Contents

Preface xv
Acknowledgments xxi

Part I The Dynamics of Neurological Disease 1

1 The Dynamics of Neurological Disease: Current Views and Key Issues 3
 1.1 Introduction 4
 1.2 The Complexity of Human Neurological Diseases 4
 1.3 The Nervous System as an Archetypical Complex System 9
 1.4 CNS Signaling Failures: Implications for Neurological Disease 14
 1.5 History and Key Characteristics of the Age-Dependent Neurological Diseases 14
 1.6 The Fractal Nature of Complexity in the CNS 16
Endnotes 17

2 Clinical and Economic Features of Age-Related Neurological Diseases 19
 2.1 Introduction 19
 2.2 Parkinson's Disease 19
 2.2.1 Neuropathological Features 20
 2.2.2 The Parkinsonisms 23
 2.2.3 Rating Schemes 23
 2.2.3.1 Hoehn and Yahr Scale 23
 2.2.3.2 Modified Hoehn and Yahr Scale 24
 2.2.3.3 Schwab and England Activities of Daily Living Scale 24
 2.2.3.4 Unified Parkinson's Disease Rating Scale 24
 2.2.4 Progression 25
 2.2.5 Other Organ System Involvement 25
 2.2.6 Parkinson's Disease Clusters 25
 2.2.7 Risk Factors 25
 2.2.8 Current Treatment Options 26
 2.2.9 Animal Models 26
 2.2.10 Parkinson's Disease in Relation to Other Neurological Diseases 27
 2.2.11 Demographics 27
2.2.12 Incidence and Prevalence 27
2.2.12.1 United States and Canada 27
2.2.12.2 Worldwide 28
2.2.13 Changes in Incidence/Prevalence over the Last 30 Years 28
2.2.13.1 United States and Canada 28
2.2.14 Costs 28
2.2.14.1 Cost Per Patient 28
2.2.14.2 Societal Costs 28
2.2.14.3 Projected Cost Increases 29
2.3 Amyotrophic Lateral Sclerosis 29
2.3.1 Loci of Onset 29
2.3.2 Neuropathological Features 30
2.3.3 Rating Schemes 32
2.3.3.1 El Escorial Diagnostic Criteria 32
2.3.3.2 ALS Functional Rating Scale 32
2.3.3.3 Forced Vital Capacity 32
2.3.4 Progression 36
2.3.5 Rates of Disease Progression 36
2.3.6 Age of Onset and Sex Distribution 36
2.3.7 Other Organ System Involvement 36
2.3.8 ALS Clusters 36
2.3.9 Risk Factors 37
2.3.10 Current Treatment Options 37
2.3.11 ALS in Relation to Other Neurological Diseases and Disorders: Cognitive Impairment 37
2.3.12 ALS and Other CNS Regions 38
2.3.13 Animal Models 38
2.3.14 Incidence and Prevalence 38
2.3.14.1 United States and Canada 38
2.3.15 Changes in Incidence/Prevalence over the Last 30 Years 39
2.3.15.1 United States 39
2.3.15.2 Canada 39
2.3.15.3 Worldwide 39
2.3.16 Costs 39
2.3.16.1 Cost Per Patient 39
2.3.16.2 Societal Costs 40
2.4 Alzheimer’s Disease 40
2.4.1 Neuropathological Features 41
2.4.2 Rating Schemes 42
2.4.2.1 Global Deterioration Scale 42
2.4.2.2 Functional Assessment Staging 43
2.4.2.3 Clinical Dementia Rating 43
2.4.3 Other Organ System Involvement 43
2.4.4 Alzheimer’s Disease Clusters 44
2.4.5 Risk Factors 44
2.4.6 Current Treatment Options 44
2.4.7 Demographics 44
2.4.8 Incidence and Prevalence 45
Contents

5.4.4 Summary 86
5.5 Genetic Mutations Linked to ALS 86
5.5.1 SOD1 88
5.5.2 TARDBP 90
5.5.3 FUS 90
5.5.4 UBQLN2 91
5.5.5 C9orf72 91
5.5.6 Summary 92
5.6 Genetic Mutations Linked to Alzheimer’s Disease 92
5.6.1 APP 92
5.6.2 Presenilin 1 (PSEN1) 94
5.6.3 Presenilin 2 (PSEN2) 94
5.7 Genes and Neurological Disease: Some General Considerations 94

6 Environmental Determinants of Neurological Disease and Gene–Toxin Interactions 97

6.1 Introduction 98
6.2 Toxins and Neurological Diseases 98
6.2.1 Pesticides, etc. 99
6.2.2 Toxic Metals 99
6.2.3 Amino Acids, Natural and Human-Made 100
6.2.4 Steryl Glucosides 100
6.2.5 Bisphenols 100
6.2.6 Summary 100
6.3 Aluminum and Neurological Disease 101
6.3.1 Some Background to Aluminum Chemistry and the Intersection of Aluminum with the Biosphere 102
6.4 Single- vs. Multiple-Hit Models of Neurological Disease: Gene–Toxin Interactions 114
6.5 Genetic Susceptibility Factors 117
6.5.1 Toxin-Triggering Genetic Alterations and Gene Expression Levels 118
6.5.2 miRNA Alterations in Gene Expression 122
6.6 Biosemiosis (Part 2) 123
6.6.1 Aluminum and Failed Biosemiosis 123
6.7 Gene–Toxin Interactions and Cascading Failures 124
6.8 Genes and Toxins in Neurological Disease: Penultimate Thoughts 124
6.9 And, Finally, the Microbiome 125
Endnote 125

7 The Mystery and Lessons of ALS-PDC 127
7.1 Introduction 127
7.2 Neurological Disease Clusters and ALS-PDC 128
7.3 History and Features of ALS-PDC 129
7.4 Cycad and ALS-PDC 135
7.4.1 Human Consumption of Cycad 137
7.4.2 Cycad’s Links to ALS-PDC 138
7.5 Amino Acid Toxins in Cycad and ALS-PDC 140
7.6 Non-Amino Acid Toxins Linked to ALS-PDC 143
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7 Aluminum and Ionic Etiologies for ALS-PDC</td>
<td>147</td>
</tr>
<tr>
<td>7.8 Still Other Molecules Causal to ALS-PDC</td>
<td>148</td>
</tr>
<tr>
<td>7.9 What is the Current View on the Importance of ALS-PDC?</td>
<td>148</td>
</tr>
<tr>
<td>7.10 Complexity of Neurological Diseases as Viewed from Guam</td>
<td>151</td>
</tr>
<tr>
<td>Endnote</td>
<td>151</td>
</tr>
</tbody>
</table>

Part II Age and Time Lines of Neurological Disease 153

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Neurological Disease Models and their Discontents: Validity, Replicability, and the Decline Effect</td>
<td>155</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>155</td>
</tr>
<tr>
<td>8.2 Modeling Human Neurological Diseases: Possibilities and Pitfalls</td>
<td>156</td>
</tr>
<tr>
<td>8.3 Considerations Regarding Model Systems</td>
<td>158</td>
</tr>
<tr>
<td>8.4 Model Systems and their Discontents</td>
<td>159</td>
</tr>
<tr>
<td>8.4.1 Age and Time in In Vivo Models as a Function of Species</td>
<td>164</td>
</tr>
<tr>
<td>8.4.2 Replicability and the Problems Created by the Absence of the Same</td>
<td>165</td>
</tr>
<tr>
<td>8.4.3 The “Decline Effect”</td>
<td>167</td>
</tr>
<tr>
<td>8.5 Is There an Ideal Model for Studying Neurological Diseases? General Considerations</td>
<td>168</td>
</tr>
<tr>
<td>8.6 Specific Considerations for Ideal Model-System Approaches in ALS</td>
<td>170</td>
</tr>
<tr>
<td>8.6.1 ALS Considered from the Perspective of Model Systems: Lost in Translation</td>
<td>171</td>
</tr>
<tr>
<td>8.7 Alternative Views of Neurological Disease and Model-Systems Approaches: Multiple-Hit Etiologies</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 The Progression and the Time Line of Neurological Disease</td>
<td>175</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>9.2 Creating Disease Time Lines: The Framingham Study</td>
<td>176</td>
</tr>
<tr>
<td>9.3 Time Lines of Neurological Disease</td>
<td>176</td>
</tr>
<tr>
<td>9.3.1 Braak Staging for Parkinson’s Disease</td>
<td>178</td>
</tr>
<tr>
<td>9.3.2 Braak Staging for Alzheimer’s Disease</td>
<td>179</td>
</tr>
<tr>
<td>9.3.3 Problems in Post-Clinical Staging</td>
<td>179</td>
</tr>
<tr>
<td>9.3.4 Staging of Clinical Features and Pathology</td>
<td>180</td>
</tr>
<tr>
<td>9.4 Back to a Multiple-Hit Disease Consideration</td>
<td>180</td>
</tr>
<tr>
<td>9.5 Haecceity and Quiddity in Context to Biosemiosis and Multiple Hits</td>
<td>181</td>
</tr>
<tr>
<td>9.6 Some Final Thoughts on Time Lines of Neurological Disease: Differentiation and Neurogenesis</td>
<td>182</td>
</tr>
<tr>
<td>Endnote</td>
<td>183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Development, Aging, and Neurological Disease</td>
<td>185</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>10.2 The Fetal Basis of Adult Disease Hypothesis</td>
<td>186</td>
</tr>
<tr>
<td>10.3 ASD as a Developmental Neurological Disorder</td>
<td>188</td>
</tr>
<tr>
<td>10.3.1 Etiology of ASD</td>
<td>189</td>
</tr>
<tr>
<td>10.3.2 Juvenile Schizophrenia</td>
<td>192</td>
</tr>
<tr>
<td>10.3.3 Juvenile-Onset Forms of ALS and Other Neurological Disorders</td>
<td>192</td>
</tr>
<tr>
<td>10.4 Toxins and Developmental CNS Disorders</td>
<td>193</td>
</tr>
</tbody>
</table>
10.5 Developmental versus Mature CNS Disorders 193

Endnotes 194

Part III Interactions and Synergies in Neurological Disease 195

11 CNS–Immune System Interactions and Autoimmunity 197

11.1 Introduction 198

11.2 Immunity and the CNS, an Introduction to a Complex Topic 198

11.2.1 Innate versus Adaptive Immune Systems and their Roles in CNS Development 198

11.2.2 The Role of Microglia in Neurological Diseases 201

11.3 CNS–Immune System Interactions: More Detailed Considerations 202

11.3.1 Pathogen and Aluminum Activation of the Immune System in Relation to the CNS 203

11.3.2 HPA–Immune System Interactions 203

11.4 Autoimmunity 205

11.4.1 Bidirectional Role of Immune System–CNS Interactions and Autoimmunity during Neuronal Development 206

11.4.2 Autoimmunity and Neurological Diseases 207

11.4.3 The Age-Related, Progressive Neurological Diseases and Autoimmunity 208

11.5 Immune System Signaling Errors and Autoimmunity in ASD and Other Neurological Disorders 208

11.5.1 Aluminum's Role in Immune-System Signaling Errors 209

11.6 Laterality and Autoimmunity in Neurological Diseases 212

11.7 Other System Disorders in Neurological Diseases: More Evidence for Autoimmunity? 215

11.8 Are There Infectious Disease Links to Neurological Diseases? 215

12 The Impact of Synergy of Factors in Neurological Disease 219

12.1 Introduction 219

12.2 Synergistic and Additive Effects in General and as Applied to CNS Diseases 219

12.3 Gene–Environment (Toxin) Interactions in Non-neuronal Systems 221

12.3.1 Genetic Polymorphism and Alcoholism 221

12.3.2 Genetic Polymorphism and Lactose Intolerance 222

12.3.3 Genetic Polymorphism and Gluten Intolerance 223

12.4 Gene–Environment (Toxin) Interactions in Neurological Disease 224

12.4.1 Summary of Gene–Toxin Interactions in Relation to Neurological Disease 225

12.5 Levels of Complexity in Gene–Toxin Interactions: Implications for Current and Future Therapeutics 226

Part IV Transition and Politics in Neurological Disease 229

13 The Current Status of Neurological Disease Treatments 231

13.1 Introduction 231
16.7.3 The Role of Scientists in the Politics of Neurological Disease
Prophylaxis 288
Endnotes 290

Glossary 291
References 301
Index 355