See also Workflows
analysis workflow, 28–29
business-modeling workflow, 28
deployment workflow, 29
design workflow, 29
implementation workflow, 29
requirements workflow, 28
testing workflow, 29
English-language messages, 406
Enhanced Unified Process, 31, 33
Enterprise DBMS, 327
Enterprise resource planning (ERP), 269
Environmental factors (EF), 59, 62
Environmental factor value (EFactor), 59, 62
Environment and infrastructure management, 76–79.
See also Project management
CASE tools, 77
documentation, 78–79
standards, 77–78
Environment workflow (Unified Process), 30, 32
Error(s), 153
Error correction, 153
Error message, 386
Essential use case, 141, 372
Estimates, refining, 69–70
Estimation, defined, 58
Event
in behavioral state machines, 222, 223
in method specification, 314
Event driven languages, 314
Evolutionary work breakdown structures, 63–67
e-waste, 431
Exceptional flows, 144
Execution occurrence, 206
Executive information systems (EIS), 336
Extend relationship, 122, 144
Extent, 332
External nonfunctional dimensions, 88
External trigger, 142
Extreme programming (XP), 13–14

F
Facilitator, 101, 104
Factoring, 257–258, 298
Familiarity
 with functional area, 46
 with technology, 46
Fan-out, 300
Fat client, 421
Faults, 153
Feasibility analysis, 3, 43, 45–53. See also Project management
 economic feasibility, 46–51
 organizational feasibility, 51–53
 technical feasibility, 45–46
Feminine cultures, 409
Field labels, 370
Final-activity node, 132–133, 317
Final-flow node, 132, 133, 317
Final state, 222, 223
Financial awards, 75
First-line supervisors, 492
First mover, 43
First normal form (1NF), 347, 349
Fitzgerald, G., 91
Fixed-price contract, 271
Flow of events
 alternative or exceptional flows, 144
 normal, 144
 subflows, 144
 in use-case description, 144–145
Foreign key, 330, 331
Fork node, 132, 135, 317
Formal usability testing, 381–382
Format check, 392
Foundation layer, 260
Frame, 209, 217, 223
Framework, 297
Frequently asked questions (FAQ), 498
Friedman, T. L., 89, 407
Functional decomposition, 144
Functionality, 44
Functional lead, 74

G
Games, 400
Gamification, 400–401
Gantt chart, 56–57
Generalization association, 181
Generalization relationship, 122, 144, 165, 257
Generalization/specialization cohesion, 291
Generic sequence diagram, 204
Globalization, 89
Glocalization, 407
Gradual refinement, 3
Grammar order, consistent, 384
Graphical displays and reports, 393
Graphical user interface (GUI), 368, 425
Graphs, 395
Green data centers, 431
Green IT, 431–432
Grid computing, 426
Ground rules (JAD sessions), 103
Group cohesiveness, 76
Guard condition, 134, 217, 222

H
Hall, Edward, 407, 408, 409, 460, 483, 484
Haptic feedback, 396
Hardcoded value, 471
Hardware and operating system, 360
Hardware and software specification, 438–440
Hardware components, primary, 419
Has-parts
 in factoring, 257
 in structural model, 166
Health and Human Services Health Insurance Portability and Accountability Act (HIPAA), 428
Help desk, 498
Help message, 386
Heuristic evaluation, 381
Index

History files, 330
Hofstede, Geert, 407, 408, 409, 460, 461, 483, 484
Holland, Ian M., 287
Hot keys, 385
Human-computer interaction layer, 261
Human-computer interaction layer design, 367–410
 games, 400–402
 gamification, 400–402
 immersive environments, 404–406
 input design, 387–392
 international and cultural issues, 406–410
 mobile computing, 395–398
 multidimensional information visualization design, 402–404
 navigation design, 383–387
 nonfunctional requirements and, 410
 output design, 392–395
 social media and, 398–400
 user interface design, 368–372, 395–398, 400–402
 user interface design process, 372–383
Hybrid clouds, 426

I

Ideal class cohesion, 290
Image map, 385
Immersive environments, 404–406
Impedance mismatch, 336
Implementation phase, 4–5. See also Systems
development life cycle (SDLC)
 construction, 5
 installation, 5
 support plan, 5
Implementation workflow (Unified Process), 29
Importance level (use-cases), 142
Inception phase (Unified Process), 26–27
Incidents, 169
Include relationship, 122, 144
Incremental development, 24–25
Indexing, 355–356
Individualism, 461
 versus collectivism, 409, 484
Informal benchmarking, 94, 147
Informational strategy, 493
Information hiding, 282
 in object-oriented systems, 20–21
 in testing and object orientation, 468
Information load, 393
Infrastructure analyst, 19
Infrastructure as a Service (IaaS), 427
Infrastructure cost, 424
Infrastructure design, 432–438
 deployment diagrams, 432–434
 network model, 434–438
Infrastructure management workflow (Unified Process), 32
Inheritance, 144, 469
 conflict, 284, 285
 multiple, 285
 in object orientation, 284–286
 in object-oriented systems, 21–22
 single, 284
Inheritance coupling, 289
In-house experience, 272
Initial node, 132, 317
Initial state, 222, 223
Input design, 387–392
 basic principles, 387–390
 input validation, 391–392
 types of inputs, 390, 391
Input validation, 391–392
Installation process, 5, 481–501
 change management, 489–497
 conversion, 485–489
 cultural issues in, 483–484
 post-implementation activities, 497–501
Instance sequence diagrams, 204
Instantiation, 184
Institutionalization, 497
Intangible benefits, 47, 48
Intangible costs, 48
Intangible value, 44
Integration of information, 109
Integration testing, 468, 472
Integration tests, 475–476
Interaction, 169
Interaction coupling, 287–288
Interaction diagrams, 204–221
 communication diagrams, 216–221
 messages, 204
 objects in, 204
 operations in, 204
 sequence diagrams, 204–215
Interaction testing, 472, 475
Interactive evaluation, 381
Interface actions, 377
Interface capabilities, 425
Interface design, 4
Interface design prototyping, 377–380
 selecting, 379
 storyboard, 377–379
J

Jacobson, Ivar, 24, 25, 34

Jelled team, 71–72

Join node, 132, 317

Joint application development (JAD), 100–104, 105

conducting session, 103–104
designing, 103
electronic, 102

ground rules, 103

participant selection, 102–103

post-session report, 104

preparing for session, 103

problem management in, 105

for RAD-based methodologies, 9

Joint node, 136

Jones, Capers, 101

Karner, Gustav, 58

Keystrokes minimization, 390

Key-value data stores, 334

KISS principle, 13, 146

Knowing responsibilities, 172

Krug, Steve, 382, 383, 396, 408

K

Karner, Gustav, 58

Keystrokes minimization, 390

Key-value data stores, 334

KISS principle, 13, 146

Knowing responsibilities, 172

Krug, Steve, 382, 383, 396, 408

L

Languages (navigation control), 384

Larman, C., 15, 147

Law of Demeter, 287, 288

Layers, 259–262. See also Design
data management, 260–261

foundation, 260

human–computer interaction, 261

physical architecture, 261–262

problem domain, 260

Layout (user interface design), 369

Legal requirements, 448

Lencioni, P., 72

Lewin, Kurt, 482

Lieberherr, Karl J., 287

Lifeline, 205, 206

Linked list, 328

Lister, T., 71

Load tests, 477

Local area network (LAN), 420

Locations, 435

Logical models, 120

Long-versus short-term orientation, 461, 484

Lookup files, 328

M

Magnetic stripe readers, 389

Maintainability requirements, 441, 442

Maintenance oracle, 154
Index

Management information systems (MIS), 336
Management policies, 491–492
Manual systems, 89
Masculinity versus femininity, 409, 484
Master files, 328
Materials costs, 94
McAfee, Andrew, 429
McEwen, Adrian, 429
Measurements, 492
Media, 394–395
Meeting, scrum, 15
Menu bar, 385
Menus (navigation control), 384–385
Merge node, 132, 134, 317
Message passing, 315
Messages
 defined, 206, 217
 in interaction diagrams, 204
 navigation design, 386–387
 in object orientation, 282
 in object-oriented systems, 20
Method(s), 165, 204, 257, 259
 in object orientation, 282
 in object-oriented systems, 20
Method cohesion, 289–290
 classical, 290
 coincidental, 290
 communicational, 290
 functional, 290
 logical, 290
 procedural, 290
 sequential, 290
 temporal, 290
Methodology(-ies), 5–17
 agile development, 12–15
 criteria for selecting, 15–17
 data-centered, 5
 defined, 5
 object-oriented, 5
 process-centered, 5
 rapid application development (RAD), 8–12
 sequencing of SDLC phases, 5
 structured design, 6–8
Method specification, 314–319
 algorithm specifications, 316–319
 events, 314
 general information, 314
 message passing, 315
Meyers, Glenford, 290
Middle managers, 492
Middleware, 421
Migration plan, 482
Milestones, project, 55, 57
Miracle states, 226
Mission-critical systems, 445
 agile for, 13
 and Scrum, 15
 XP for, 14
Mistakes
 implementation, 459
 preventing, 383
 recovery from, 383
Mobile computing, 395–398
Mobile devices, 396, 439
Model–View–Controller (MVC)
 architecture, 259
Modular conversion, 487–488
Module, 257
Monochronic time, 408, 461, 484
Motivation, 75–76
Multidimensional information visualization
 design, 402–404
Multilingual requirements, 406–407
Multiple inheritance, 285
Multiple layout, 369
Multiplicity, 180
Multitenancy, 426
Multivalued attributes, 333
MVC architecture, see Model-View-Controller
 (MVC) architecture
N
Narrow and deep menu, 384
Natural language, 384
Navigation controls
 consistency in, 371
 direct manipulation, 385–386
 languages, 384
 menus, 384–385
Navigation design, 383–387
 basic principles, 383–384
 documentation, 387
 grammar order, consistent, 384
 messages, 386–387
 preventing mistakes, 383
 recovery from mistakes, 383
 types of controls, 384–386
Navigation terms identification, 465–467
Net present value (NPV), 47, 49–50
 defined, 51
Network, 419
Network diagram, 57–58
Network model, 434–438
Node, 58, 432, 433
Nonfunctional requirements, 87, 88
 cultural, 88, 90
 cultural and political requirements, 447–448
 and data management layer design, 360–361
 and human-computer interaction layer design, 410
 operational, 88, 90
 operational requirements, 441–442
 performance, 88, 90
 performance requirements, 442–444
 and physical architecture layer design, 440–449
 political, 88, 90
 security, 88, 90
 security requirements, 444–447
 synopsis, 448–449
Normal flow of events, 144
Normalization process, 298, 347
NoSQL data stores, 333–334, 335
n-tiered architecture, 422
 advantage of, 423
 disadvantage of, 424
Null values, 347
Number box, 390

O

Object(s)
 defined, 206, 217
 in interaction diagrams, 204, 205
 in object orientation, 282
 in object-oriented systems, 19, 20
 temporary, 205
Object–action order, 384
Object-based language, 301–303
Object Constraint Language (OCL), 304, 305
Object design activities, 293–304
 adding specifications, 293
 mapping problem-domain classes to implementation languages, 300–304
 opportunities for reuse, 294–297
 optimizing design, 298–300
 restructuring design, 297–298
Object diagrams, 184
Object flows, 131, 132, 317
Object identification
 brainstorming for, 167–169
 common object lists for, 169
 patterns for, 169–172
 in structural modeling, 166–172
 textual analysis for, 166–167
Object Management Group (OMG), 34, 119
Object nodes, 131, 132, 317
Object orientation
 classes, 282
 dynamic binding, 283
 encapsulation, 282
 information hiding, 282
 inheritance, 284–286
 messages, 282
 methods, 282
 objects, 282
 polymorphism, 282–284
 and testing, 468–469
Object-oriented database, 332–333, 335
Object-oriented database management systems (OODBMS), 332
 mapping problem domain objects to, 338–341
Object-oriented development process and products, 469
Object-oriented methodology, 5
Object-oriented programming language (OOPL), 333
Object-oriented systems
 attributes in, 20
 behaviors in, 20
 classes in, 19, 20
 dynamic binding in, 22–23
 encapsulation in, 20–21
 information hiding in, 20–21
 inheritance in, 21–22
 messages in, 20
 methods in, 20
 objects in, 19, 20
 polymorphism in, 22
Object-oriented systems analysis and design (OOSAD), 23–25
 architecture-centric, 24
 benefits of, 25
 incremental development, 24–25
 iterative, 24–25
 use-case driven, 24
Object persistence formats
 application system, type of, 336–337
 criteria for files, 337
 data types supported, 336
 future needs, 337
 mapping problem domain objects to, 337–346
 NoSQL data stores, 333–334, 335

Index 517
Object persistence formats (continued)
 object-oriented database, 332–333, 335
 object-relational databases, 332, 335
 random access files, 328, 335
 relational database, 330–332
 selecting, 335–337
 sequential access files, 327, 335
 storage formats, existing, 337
 strengths of files, 335
 weaknesses of files, 335–336
Object recognition, 404
Object-relational database management systems (ORDBMS), 332
 mapping problem domain objects to, 341–344
 using DAM classes, 358
Object-relational databases, 332, 335
Object storage optimization, RDBMS-based, 346–357
 data access speed, optimizing, 351–356
 data storage size, 356–357
 storage efficiency, optimizing, 347–351
Object wrapper, 270
Observation, 108
Occlusion, 403
OCL, see Object Constraint Language
OMG, see Object Management Group
On-demand training, 498
One-on-one training, 496
Online documentation, 463
Online support, 498
Online versus batch processing, 387–389
On-screen list box, 391
OODBMS, see Object-oriented database management systems
OOPL, see Object-oriented programming language
OOSAD, see Object-oriented systems analysis and design
Open-ended questions, 97, 98
OPEN process (Object-oriented Process, Environment, and Notation), 31
Operating system, 438
Operation, 165, 204
 constructor, 176
 destructor, 176
 query, 176
 update, 176
Operational costs, 47, 48
Operational requirements, 88, 360, 410
 maintainability requirements, 441, 442
 portability requirements, 441, 442
 synopsis, 448
 system integration requirements, 441, 442
 technical environment requirements, 441–442
 Operation call messages, 207
 Operations and support workflow (Unified Process), 32
 Optical character recognition, 389
 ORDBMS, see Object-relational database management systems
 Ordered sequential access files, 328
 Organizational feasibility, 51–53
 Organizational management, 52
 Outcome analysis, 95
 Output design, 392–395
 basic principles, 392–394
 media, 394–395
 types of output, 394
 Outsourcing, 270–272
 Overview information, 142
 Overview use case, 141
 Package(s)
 in class diagrams, 184
 communication diagram, 218
 in design model, 262–268
 in use-case diagram, 127
 Package diagrams
 creating, 266
 dependency relationship in, 262, 263
 in design model, 262–268
 guidelines for creating, 264–265
 syntax for, 263
 verification and validation of, 266–268
 Packaged software, 269–270
 Page-Jones, Meilir, 291
 Paper-based documentation, 462
 Paperless office, 432
 Parallel conversion, 486
 Parallel development, 8
 Parallelization, process, 94
 Parkinson’s Law, 440
 Partial dependency, 349
 Partitions, 258–259
 Patterns, 294
 for object identification, 169–172
 Perceived benefits, 491
 Perceived costs, 491
 Pereira, Arun, 407, 408
 Performance requirements, 88, 360, 410
 availability and reliability requirements, 443–444
 capacity requirements, 443
 speed requirements, 442, 443
 synopsis, 448
Performance testing, 477
Person, 164, 165
Person-hours multiplier (PHM), 63
Phase(s)
 construction, 27
 elaboration, 27
 inception, 26–27
 production, 31–32
 transition, 27–28
 of Unified Process, 26–28
Phased conversion, 487, 489
Phased development, 9, 10
Physical architecture layer, 261–262
Physical architecture layer design, 418–449
 architectural components, 419
 client-based architectures, 420–421
 client–server architectures, 421–422
 client–server tiers, 422–424
 cloud computing, 426–428
 Green IT, 431–432
 hardware and software specification, 438–440
 infrastructure design, 432–438
 Internet of Things (IoT), 428–431
 nonfunctional requirements and, 440–449
 selecting, 424–425
 server-based architectures, 420
 ubiquitous computing, 428
 verifying and validating, 449
Physical models, 120
Pilot conversion, 487, 489
Pink, D. H., 74, 76
Planning phase. See also Systems development life cycle (SDLC)
 project initiation, 3
 project management, 3
Platform as a Service (PaaS), 427
Pointer, 328
Political and cultural requirements, 361
Political requirements, 88
Political strategy, 494, 495
Polychronic time, 408, 461, 483
Polymorphism, 22, 282–284, 468
Pop-up menu, 385
Portability requirements, 441, 442
Portfolio management, 53
Postcondition, 306
Post-implementation activities, 482
 project assessment, 500–501
 system maintenance, 498–500
 system support, 497–498
Post-session report (JAD session), 104
Potential adopters, 490
Power distance, 408, 484
Precondition, 306
Presentation logic, 419
Presenters, 153
Present value (PV), defined, 51
Primary actor, 142
Primary insurance carrier, 179
Primary key, 330, 349
Private attribute, 176
Private clouds, 426
Probing question, 97, 98
Problem analysis, 92
Problem-domain classes to implementation languages, mapping, 300–304
 in object-based language, 301–303
 in single-inheritance language, 301
 in traditional language, 304
Problem domain layer, 260
Problem domain models, 120
Problem domain objects to object persistence formats, 337–346
 to OODBMS format, mapping, 338–341
 to ORDBMS format, mapping, 341–344
 to RDBMS format, mapping, 344–346
Problem management (JAD sessions), 105
Problem report, 498
Procedural standards, 78
Procedures manuals, 463
Process-centered methodology, 5
Process integration, 94
Process models, 120
Process parallelization, 94
Production phase (Unified Process), 31–32
Program design, 4
Program Evaluation and Review Technique (PERT), 57–58
Program log, 458
Programmers, 18, 457–461
Programming management
 activity coordination, 458
 cultural issues, 460–461
 programmers, assigning, 457–458
 schedule management, 458–459
Project, 42
Project assessment, 497
 project team review, 500–501
 system review, 501
Project binder, 78
Project charter, 76
Project effort estimation, 58–63
Project identification, 43–45
 system request, 44
Project initiation, 3
Project management, 3, 41–80, 42, 273
 environment and infrastructure management, 76–79
 feasibility analysis in, 45–53
 project effort estimation, 58–63
 project identification in, 43–45
 project selection, 53–54
 staffing in, 71–76
 traditional tools for, 54–58
 workplan, creating/managing, 63–71
Project management tools, traditional, 54–58
Gantt chart, 56–57
 network diagram, 57–58
 work breakdown structure (WBS), 55–56
Project management workflow (Unified Process), 29–30, 33
Project manager, 3, 19, 42
Project plan, 3
Project size, 46
Project skills, 272–273
Project sponsor, 3, 42, 43
Project team(s), 274
Project team review, 500–501
Protected attribute, 176
Prototyping, 9–11
 throwaway, 11–12
Public attribute, 176
Public clouds, 426
Public key, 446
Public key infrastructure (PKI), 446
Pull approaches (social media), 399
Push approaches (social media), 399

Query operation, 178
Questionnaires, 104–106
 administration of, 106
 designing, 105
 participants selection, 104–105

RAD, see Rapid application development
Radio button, 391
Random access files, 328, 335
Range check, 392
Rapid application development (RAD), 8–12
 phased development, 9
 prototyping, 9–11
 throwaway prototyping, 11–12
Rational Software, 34
Raw data, 356
RDBMS, see Relational database management systems
Ready adopters, 495
Real benefits, 491
Real costs, 491
Real-time reports, 393
Real use case, 141, 373, 387
Recorders, 153
Redefinition, 284, 285
Reference documents, 463
Referential integrity, 330, 331
Refinement
 in factoring, 258
Regular meetings, 458
Reich, Robert, 74
Relational database, 330–332
Relational database management systems (RDBMS), 330
 data access speed, optimizing, 351–356
 data storage size, 356–357
 mapping problem domain objects to, 344–346
 referential integrity, referencing, 330
 storage efficiency, optimizing, 347–351
Relationships
 aggregation, 166
 association, 142, 166
 extend, 144
 generalization, 144, 165–166
 include, 144
 sets, 333
Reliability, system, 17
Reluctant adopters, 495
Repeating groups (fields), 333
Reporting structure, 73
Report usage, 393
Request for information (RFI), 274
Request for proposal (RFP), 274
Request for quote (RFQ), 274
Requirements. See also specific types of requirements
 business, 44, 87
 functional, 87
 gathering, 4
 system, 87
Requirements analysis strategies, 92–95
 activity-based costing, 94
 activity elimination, 95
 duration analysis, 93–94
informal benchmarking, 94
outcome analysis, 95
problem analysis, 92
root cause analysis, 92–93
technology analysis, 95
Requirements determination, 86–91
defining requirement, 87–89
determining requirements, 89–91
purpose, 87
real-world problems with, 91
requirements definition creation, 91
requirements definition report, 89
Requirements documentation techniques, alternative
concept maps, 110–112
user stories, 112
Requirements-gathering techniques, 95–110
combining, 109–110
document analysis, 106–107
interviews, 96–100, 101
joint application development (JAD), 100–104
observation, 108
questionnaires, 104–106
selection of, 108–110
Requirements workflow (Unified Process), 28
Resistance to change, 490–491
Resistant adopters, 495
Resource allocation, 492
Responsibilities
CRC cards, 172
doing, 172
knowing, 172
Return message, 207
Return on investment (ROI), 47, 50
defined, 51
Reuse, 469
Rewards, 492
RFI, see Request for information
RFP, see Request for proposal
RFQ, see Request for quote
Risk
assessment, 70, 71
in conversion strategy, 488–489
management, 70–71
Role-playing CRC cards, 110, 141
with use cases, 174–175
Root cause analysis, 92–93
Rose, David, 430
Round-robin approach, 169
Round-trip engineering, 77
Rumbaugh, James, 24, 25, 34
Structural model, 163, 164
 balancing behavioral model and, 251–254
 balancing functional models and, 242–243
 and functional model, relationships, 244
Structural modeling, 163–197
 attributes, 165
 class diagrams, 176–185
 classes, 164–165
 CRC cards, 172–175
 creating, 185–194
 object identification, 166–172
 operations, 164–165
 primary purposes of, 164
 relationships, 165–166
 verifying and validating, 194–197
Structured design, 6–8
 parallel development, 8
 waterfall development, 7
Structured English, 316
Structured interviews, 98
Structured query language (SQL), 332, 419
Stubs, 471
Subclass
 in behavioral state machines, 225
 in generalization relationships, 165
 in object-oriented systems, 21
Subflows, 144
Subject boundary, 122, 125–126
Subject–Verb–Direct-Object–Preposition–Indirect object (SVDPI), 186
Submenus, 384
Substitutability, 166
Summary report, 395
Support plan, 5
Swimlane, 132, 136, 317
Symmetric encryption algorithm, 446
Synopsis
 cultural and political requirements, 446
 operational requirements, 448
 performance requirements, 448
 security requirements, 449

Smart cards, 389
Snyder, Alan, 289
Social media, 398–400
Social networking platforms, 261
Software as a Service (SaaS), 427
Software quality, 88
Software testing, 467
SOP, see Standard operating procedures
Source data automation, 389
Space, 370
Special issues, 44
Specialized actor, 122
Specification requirement standards, 78
Speed of messages, 408, 461, 483
Speed requirements, 442, 443
Sponsors, 489, 490
SQL, see Structured query language
Staffing, 71–76. See also Project management
 conflict management, 76
 jelled team, 71–72
 motivation, 75–76
 staffing plan, 73–74
Stakeholder analysis, 52
Stakeholders, 142
Standard operating procedures (SOP), 492
Standards
 coding, 78
 documentation, 78
 environment and infrastructure management, 77–78
 procedural, 78
 specification requirement, 78
 user interface design, 78
State, 221
 black hole, 226
 defined, 222, 223
 final, 222
 initial, 222
 miracle, 226
State symbol, 222
Static binding, 23
Static model, 176
Static structure diagram, 184
Steering committee, 3
Stereotype, 375, 432
Storage efficiency, optimizing, 347–351
Storage formats, 337
Storyboard, 377–379
Story cards, 112
Strategic alignment, 52
Stress tests, 477
System complexity, 16–17
System documentation, 462
System integration requirements, 441, 442
System interface testing, 475
System maintenance, 497, 498–500
System proposal, 4, 113
System reliability, 17
System request, 3, 42, 44, 45, 499
System requirements, 87
System review, 501
Systems analyst, 18
 business analyst, 18
 change management analyst, 19
 infrastructure analyst, 18–19
 primary objective of, 2
 project manager, 19
 roles and skills, 17–19
Systems development life cycle (SDLC), 2–5
 analysis phase, 3–4
 defined, 1
 design phase, 4
 implementation phase, 4–5
 planning phase, 3
Systems integration, 270
System specification, 4
System support, 497–498
System tests, 472, 476–477
System users, 52, 53
System value, 444–445
System value estimates, defined, 445

T

Table scan, 354
Tab menu, 385
Tangible benefits, 47, 48
Tangible value, 44
Task, 54
Task information, 54
Task lists, 112
Teams
 autonomy for, 76
 complexity with, 73
 dysfunctional, 72
 jelled, 72
 leaders of, 76
 scrum, 15
Technical complexity factors (TCF), 59, 62
Technical environment requirements, 441–442
Technical factor value (TFactor), 59, 62
Technical feasibility, 45–46
Technical lead, 74
Technical risk analysis, 46
Technical skills, 74
Technical writer, 18
Technology
 analysis, 95
 familiarity with, 16
Temporal trigger, 142
Temporary object, 205
Testing workflow (Unified Process), 29
Test planning, 469–471
Tests, designing, 467–477
 acceptance tests, 477
 integration tests, 475–476
 and object orientation, 468–469
 system tests, 476–477
 test planning, 469–471
 unit tests, 471–475
Test specifications, 471
Test workflow (Unified Process), 32
Text box, 390
Textual analysis, 166–167
Thick client, 421
Thin client, 421
Third normal form (3NF), 351
Three-tiered architecture, 422
Throwaway prototyping, 11–12, 110
Tidwell, Jenifer, 396, 397
Time-and-arrangements contract, 271
Timeboxing, 68–69
Time dimension, 461
Time frame, 273
Time in conversion strategy, 489
Timesharing, 427
To-be system, 3, 86
Tool bar, 385
Top-down interviews, 98, 99
Total cost of ownership, 422
Touchscreen, 397
Traceability of artifacts, 457
Trade-offs, 54
Traditional language, 304
Training (Change management), 495–497
Training plan, 5
Transaction files, 328
Transaction processing, 336, 387
Transition phase (Unified Process), 27–28
Transition process, 222, 223, 375, 491
Transitive dependency, 351
Index

<table>
<thead>
<tr>
<th>Trigger</th>
<th>overview information in, 142</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>process documentation with, 140–152</td>
</tr>
<tr>
<td></td>
<td>relationships, 142–144</td>
</tr>
<tr>
<td>Turnaround document</td>
<td>395</td>
</tr>
<tr>
<td>Tutorials</td>
<td>463</td>
</tr>
<tr>
<td>Two-tiered architecture</td>
<td>422</td>
</tr>
<tr>
<td>Type of information</td>
<td>(requirements analysis), 108–109</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>Ubiquitous computing</th>
<th>428–431</th>
</tr>
</thead>
<tbody>
<tr>
<td>UML, see Unified Modeling Language</td>
<td>34–36, 119</td>
</tr>
<tr>
<td>Unadjusted Actor Weight Total (UAW), 59</td>
<td></td>
</tr>
<tr>
<td>Unadjusted use-case points (UUCP), 59</td>
<td></td>
</tr>
<tr>
<td>Unadjusted use-case weight total (UUCW), 59</td>
<td></td>
</tr>
<tr>
<td>Uncertainty avoidance, 409, 484</td>
<td></td>
</tr>
<tr>
<td>Unified Modeling Language (UML), 34–36, 119</td>
<td></td>
</tr>
<tr>
<td>objective of, 34</td>
<td></td>
</tr>
<tr>
<td>UML 2.5 diagram summary, 35</td>
<td></td>
</tr>
<tr>
<td>Unified Process, 25–34</td>
<td></td>
</tr>
<tr>
<td>documentation in, 79</td>
<td></td>
</tr>
<tr>
<td>enhanced, 31, 33, 64</td>
<td></td>
</tr>
<tr>
<td>extensions to, 30–34</td>
<td></td>
</tr>
<tr>
<td>phases, 26–28</td>
<td></td>
</tr>
<tr>
<td>workflows, 28–30</td>
<td></td>
</tr>
<tr>
<td>Unit tests, 471–475</td>
<td></td>
</tr>
<tr>
<td>Unordered sequential access file, 328</td>
<td></td>
</tr>
<tr>
<td>Unstructured interviews, 98</td>
<td></td>
</tr>
<tr>
<td>Update anomaly, 347</td>
<td></td>
</tr>
<tr>
<td>Update operation, 179</td>
<td></td>
</tr>
<tr>
<td>Usability testing, 476</td>
<td></td>
</tr>
<tr>
<td>Use case, 24, 120</td>
<td></td>
</tr>
<tr>
<td>behavioral models, 203</td>
<td></td>
</tr>
<tr>
<td>complex, 59</td>
<td></td>
</tr>
<tr>
<td>defined, 59, 120</td>
<td></td>
</tr>
<tr>
<td>detail, 141</td>
<td></td>
</tr>
<tr>
<td>essential, 141</td>
<td></td>
</tr>
<tr>
<td>identifying, 126–127</td>
<td></td>
</tr>
<tr>
<td>overview, 141</td>
<td></td>
</tr>
<tr>
<td>real, 141</td>
<td></td>
</tr>
<tr>
<td>role-playing CRC cards with, 174–175</td>
<td></td>
</tr>
<tr>
<td>simple, 59</td>
<td></td>
</tr>
<tr>
<td>testing, 472, 475</td>
<td></td>
</tr>
<tr>
<td>types of, 141</td>
<td></td>
</tr>
<tr>
<td>in use-case diagrams, 122, 124</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use-case description</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>creating, 146–152</td>
<td></td>
</tr>
<tr>
<td>elements of, 141–145</td>
<td></td>
</tr>
<tr>
<td>flow of events, 144</td>
<td></td>
</tr>
<tr>
<td>guidelines for creating, 145–146</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User effort minimization</th>
<th>372</th>
</tr>
</thead>
<tbody>
<tr>
<td>User involvement, 109</td>
<td></td>
</tr>
<tr>
<td>User participation, 53</td>
<td></td>
</tr>
<tr>
<td>User requirements, clarity of, 16</td>
<td></td>
</tr>
<tr>
<td>User stories, 112</td>
<td></td>
</tr>
<tr>
<td>Use scenarios, 372</td>
<td></td>
</tr>
<tr>
<td>Utility classes, 260</td>
<td></td>
</tr>
</tbody>
</table>
Validation
 of analysis models, 242–257
 of behavioral models, 233–234
 of class and method design, 319–321
 of data management layer design, 361–362
 of functional modeling, 154–156
 of package diagrams, 266–268
 of physical architecture layer design, 449
 of structural modeling, 194–197
Validation of input, 391–392
Value-added contract, 271
Verification
 of analysis models, 242–257
 of behavioral models, 233–234
 of class and method design, 319–321
 of data management layer design, 361–362
 of functional modeling, 154–156
 of package diagrams, 266–268
 of physical architecture layer design, 449
 of structural modeling, 194–197
Version 2.5 (UML), 34, 35
Virtualization, 426
Virtual memory, 426
Virtual reality (VR), 404
Virus control, 477
Virus control requirements, 447
defined, 445
Visibility
 of attribute, 176
 of methods, 282
 schedule, 17
Visualization, 147
Volume tests, 477
Volumetrics, 356

W
Walkthrough, 108
evaluation, 381
verification and validation through, 154–155
Waterfall development, 7
WBS, see Work breakdown structure
Web services, 270, 426
White-box testing, 472, 473
White space, 370
Wholes, 166
Whole-system conversion, 487
Windows layout diagram, 372, 377
Windows navigation diagram (WND), 372, 375
Workaround, 270
Work breakdown structure (WBS), 55–56
 evolutionary, 63–67
Workflow modifications and extensions
 configuration and change management workflow, 33–34
 deployment workflow, 32
 environment workflow, 32
 project management workflow, 33
 test workflow, 32
Workflows
 engineering, 28–29
 supporting, 29–30
 in Unified Process, 28–30
Workplan creation and management, 63–71. See also Project management
 estimates, refining, 69–70
 evolutionary work breakdown structures, 63–67
 iterative workplans, 63–67
 risk management, 70–71
 scope management, 67–68
 timeboxing, 68–69

X
XP, see Extreme programming

Y
Yourdon, Edward, 154, 286, 289
Yo-yo problem, 476