CHAPTER 2 PRINCIPLES OF TOTAL REFLECTION XRF 79
2.1 Interference of X-Rays 80
 2.1.1 Double-Beam Interference 80
 2.1.2 Multiple-Beam Interference 84
2.2 X-Ray Standing Wave Fields 88
 2.2.1 Standing Waves in Front of a Thick Substrate 88
 2.2.2 Standing Wave Fields Within a Thin Layer 94
 2.2.3 Standing Waves Within a Multilayer or Crystal 100
2.3 Intensity of Fluorescence Signals 100
 2.3.1 Infinitely Thick and Flat Substrates 102
 2.3.2 Granular Residues on a Substrate 104
 2.3.3 Buried Layers in a Substrate 106
 2.3.4 Reflecting Layers on Substrates 108
 2.3.5 Periodic Multilayers and Crystals 110
2.4 Formalism For Intensity Calculations 112
 2.4.1 A Thick and Flat Substrate 113
 2.4.2 A Thin Homogeneous Layer on a Substrate 116
 2.4.3 A Stratified Medium of Several Layers 120
References 123

CHAPTER 3 INSTRUMENTATION FOR TXRF AND GI-XRF 126
3.1 Basic Instrumental Setup 128
3.2 High and Low-Power X-Ray Sources 130
 3.2.1 Fine-Focus X-Ray Tubes 131
 3.2.2 Rotating Anode Tubes 132
 3.2.3 Air-Cooled X-Ray Tubes 133
3.3 Synchrotron Facilities 134
 3.3.1 Basic Setup with Bending Magnets 136
 3.3.2 Undulators, Wigglers, and FELs 137
 3.3.3 Facilities Worldwide 139
3.4 The Beam Adapting Unit 150
 3.4.1 Low-Pass Filters 150
 3.4.2 Simple Monochromators 155
 3.4.3 Double-Crystal Monochromators 157
3.5 Sample Positioning 160
 3.5.1 Sample Carriers 161
 3.5.2 Fixed Angle Adjustment for TXRF (“Angle Cut”) 162
 3.5.3 Stepwise-Angle Variation for GI-XRF (“Angle Scan”) 162
3.6 Energy-Dispersive Detection of X-Rays 164
 3.6.1 The Semiconductor Detector 165
 3.6.2 The Silicon Drift Detector 167
 3.6.3 Position Sensitive Detectors 169
3.7 Wavelength-Dispersive Detection of X-Rays 173
 3.7.1 Dispersing Crystals with Soller Collimators 176
 3.7.2 Gas-Filled Detectors 178
 3.7.3 Scintillation Detectors 182
3.8 Spectra Registration and Evaluation 183
 3.8.1 The Registration Unit 183
 3.8.2 Performance Characteristics 185
 3.8.2.1 Detector Efficiency 185
 3.8.2.2 Spectral Resolution 188
 3.8.2.3 Input–Output Yield 194
 3.8.2.4 The Escape-Peak Phenomenon 197
References 200

CHAPTER 4 PERFORMANCE OF TXRF AND GI-XRF ANALYSES 205
4.1 Preparations for Measurement 207
 4.1.1 Cleaning Procedures 207
 4.1.2 Preparation of Samples 211
 4.1.3 Presentation of a Specimen 215
 4.1.3.1 Microliter Sampling by Pipettes 216
 4.1.3.2 Nanoliter Droplets by Capillaries 217
 4.1.3.3 Picoliter-Sized Droplets by Inkjet Printing 218
 4.1.3.4 Microdispensing of Liquids by Triple-Jet Technology 220
 4.1.3.5 Solid Matter of Different Kinds 220
4.2 Acquisition of Spectra
 4.2.1 The Setup for Excitation with X-Ray Tubes
 4.2.2 Excitation by Synchrotron Radiation
 4.2.3 Recording the Spectrograms
 4.2.3.1 Energy-Dispersive Variant
 4.2.3.2 Wavelength-Dispersive Mode

4.3 Qualitative Analysis
 4.3.1 Shortcomings of Spectra
 4.3.1.1 Strong Spectral Interferences
 4.3.1.2 Regard of Sum Peaks
 4.3.1.3 Dealing with Escape Peaks
 4.3.2 Unambiguous Element Detection
 4.3.3 Fingerprint Analysis

4.4 Quantitative Micro- and Trace Analyses
 4.4.1 Prerequisites for Quantification
 4.4.1.1 Determination of Net Intensities
 4.4.1.2 Determination of Relative Sensitivities
 4.4.2 Quantification by Internal Standardization
 4.4.2.1 Standard Addition for a Single Element
 4.4.2.2 Multielement Determinations
 4.4.3 Conditions and Limitations
 4.4.3.1 Mass and Thickness of Thin Layers
 4.4.3.2 Residues of Microliter Droplets
 4.4.3.3 Coherence Length of Radiation

4.5 Quantitative Surface and Thin-Layer Analyses by TXRF
 4.5.1 Distinguishing Between Types of Contamination
 4.5.1.1 Bulk-Type Impurities
 4.5.1.2 Particulate Contamination
 4.5.1.3 Thin-Layer Covering
 4.5.1.4 Mixture of Contaminations
 4.5.2 Characterization of Thin Layers by TXRF
 4.5.2.1 Multifold Repeated Chemical Etching
 4.5.2.2 Stepwise Repeated Planar Sputter Etching

4.6 Quantitative Surface and Thin-Layer Analyses by GI-XRF
4.6.1 Recording Angle-Dependent Intensity Profiles 268
4.6.2 Considering the Footprint Effect 270
4.6.3 Regarding the Coherence Length 272
4.6.4 Depth Profiling at Grazing Incidence 274
4.6.5 Including the Surface Roughness 283
References 284

CHAPTER 5 DIFFERENT FIELDS OF APPLICATIONS 291
5.1 Environmental and Geological Applications 292
 5.1.1 Natural Water Samples 292
 5.1.2 Airborne Particulates 297
 5.1.3 Biomonitoring 302
 5.1.4 Geological Samples 306
5.2 Biological and Biochemical Applications 307
 5.2.1 Beverages: Water, Tea, Coffee, Must, and Wine 308
 5.2.2 Vegetable and Essential Oils 312
 5.2.3 Plant Materials and Extracts 312
 5.2.4 Unicellular Organisms and Biomolecules 315
5.3 Medical, Clinical, and Pharmaceutical Applications 317
 5.3.1 Blood, Plasma, and Serum 317
 5.3.2 Urine, Cerebrospinal, and Amniotic Fluid 320
 5.3.3 Tissue Samples 322
 5.3.3.1 Freeze-Cutting of Organs by a Microtome 322
 5.3.3.2 Healthy and Cancerous Tissue Samples 324
 5.3.4 Medicines and Remedies 327
5.4 Industrial or Chemical Applications 329
 5.4.1 Ultrapure Reagents 330
 5.4.2 High-Purity Silicon and Silica 331
 5.4.3 Ultrapure Aluminum 332
 5.4.4 High-Purity Ceramic Powders 334
 5.4.5 Impurities in Nuclear Materials 336
 5.4.6 Hydrocarbons and Their Polymers 336
 5.4.7 Contamination-Free Wafer Surfaces 338
 5.4.7.1 Wafers Controlled by Direct TXRF 340
5.4.7.2 Contaminations Determined by VPD-TXRF

5.4.8 Characterization of Nanostructured Samples

5.4.8.1 Shallow Layers by Sputter Etching and TXRF

5.4.8.2 Thin-Layer Structures by Direct GI-XRF

5.4.8.3 Nanoparticles by TXRF and GI-XRF

5.5 Art Historical and Forensic Applications

5.5.1 Pigments, Inks, and Varnishes

5.5.2 Metals and Alloys

5.5.3 Textile Fibers and Glass Splinters

5.5.4 Drug Abuse and Poisoning

References

CHAPTER 6 EFFICIENCY AND EVALUATION

6.1 Analytical Considerations

6.1.1 General Costs of Installation and Upkeep

6.1.2 Detection Power for Elements

6.1.3 Reliability of Determinations

6.1.4 The Great Variety of Suitable Samples

6.1.5 Round-Robin Tests

6.2 Utility and Competitiveness of TXRF and GI-XRF

6.2.1 Advantages and Limitations

6.2.2 Comparison of TXRF with Competitors

6.2.3 GI-XRF and Competing Methods

6.3 Perception and Propagation of TXRF Methods

6.3.1 Commercially Available Instruments

6.3.2 Support by the International Atomic Energy Agency

6.3.3 Worldwide Distribution of TXRF and Related Methods

6.3.4 Standardization by ISO and DIN

6.3.5 International Cooperation and Activity

References

CHAPTER 7 TRENDS AND FUTURE PROSPECTS

7.1 Instrumental Developments

7.1.1 Excitation by Synchrotron Radiation

7.1.2 New Variants of X-Ray Sources
7.1.3 Capillaries and Waveguides for Beam Adapting 438
7.1.4 New Types of X-Ray Detectors 442
7.2 Methodical Developments 445
 7.2.1 Detection of Light Elements 445
 7.2.2 Ablation and Deposition Techniques 449
 7.2.3 Grazing Exit X-Ray Fluorescence 452
 7.2.4 Reference-Free Quantification 459
 7.2.5 Time-Resolved In Situ Analysis 462
7.3 Future Prospects by Combinations 463
 7.3.1 Combination with X-Ray Reflectometry 464
 7.3.2 EXAFS and Total Reflection Geometry 466
 7.3.3 Combination with XANES or NEXAFS 468
 7.3.4 X-Ray Diffractometry at Total Reflection 480
 7.3.5 Total Reflection and X-Ray Photoelectron Spectrometry 486
References 491

INDEX 501