Index

a
actuators
antilock braking system (ABS) 8, 10, 11
magnetostrictive 28
pneumatic 28
shape memory alloy 28
solenoid 8, 28
analog-to-digit converter (ADC) 10, 26
quantization error 26
resolution 26
anti-lock braking systems (ABS)
anti-skid braking system 3
brake force 3
cornering force 4
deceleration sensor 5
electrical control unit (ECU) 7
hydraulic circuits 5
hydraulic control unit (HCU) 5
operation mode, valve
apply 5
hold 6
release 6
pump 5
slip rate 4
threshold control 8
valve
dump valve 5
isolation valve 5
wheel speed sensor 4

b
blocking
deadlock avoidance blocking 114, 115
direct blocking 114, 116, 117, 119
priority inheritance blocking 111, 114, 116, 118, 119
priority ceiling blocking 114, 116–119
time 86, 87, 103, 105, 111, 112, 116–119

c
closed-loop control 8
computation tree logic (CTL)
path quantifier 264
semantics 265–267
syntax 264, 265
temporal operator 264
concurrency 12, 127, 150, 198, 211, 222, 223, 240, 273
concurrent programming 127, 128
counters, see timers
critical sections 46, 56, 85, 99–119, 133–137, 142, 147, 255

d
deadlock 99, 102–104, 106, 109, 111, 114–116, 120, 122, 229, 233
digit-to-analog converter (DAC) 10, 26
Index

e
- embedded systems
 - large-scale 2
 - medium-scale 2, 19
 - non-real-time 2
 - real-time 2
 - small-scale 2

f
- ferryman puzzle 247, 248, 281–285
- field programmable gate arrays (FPGA) 19, 20
- files
 - access control 41
 - file systems 39–41
 - role-base access control (RBAC) 41
- finite state machines (FSM)
 - acceptors 181
 - deterministic finite automation (DFA) 181
 - Mealy machines 182, 184–188
 - Moore machines 182–184
 - non-deterministic finite automation (NDFA) 188
 - state diagram 179–180, 186, 198, 199, 216
 - state transition table 182, 187, 190

i
- induction effect 27
- input/output (I/O) interface
 - analog 26
 - asynchronous 46, 47
 - device controller 41
 - direct memory access (DMA) 41
 - memory-mapped 27
 - port-mapped 27
 - synchronous 47
- interprocess communication (IPC)
 - message queues 36, 148–155
 - named pipes 36
 - pipes 36, 148
 - shared memory 36, 148, 155–161
 - signals 36, 162–168
 - sockets 36, 148
 - interrupts
 - interrupt service routine (ISR) 39, 44
 - vector 39
 - instruction set
 - complex instruction set computing (CISC) 22
 - reduced instruction set computing (RISC) 22

k
- Kripke structure 259

l
- least significant bit 26
- linear temporal logic (LTL)
 - computation path 256, 258, 260–262
 - formula 256–258, 261–264, 268
 - operators 256
 - parse tree 257–258
 - semantics 258
 - syntax 256, 257

m
- memory
 - address
 - logical 36
 - physical 36
 - virtual 36, 38, 157
 - byte-addressable 36
 - cache 24, 25
 - cell 23
 - flash 23
 - fragmentation 38
 - locking 47
 - paged allocation 38
 - partitioned allocation 38
 - RAM 19, 21, 24
 - DRAM 24
Index 307

SDRAM 24
SRAM 24
ROM
 EEPROM 23
 EPROM 23
 PROM 23
single contiguous allocation 38
virtual memory 36, 158
microcontrollers 2, 13, 17, 19, 26, 42
model checker 254, 269, 281
model checking 253, 254, 269
multitasking 34, 39, 162

n
New Symbolic Model Verifier (NuSMV)
 asynchronous systems 273
 counter example 254, 277, 284
 fairness 273, 274, 288
 modules 269, 272
 simulation 278
 SMV program 269–274, 281, 282
 specification 254, 261, 263, 265, 268
 traces 276, 278

o
operating systems (OS)
 kernel 33, 34, 36, 42–48
 system call 34, 35, 39, 40, 43, 45, 157
 system mode 33, 34
 user mode 33, 34, 48

p
parallel programming 128
Petri nets
 boundedness 229
 coverability graph 227–229
 firing rules 221, 222, 224, 226, 234, 243
 input function 220
 liveness 229, 230
 markings 220–244
 ω-markings 226–229
 output function 220
 places 219–222
 reachability 227
 graph 227, 228
 tree 227, 228
 safeness 229
 S-invariants 230, 232, 233
 siphons 233, 234
 T-invariants 230–232
 tokens 219–222
 transitions 219–222
 traps 233, 234
 piezoelectric effect 28
POSIX
 specified real-time services 42–48
 threads 128–148
power conservation
 adaptive voltage scaling (AVS) 302
 dynamic frequency scaling (DFC) 301
 dynamic power switching (DPS) 302
 dynamic voltage scaling (DVS) 301
predictability 12
priority ceiling 112–122
priority inversion 46, 57, 85, 86, 99, 101–122
processes
 lightweight 34
 multithreaded 34
 process identifier 35
 single-threaded 34
processors
 architectures
 Harvard 21
 von Neumann 21
 application specific integrated circuits (ASIC) 19
 application specific instruction set processors (ASIP) 20
digit signal processors (DSP) 20
Index

processors (contd.)
 microprocessors
 arithmetic logic unit 17
 instruction decoder 17
 program counter 18
 registers 17
 multi-core 20, 21
proportional–integral–derivative (PID) controller
 derivative control 9
 integral control 9
 proportional control 9
propositional logic
 operators 256
 truth table 256

race condition 133, 163, 298, 299
reactive systems 2, 179, 253
real-time computation tree logic (RTCTL) 279–281
real-time computing constraints 1
real-time operating systems (RTOS)
 board support package 42
 examples 48–50
 dispatcher 45
 preemption 44, 56, 133
 real-time kernel 42, 162
real-time systems
 deterministic systems 59
 hard 13
 real-time constraint 13, 33, 42, 54
 soft 13
reliability
 mean time between failures (MTBF) 294
 probability of failure on demand (POFOD) 294
 rate of occurrence of failure (ROCOF) 294
resources
 access control
non-preemptive critical section
 protocol 103–106
priority ceiling protocol 111–116
priority inheritance protocol 106–111
stack-sharing priority-ceiling protocol 119–122
operation
 lock 100
 unlock 100
requirement specification 100, 101
resource-constrained environments 11

s
safety 13, 300, 301
schedulers 35, 39, 42, 44, 45
schedules
 feasible 59
 optimal 59
scheduling
 acceptance test 68
 clock-driven
 frames 62
 hyperperiod 55, 60, 61
 major cycle 61–65, 68
 slack stealing 67, 82
 slack time 68, 69, 82
 structured 62–69
 task slicing 65, 66
 deadline-monotonic (DM) 76
 earliest deadline first (EDF) 44, 76–82, 89, 91
 priority-driven
 static-priority algorithm 70
 dynamic-priority algorithm 70
 rate-monotonic (RM) 70–76, 91
 round-robin 46, 69, 70
 schedulable utilization 59
security
 buffer overflow 298
 confidentiality 299
encryption 299
mechanisms 298
penetration testing 300
risk assessment 300
services 297
vulnerabilities 298
self-suspension 86
sensors
acceleration 27
active 28
displacement 27
gyro 27
humidity 27
light 27
passive 28
pressure 27
temperature 27
ultrasonic 27
software aging 294, 296, 297
software faults
Bohrbugs 293
fault avoidance 295
fault recovery 296
fault removal 295
fault tolerance 295
Heisenbugs 294
Mandelbugs 293
software rejuvenation 296, 297
synchronization
condition variables 128, 133, 137–142
mutex 45, 46, 104, 105, 128, 133–142
named semaphores 157, 160–182
semaphores 45, 46, 128, 142–148
t

task(s)
aperiodic tasks 53, 54, 66, 69, 77, 82, 83
context 39
switch 39, 40, 42, 45, 62, 66, 70, 85, 87, 88, 116
criticality 56
deadline
absolute 76
relative 54
execution time 54
graph 58
periodic tasks
period 54
phase 54
precedence constraints 58, 70
preemptivity 56
release time 54
response time 54
sporadic tasks 54, 68, 69, 82
utilization 55, 59, 72, 73, 80, 89–94
task assignment
bin-packing 89, 90
first-fit 90, 91
decreasing 91
rate-monotonic-first-fit 91, 92
temporal logic
formulas 253–255
models of time
branching-time 255, 264
linear-time 255, 258
threads 21, 34, 35, 46, 128
time-demand function 73, 85, 87, 88
timed Petri nets
decision-free Petri nets 238
deterministic timed Petri nets
(DTPN) 234–240
minimum cycle time 238, 239
time Petri nets (TPN) 240–244
static interval 241
earliest firing time 241
latest firing time 241
timers
capture register 29
output signal 29
input pulses 29
prescaler 29
transition systems 254, 260, 261, 266
u
unified modeling language (UML) state
machines
actions 198
behavioral diagrams 197, 198
composite states 198, 199, 202–205
events
 call 201, 205
 change 202
 signal 201, 205
 time 202
guards 200, 201, 204, 210
hierarchy 202–205
history
 deep 207
shallow 207
join 210
orthogonality 205, 206
pseudostates
 choice 204
 entry points 209
 exit points 209
 fork 210
regions 199
states 198
structural diagrams 197
submachine states 199, 202,
 206
terminate 210
transitions 198