INDEX

Note: Page number followed by f and t indicates text in figure and table respectively.

AAA, see Asymmetric allylic alkylation (AAA)
AACC, see Azide-alkyne click chemistry (AACC)
accumulation mechanism of metal ions, in apo-rHLFr cage, 188–192
acetylene, hydrogenation of, 106
acid-acetone method, 89
Acremonium sp., ascorbate oxidase from, 123
AG4 peptide, use of, 311–312, 332
aldehyde ferredoxin oxidoreductase (AOR), 248
alternative energy sources, 128
3-[2-(2-aminoethyl)-ethylamino]-propyltrimethoxysilane (AEEA), 256, 262
3-aminopropyltriethoxysilane (APTES), 256, 319
Amplex Red, 101, 102
Anabaena sp. strain 7120, 137
anaerobic respiration, 118
anchor proteins, 252–253
antibody-conjugated magnetosomes, 261
antimicrobial nanoparticles, 342
apo ferritin, 13, 18, 35, 306
as bio-template for NPs synthesis, 306–307. See also Nanoparticles (NPs), synthesis of
apo-Fr cage, for metal NPs preparation, 179–182
apoprotein, 89
APTES, see 3-aminopropyltriethoxysilane (APTES)
ArsR repressor protein, 47
artificial metal complex, insertion of, into heme pocket, 89–90
artificial metalloenzymes, 203
construction of, 203, 204f
enantioselective reduction reactions catalyzed by
artificial metalloenzymes (Continued)

asymmetric hydrogenation, 204–206
ATH of imines, 208–211, 210t
ATH of ketones, 206–208, 208t
and metal-catalyzed organic
transformations in protein
scaffold, 384f
oxidation reaction catalyzed by
artificial sulfoxidase, 212–215
asymmetric cis-dihydroxylation,
215–216
palladium-catalyzed AAA reaction,
211–212, 212f
artificial prosthetic group, designing of, 90, 92
artificial redox/proton-coupled proteins,
designing, 71
ascorbate oxidases, 120, 122–123
AsGST (Ascidia sydneiensis glutathione S
transferase), 27
AsNramp (Ascidia sydneiensis natural
resistance-associated macrophage
protein), 27
Asp-tag/Zn(ii)-DpaTyr pair, for protein
labeling, 230–235
asymmetric allylic alkylation (AAA),
211–212, 214t
asymmetric cis-dihydroxylation (AD),
215–216, 216f
asymmetric hydrogenation, of alkenes,
204–206, 205t
asymmetric sulfoxidation, 212–215
asymmetric transfer hydrogenation
(ATH)
of imines, 208–211, 210t
of ketones, 206–208, 208t
ATH, see Asymmetric transfer
hydrogenation (ATH)
atomic force microscopy (AFM), 317
atom transfer radical polymerization
(ATEP), 287–290
ATPase, cytoplasmic, 248
ATRP, see Atom transfer radical
polymerization (ATRP)
Au
 apo-rHFr, 180, 181f
Au-SP1 nanocomposites, 336
autoxidation process, 95
Avi (avidin), 204
α-azamesoporphyrin XIII, 92, 92f
azide-alkyne click chemistry (AACC), 285
in P22, 286–287, 287f
in sHsp, 285–286, 286f
Azotobacter vinelandii, Mo/WSto protein
of, 29–33, 30f–32f
azurin mutants, redox potentials of type I
copper sites in, 381f
Bacillus megaterium tyrosinase, R209H,
122
Bacillus subtilis, 122
bacterial quinol oxidase, CyoA, 116–117
bacterioferritins, 277
BAP, see Biotin acceptor peptide (BAP)
BCCP, see Biotin carboxyl carrier protein
(BCCP)
biarsenical conjugated fluorophores, 225,
226f
bicinchonic acid (BCA) assay, 188
bidentate chelates, 156
bidentate motifs, 154
bifunctional ferritin-based
capsulation-delivery system,
314, 314f
Bin/amphiphysin/Rvs (BAR) protein, 247
binary patterning approach, 78
bioassays, magnetosomes use for, 259–260
biological supramolecular chemical system,
29
biomineralization, in protein cage
architectures, 277
Dps, mineralization in, 279–282
icosahedral protein cages, 282
mineralization, 278–279
nucleation of inorganic nanoparticles
within viruses, 282–283
nucleation site-driven mineralization,
279
biomineralization process, 37–38, 241
biominerals, 241, 275
biomolecule-based NPs delivery, 313
bioremediation, 264–266
biosensors, construction of, hemepeptides
in, 78
bio-template method, for nanoparticles
synthesis, 306–307, 306f
biotin acceptor peptide (BAP), 253–254
biotin carboxyl carrier protein (BCCP),
253–254
INDEX

biotin ligase, 254
biotin-(strept)avidin technology, 203, 204, 204f, 212
biotinylated diphosphine ligands, 212
biotinylated ligands, in asymmetric hydrogenation and allylic alkylation reactions, 213
2,2′-bipyridine, 155–156
bis-His motif, 154–155
bis-maleimidobutane (BMB), 167
bis-maleimidoethane (BMOE), 167
bis-maleimidohexane (BMH), 167
blue copper proteins, 112
artificial, de novo design of, 55–56
CuA into, introduction of, 116–118
Bombyx mori, 341
bovine serum albumin (BSA), 340
bZIP proteins, 158
cadmium selenide (CdSe) NPs, synthesis of, 309, 310f
cadmium sulfide (CdS) NPs, synthesis of, 308–309, 310f, 311
candelabra motif scaffold, 73, 73f
carbonic anhydrase (CA), 52
carbon monoxide dehydrogenase (CODH), 66
carbon nanotube growth, ferritin use in, 19
CAs, see Contrast agents (CAs)
catalytic copper proteins
Cu, Zn superoxide dismutases, 121–122 engineering of, 118 functions of, 118 multicopper oxygenases and oxidases, 122–124 type 2 red copper sites, 118–121 catechols, production of, 122 C16C19-GGY peptide, Cu(I)-binding properties of, 56 CCIS1 (Coiled Coil Iron Sulfur protein 1), 57 CCMV, see Cowpea chlorotic mottle virus (CCMV)
-index

copper-incorporated Cu₃–amicyanin, 117
copper-incorporated Cu₃–CyoA, 116–117
copper proteins type 1 (T1), 112. See also
T1 copper proteins
Corallina pilulifera, 139
corrole iron complex, 99, 100f
Coulomb islands, 321
cova lent protein labeling, of Asp-tag-fused
protein, 233, 234f
cowpea chlorotic mottle virus (CCMV),
354, 355
CPIs, see Crystal packing interactions
(CPIs)
crosslinked dimers, 167–169
crystal packing interactions (CPIs), 153
Cu₃ proteins, 116–118, 117f
Cu₉Mb, 125–126
cupredoxins, 112–115
Cu, Zn superoxide dismutases (Cu,
ZnSODs), 27, 27f, 121–122
Cyt cb₅₆₂ protein, 153–155, 154f
cytochrome c, heme pocket of, use of,
107–108
cytochrome c peroxidase (CcP), 124, 128–129
cytochromes P₄₅₀, engineering, 129–130
data storage devices, creation of, 337
de novo-designed proteins, 45, 46
for development of artificial
metalloproteins, 46
dinuclear metal cofactors in, 59–66
heme cofactors in, 66–78
insertion of metal-binding site into, 46
mononuclear metal cofactors in, 47–59
Desulfovibrio magnetus, 243
Desulfovbatronum, 243
DF₃, 65, 65f
design concept, 379f
DF (Due Ferri) family, of artificial proteins,
60, 60f, 61t
DF₉₀ constructs, 63–64
DF₁ proteins, 60–63
β,δ-diazamésoporphyrin III, 92, 92f
didodecyldimethylammonium bromide
(DBM), 212
3, 4-dihydroxphenylalanine (L-DOPA),
122
di-iron oxo proteins, retrostructural analysis
of, 59–60
di-iron oxo proteins, 10
dimethyl sulfoxide (DMSO), 212
dimethyl sulfoxide reductase, 137
dinuclear metal cofactors, 59–66
1,3-diphenylallylacetate, 212
diphosphines, 155–156
directed evolution approach, 122, 123,
129–130, 130f, 135
discrete protein cages, 332–334
dissociation–reassembling reactions, of
monomer proteins, 185
DNA-binding proteins, 276
dNA-binding proteins from starved cells,
see Dps protein
DNA extraction, 262–264
DNA origami technique, 313
dopamine β-monoxygenase (DBM),
120–121
d₆-piano-stool complexes, 206, 207f
dpr proteins (Dps-like peroxide resistance),
36
Dps protein, 6, 7, 13, 36, 332
mineralization in, 279–282
structural characteristics, 279–280
dragline silk fibers, 341
drug delivery, ferritin use in, 19–20
D₂-symmetric artificial di-hemeprotein,
74–75, 75f
dynamic light scattering (DLS), 287
elastin, 345
electron energy-loss spectroscopy (EELS)
analyses, 307
electron paramagnetic resonance (EPR)
analysis, 213, 215
electron transfer (ET) agents, 112, 118
electrospray ionization (ESI), 280
evantioselective sulfoxidation, by artificial
metalloenzymes, 213–215, 214f, 215t
energy dispersive spectrometry (EDS), 307
EPR spectroscopy, 125
Escherichia coli, 7, 51, 57, 77, 129, 205,
249, 253, 255, 262, 279, 288, 338
electron, production of, 130
expressed protein ligation (EPL), 114
extended protein network, importance of, 112
exradiol mechanism, 133
F1AsH, 225, 226f
Fe₃Mb, 127, 127f
Fe(II)-METP complex, 59f
Fenton reaction, 36
ferritin (Fr), 35–36, 36f, 177–178, 275–276, 332, 353–355
apo-Fr structure, 178f
in bacteria and plants, 28
biological roles of, 3
biomineralization in, 277. See also
Biomineral formation, in protein cage architectures
catalysis, 8–13
diferric peroxo (DFP),
characterization of, 8–12, 9f, 10t
kinetics of DFP formation and decay, 12–13
catalytic reactions in
olefin hydrogenation, 179–182
polymer synthesis, 185–188
Suzuki–Miyaura coupling reaction, 182–185
common properties, 5
coordination arrangements in, 194–197
coordination chemistry, use in, 177–178
coordination processes in, 188
accumulation of metal complexes, 192–194
accumulation of metal ions, 188–192
description, 4f, 6
DNA-modified, 334
and genetic regulation, 5
H subunits, 28
iron entry route in, 7–8, 7f
iron exit, regulation of, 16–17
L subunits, 28
maxi- and mini-ferritin, 4f, 6–7
and metal NPs preparation, 178
minerals, 13–14
in animals, 15–16
in bacteria and plants, 14–15, 15t
M subunits, 28
oxidant stress and, 5
protein cage sliced in half, 375f
trapping metal complexes in, 178
unique properties of, 178
in vertebrates, 28
ferritin mutants, 278
ferritin protein nanocages, 3. See also
Ferritin (Fr)
eukaryotic, 4f
forward reaction of, 3–5
maxi-ferritin subunit, 4f
mini-ferritin subunit, 4f
synthetic uses of, 17–20
imaging and drug delivery agents, 19–20
metalloorganic catalysis and nanoelectronics, 19
nanomaterial synthesis, 18
variable properties, 5
ferrous hydroxide, partial oxidation of, 257, 258f
Fe-SOD, 132–133
field-emission scanning electron microscopy (FE-SEM), 316
FITC, see Fluorescein isothiocyanate (FITC)
floating nanodot gate memory (FNGM), 318
fabrication of, 318–321
Co₃O₄ NPs embedded in SiO₂ layer,
TEM image of, 319f
C-V curve of Co₃O₄ NP embedded MOS capacitor, 319–320, 320f
electron injection process to Co₃O₄ NP, 321, 321f
I-V curve of Co₃O₄ NP embedded MOS FET, 320, 320f
structure of, 318, 318f
fluorescein isothiocyanate (FITC), 259, 286, 288
fluorescence imaging, 224
fluorescence immunoassay, 259
fluorescent proteins, 223–224
FNGM, see Floating nanodot gate memory (FNGM)
frataxins, 36
in bacteria, 36–37
buildup of, 37
in eukaryota, 37
lack of, in humans, 37
yeast, 37, 37f
INDEX

fuel cell cathodes, 115
fusion proteins, 355

Gd-chelates, 291
Gd-DOTA (Dotarem), 290
Gd-DTPA (Magnevist), 290
Gd-HOPO, 290
genetic transformation techniques, of
magnetotactic bacteria, 252

GFP, see Green fluorescent protein (GFP)

GFP-fusion method, 223–224
glyoxidase II (gly II), conversion of,
134–135
gold-binding peptides, 312, 331
G-protein coupled receptor (GPCR), 233, 235, 260, 385f
GRAND peptide family, 51
green copper proteins, 112
green fluorescent protein (GFP), 223–224
greigite, by magnetotactic bacteria, 37–38
greigite (Fe₃S₄) magnetosomes, 244
GroEL chaperonin, 338
GST (glutathione S transferase), 27
guaiacol, 96–97, 102–103
halogenases, 133–134, 134f
Halo-tag method, 225
HCOs, see Heme copper oxidases (HCOs)
heart ferritin, 16
heat shock protein, small (sHsp), 285–286, 286f
heat-shock proteins, use of, for nanoparticle
synthesis and assembly, 334–340
helical peptides, heme and, 66–67
Helicobacter pylori, 136
helix–loop–helix peptides, 65–66
helix-turn-helix (HTH) motifs, 57–58
heme, 66, 87
heme b, 87, 88f
heme-based enzymes, 124
cytochromes P450, engineering,
129–131
Mb-based peroxidase and P450 mimics, 124–125
NOR enzymes in Mb, mimicking, 127–128
oxidases in Mb, mimicking, 125–127
peroxidase proteins, engineering, 128–129
heme-binding four-helix bundle proteins,
67–68, 67t
heme copper oxidases (HCOs), 125–127
heme maquettes, 68–74, 69f, 70f, 73f
heme-propionate side chains, modification
of, 95–98
hemoproteins, 87
apo-forms of, 88
artificial metal complex, reconstitution
with, 89–90, 89f
containing heme b, 87–88
engineering of, methods for, 88
H10H24 maquette, 69t, 70–71
high-potential iron–sulfur protein (HiPIP),
131–132
His-tag-fused proteins, labeling of,
227–230
HisZiFiT, 229
horse spleen apoferritin (HsAFr)
as bio-template for NPs synthesis,
306–307
HoXasH, 225, 226f
H-Pd²⁺•apo-H49A-rHLFr, crystal structure
of, 191, 191f
HRP, see Horseradish peroxidase (HRP)
HSP60 (TF55/H9252), 335
HTH/PrP chimeric system, 57
human apoferritin, 35
hybrid coordination motifs (HCMs),
tridentate, 156
hydrogenase, 107–108
hydrogenation, 179–182
catalyzed by cobalt myoglobin, 106
hydrogen, production of, from nitrogenase,
137
8-hydroxyquinoline (Quin), 156
i/i+7 HCMs, 156–157
imines, asymmetric transfer hydrogenation
of, 208–211, 210t
indium oxide NPs, 308
inductively coupled plasma-optical
emission spectrometry
(ICP-OES), 188
INDEX 381

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>intradiol mechanism</td>
<td>133</td>
</tr>
<tr>
<td>iron homeostasis</td>
<td>277</td>
</tr>
<tr>
<td>iron, incorporation of, into ferritin</td>
<td>278</td>
</tr>
<tr>
<td>iron-loaded oligomeric (24 subunits) yeast frataxin, reconstruction of</td>
<td>378f</td>
</tr>
<tr>
<td>iron oxide nanoparticle, in biological systems</td>
<td>277</td>
</tr>
<tr>
<td>iron storage proteins</td>
<td>35–36, 36f</td>
</tr>
<tr>
<td>Irving–Williams (IW) series</td>
<td>165</td>
</tr>
<tr>
<td>iterative redesign strategy</td>
<td>71</td>
</tr>
<tr>
<td>IZ-AC peptide</td>
<td>54–55</td>
</tr>
<tr>
<td>IZ-3aH peptide</td>
<td>54</td>
</tr>
<tr>
<td>ketones, asymmetric transfer hydrogenation of</td>
<td>206–208, 208t</td>
</tr>
<tr>
<td>Klebsiella sp. 601 multicopper oxidase, helix deletion on</td>
<td>123</td>
</tr>
<tr>
<td>laccase catalysis</td>
<td>123</td>
</tr>
<tr>
<td>laccases</td>
<td>115, 122–124, 128</td>
</tr>
<tr>
<td>β-lactamase activity, regulation of</td>
<td>138</td>
</tr>
<tr>
<td>L-cysteine</td>
<td>254</td>
</tr>
<tr>
<td>Langmuir–Blodgett technique</td>
<td>339</td>
</tr>
<tr>
<td>lanthanide-based resonance energy transfer (LRET)</td>
<td>236</td>
</tr>
<tr>
<td>lanthanide-binding tags (LBTs)</td>
<td>236–237, 236f</td>
</tr>
<tr>
<td>lanthanides</td>
<td>235–236. See also Lanthanide-binding tags (LBTs)</td>
</tr>
<tr>
<td>LBTs, see Lanthanide-binding tags (LBTs) lectin</td>
<td>368</td>
</tr>
<tr>
<td>ligand–ligand coupling approach, for coordination polymer synthesis</td>
<td>293–295</td>
</tr>
<tr>
<td>lignin, degradation of</td>
<td>128</td>
</tr>
<tr>
<td>lignin peroxidase (LiP)</td>
<td>128</td>
</tr>
<tr>
<td>lignocelluloses, breaking down</td>
<td>118</td>
</tr>
<tr>
<td>LimJ protein</td>
<td>249</td>
</tr>
<tr>
<td>limonite</td>
<td>35</td>
</tr>
<tr>
<td>liposome tubulation assay, with MamY protein</td>
<td>247f</td>
</tr>
<tr>
<td>Listeria innocua Dps (LiDps)</td>
<td>8, 280–281</td>
</tr>
<tr>
<td>biomimetic iron oxide formation process in</td>
<td>281–282, 281f</td>
</tr>
<tr>
<td>as bio-template for NPs synthesis</td>
<td>306, 306f. See also Nanoparticles (NPs), synthesis of</td>
</tr>
<tr>
<td>liver ferritin</td>
<td>16</td>
</tr>
<tr>
<td>loop-directed mutagenesis</td>
<td>114</td>
</tr>
<tr>
<td>loop replacement approach</td>
<td>118</td>
</tr>
<tr>
<td>MagA-luciferase fusion proteins</td>
<td>255</td>
</tr>
<tr>
<td>magnetic bead technology</td>
<td>260</td>
</tr>
<tr>
<td>magnetic particles</td>
<td></td>
</tr>
<tr>
<td>protein-mediated morphological control of</td>
<td>257–258</td>
</tr>
<tr>
<td>use of</td>
<td>242, 251</td>
</tr>
<tr>
<td>magnetic resonance imaging contrast agents (MRI-CAs)</td>
<td>290–292</td>
</tr>
<tr>
<td>magnetite, by magnetotactic bacteria</td>
<td>37–38</td>
</tr>
<tr>
<td>magnetite crystals</td>
<td>241, 250–251</td>
</tr>
<tr>
<td>magnetosome-PCR method</td>
<td>260</td>
</tr>
<tr>
<td>magnetosome island</td>
<td>244</td>
</tr>
<tr>
<td>magnetosomes</td>
<td>241, 242</td>
</tr>
<tr>
<td>biotechnological applications</td>
<td>258–259</td>
</tr>
<tr>
<td>bioremediation</td>
<td>264–266</td>
</tr>
<tr>
<td>cell separation</td>
<td>260–262</td>
</tr>
<tr>
<td>DNA extraction</td>
<td>262–264</td>
</tr>
<tr>
<td>enzymatic bioassays</td>
<td>259–260</td>
</tr>
<tr>
<td>formation, 38 in magnetotactic bacteria</td>
<td>386f</td>
</tr>
<tr>
<td>mechanism</td>
<td>246–249, 249f</td>
</tr>
<tr>
<td>functional design of</td>
<td>251–258</td>
</tr>
<tr>
<td>magnetite crystal in, morphological control of</td>
<td>250–251, 250f</td>
</tr>
<tr>
<td>protein display on, by gene fusion technique</td>
<td>252–254, 252f</td>
</tr>
<tr>
<td>size ranges of</td>
<td>242</td>
</tr>
<tr>
<td>surface modification by in vitro systems</td>
<td>255–257, 256f</td>
</tr>
<tr>
<td>Magnetospirillum gryphiswaldense strain MSR-1</td>
<td>243</td>
</tr>
<tr>
<td>Magnetospirillum magnetotacticum AMB-1</td>
<td>243, 244, 251</td>
</tr>
<tr>
<td>Magnetospirillum magnetotacticum strain (MS-1)</td>
<td>242</td>
</tr>
<tr>
<td>Magnetospirillum sp., 243</td>
<td></td>
</tr>
<tr>
<td>magnetotactic bacteria, 37–38, 241 diversity of</td>
<td>242–244</td>
</tr>
<tr>
<td>genome and proteome analyses of</td>
<td>244–246</td>
</tr>
<tr>
<td>maltose-binding protein (MBP) mutants</td>
<td>159</td>
</tr>
<tr>
<td>MamA protein</td>
<td>247</td>
</tr>
<tr>
<td>MamB protein</td>
<td>248</td>
</tr>
<tr>
<td>MamE protein</td>
<td>248</td>
</tr>
<tr>
<td>MamJ protein</td>
<td>249</td>
</tr>
<tr>
<td>Page</td>
<td>Index</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>382</td>
<td>MamK protein, 248–249</td>
</tr>
<tr>
<td></td>
<td>MamM protein, 248</td>
</tr>
<tr>
<td></td>
<td>MamY protein, 247–248</td>
</tr>
<tr>
<td></td>
<td>manganese, in photosystem II, 33–35, 34f</td>
</tr>
<tr>
<td></td>
<td>manganese oxides, 279</td>
</tr>
<tr>
<td></td>
<td>manganese peroxidase (MnP), 128–129</td>
</tr>
<tr>
<td></td>
<td>manganese proteins, 136–137</td>
</tr>
<tr>
<td></td>
<td>manganese salen, 103, 105, 105f</td>
</tr>
<tr>
<td></td>
<td>maquettes, 68–74, 69f, 70f</td>
</tr>
<tr>
<td></td>
<td>mavicyanin, 112</td>
</tr>
<tr>
<td></td>
<td>Mb, see Myoglobin (Mb)</td>
</tr>
<tr>
<td></td>
<td>Mb-based peroxidase activity, enhancement of, 124, 124f</td>
</tr>
<tr>
<td></td>
<td>MDPSA, see Metal-directed protein self-assembly (MDPSA)</td>
</tr>
<tr>
<td></td>
<td>metal-binding peptides</td>
</tr>
<tr>
<td></td>
<td>identification of, 331</td>
</tr>
<tr>
<td></td>
<td>interaction of, with inorganic materials, 331–332</td>
</tr>
<tr>
<td></td>
<td>for synthesis of NPs, 311–312</td>
</tr>
<tr>
<td></td>
<td>metal chelate carriers, 292</td>
</tr>
<tr>
<td></td>
<td>metal-chelating motifs, 154</td>
</tr>
<tr>
<td></td>
<td>metal-chelation system, for protein analysis, 225</td>
</tr>
<tr>
<td></td>
<td>lanthanide-binding tag, 235–237</td>
</tr>
<tr>
<td></td>
<td>oligo-aspartate tag/Zn(II)-DpaTyr pair, 230–235</td>
</tr>
<tr>
<td></td>
<td>oligo-histidine tag/Ni(II)-NTA pair, 227–230</td>
</tr>
<tr>
<td></td>
<td>tetracysteine motif/arsenical compounds pair, 225–226, 226f</td>
</tr>
<tr>
<td></td>
<td>metal complexes, chemical conjugation of, 176, 177</td>
</tr>
<tr>
<td></td>
<td>metal-directed protein self-assembly (MDPSA), 152</td>
</tr>
<tr>
<td></td>
<td>background, 152–153</td>
</tr>
<tr>
<td></td>
<td>crystallographic applications of, 159–162</td>
</tr>
<tr>
<td></td>
<td>design considerations for, 153–155</td>
</tr>
<tr>
<td></td>
<td>interfacing nonnatural chelates with, 155–159</td>
</tr>
<tr>
<td></td>
<td>metalloproteins, designing, 45–46</td>
</tr>
<tr>
<td></td>
<td>de novo-designed proteins in, use of, 46. See also De novo-designed proteins</td>
</tr>
<tr>
<td></td>
<td>issues in, 46</td>
</tr>
<tr>
<td></td>
<td>trial and error approach for, 46</td>
</tr>
<tr>
<td></td>
<td>metal-organic cages, 355</td>
</tr>
<tr>
<td></td>
<td>development of functions via chemical modification, 366–367</td>
</tr>
<tr>
<td></td>
<td>chemistry in hollow of cages, 367–368</td>
</tr>
<tr>
<td></td>
<td>chemistry on periphery of cages, 368–370</td>
</tr>
<tr>
<td></td>
<td>geometrical effect on products, 356–358, 356f–358f</td>
</tr>
<tr>
<td></td>
<td>mechanism of self-assemblies, 366</td>
</tr>
<tr>
<td></td>
<td>protein caged in, 390f</td>
</tr>
<tr>
<td></td>
<td>for protein encapsulation, 370</td>
</tr>
<tr>
<td></td>
<td>structural extension by rational design of ligands, 358–365</td>
</tr>
<tr>
<td></td>
<td>metal–organic coordination bond, 355</td>
</tr>
<tr>
<td></td>
<td>metal oxides, in protein cavities, 25–26</td>
</tr>
<tr>
<td></td>
<td>iron, 35–38</td>
</tr>
<tr>
<td></td>
<td>manganese, 33–35</td>
</tr>
<tr>
<td></td>
<td>molybdenum, 28–33</td>
</tr>
<tr>
<td></td>
<td>tungsten, 28–33</td>
</tr>
<tr>
<td></td>
<td>vanadium, 26–28</td>
</tr>
<tr>
<td></td>
<td>metal-templated interface redesign (MeTIR)</td>
</tr>
<tr>
<td></td>
<td>background, 162–163, 163f</td>
</tr>
<tr>
<td></td>
<td>Zn-selective protein dimerization motif, construction of, 166–170</td>
</tr>
<tr>
<td></td>
<td>Zn-selective tetrameric protein complex, construction of, 163–166</td>
</tr>
<tr>
<td></td>
<td>Met121Cys Az mutant, 119</td>
</tr>
<tr>
<td></td>
<td>Methanococcus jannaschii, 285</td>
</tr>
<tr>
<td></td>
<td>methanol, production of, 130</td>
</tr>
<tr>
<td></td>
<td>MeTIR, see Metal-templated interface redesign (MeTIR)</td>
</tr>
<tr>
<td></td>
<td>METP (miniaturized electron-transfer protein), 58–59, 59f</td>
</tr>
<tr>
<td></td>
<td>Michaelis–Menten kinetics, 97</td>
</tr>
<tr>
<td></td>
<td>microperoxidase (MP), 162</td>
</tr>
<tr>
<td></td>
<td>microtubule-associated proteins, 27</td>
</tr>
<tr>
<td></td>
<td>mimochromes, 67</td>
</tr>
<tr>
<td></td>
<td>mineralization, 278–279</td>
</tr>
<tr>
<td></td>
<td>in Dps, 279–282</td>
</tr>
<tr>
<td></td>
<td>electrostatic model, 279</td>
</tr>
<tr>
<td></td>
<td>minerals, ferritin, 13–16</td>
</tr>
<tr>
<td></td>
<td>MitoNEET, 132</td>
</tr>
<tr>
<td></td>
<td>M_{12}L_{24} cages, 359–360</td>
</tr>
<tr>
<td></td>
<td>extension of, 360f</td>
</tr>
<tr>
<td></td>
<td>octahedral, X-ray crystal structure, 361f</td>
</tr>
<tr>
<td></td>
<td>M_{12}L_{24} complex, 370, 370f</td>
</tr>
<tr>
<td></td>
<td>M_{6}L_{12} complex, self-assembly of, 356, 357f</td>
</tr>
<tr>
<td></td>
<td>M_{12}L_{24} complex, self-assembly of, 356, 357f</td>
</tr>
</tbody>
</table>
INDEX

M₂₄L₂₄ cuboctahedron sphere, 363, 364f
M₁₂L₃₄ sphere with free coordination sites, 365f
M₁₂L₈ sphere, X-ray crystal structure of, 363f
Mms6 protein, 248, 250–251
Mms13 protein, 253, 257–258
Mms16 protein, 246
Mn, Mn₄L₂₄ cages, self-assembly of, 356–358, 356f–358f
Mn-salen complexes, incorporation of, in streptavidin, 213
Mn-SOD, 132–133
modular organized proteins (MOPs), 77
modular turn substitution approach, 57
molecular dynamics (MD) simulations, 114, 366
molybdenum proteins, 137
monodentate Pd(II)-pyridine bonds, 366
mononuclear electron transfer cupredoxin proteins, 112–115
mononuclear iron catalysts, 133
mononuclear metal cofactors, 47–59
monophenolase/diphenolase activity ratio, 122
monte Carlo-simulated annealing protocol, 75
montmorillonite (MMT), 343–345, 344f
Mo-storage (MoSto) protein, 28–29
Mo/WSto protein, 29–33, 30f–32f
A. vinelandii, structure of, 376f
surface representation of, 377f
MpsA protein, 247
multi-angle laser light scattering combined with high-performance liquid chromatography (MALLS-HPLC), 287
multicellular magnetotactic prokaryotes (MMPs), 244
multicopper oxidases, 122–124
multicopper oxygenases, 122
Myceliophthora thermophila, 123
myoglobin (Mb), 90, 123
conversion of, into peroxidase, 95
constructing substrate-binding site, 95–98
enhancement of peroxidase activity, 100–102
native heme replacement with iron porphyrinoid, 99–100
modulation of O₂ affinity of, 90–95, 91f–93f, 94t
reconstituted, reductase model using, 106–108
reconstitution of, with Schiff base metal complexes, 103–106, 104f, 105f
N-acetamidoacrylic acid, 204, 206
N-acetamidoalanine (N-AcAla), 204
nano electronic devices, 305. See also Nanoparticles (NPs)
nanomaterials synthesis, ferritins in, 18
nanoparticles (NPs), 258–259, 305 applications of, 305–307
fabrication of nanodevices by, 317–318
floating nanodot gate memory, 318–321
single-electron transistor, 321–326
formation mechanism, 188
site-directed placement of, 312
Au NPs nanopositioning by porter proteins, 313–317
Cage-shaped proteins, nanopositioning of, 312–313
synthesis of, 306
in apoferritin cavity, 307–312
bio-template method, 306
compound semiconductor NP, 308–311
with metal-binding peptides, 311–312
metal oxide or hydro-oxide NP, 307–308, 308f
nano test container, 33
Nephila clavipes, 341
nickel hydroxide NPs, synthesis of, 307–308, 308f
nickel proteins, 137–138
Ni:HQin1 dimer, crystal structure of, 157–158, 158f
NiR, see Nitrite reductase (NiR)
nitric oxide reductases (NORs), 127–128, 127f
nitrite reductase (NiR), 120–121
nitrosocyanin (NC)-Az, 120
384 INDEX

nitrosocyanin, T2 copper site of, 119, 119f
Nitrosomonas europaea, 119
noncovalent mass spectrometry (NCMS), 280, 281
non-heme iron catalysts, 133–134
non-heme iron ET proteins, 131–132
non-heme iron halogenases, 133–134, 134f
nonnative minerals, synthesis of, 279
NORs, see Nitric oxide reductases (NORs)
NPs, see Nanoparticles (NPs)
Nramp (natural resistance-associated macrophage protein), 27
N-(2-pyridyldithio)propionate (SPDP), 255
N(trimethoxysilylpropyl)isothiouronium chloride (NTIC), 256
olefin hydrogenation, 179–182
oligo-histidine tag/Ni(II)-NTA pair, 227–230
organometallic catalysis, protein cages in, 182–185
organometallic complexes, 194
organometalloenzymes, artificial, 383f
Os-catalyzed AD reaction, 215–216, 216f
oxidant stress, 5
oxoferryl porphyrin π-cation radical, 99, 99f
oxy-ferrous complex, 73
oxygen evolving center (OEC), in photosystem II, 33–35, 34f
palladium-catalyzed asymmetric allylic alkylation (AAA), 211–212, 214f
palladium-SPI nanoparticles, 336–337, 337f
PAMAM dendrimer, 256–257, 263
Paracoccus denitrificans, 117, 118
paramagnetic lanthanides, 236
P450 BM3, 129–130, 131f
PbSe nanocrystals, 338
P22 capsid, 286–287, 287f
PCNs, see Protein cage nanoparticles (PCNs)
Pd(allyl)•apo-C126A-rHLFr, crystal structure of, 192, 193f, 193t
Pd(allyl)•apo-rHLFr, preparation of, 183–185, 183f
Pd•apo-ferritin, 179–180
hydrogenation activity of, 180t
olefin hydrogenation by, 179f
preparation of, 179, 179f
Pd2+•apo-rHLFr, 180, 181f
Pd2+•apo-rHLFrs, crystal structures of, 188–189, 189f
Pd–Au bimetallic NPs (Pd/Au-NPs), preparation methods, 180–181
in alloy, 181, 182f
core–shell NPs, 182, 182f
Pd-NPs, 188
PEGylated apoferritin, for Co3O4 synthesis, 307
peptide fragments, use of, 176–177
peptide libraries, 331
peptide-sandwiched deuteroheme, see Mimochromes
peptide-sandwiched mesoheme, 67
peptidyl α-hydroxylating monooxygenase (PHM), 120–121
peroxidase proteins, engineering, 128–129
1,10-phenanthroline (Phen), 155, 156, 296–298
phenylacetylene, polymerization of, 185–188
Phe43Trp mutation, 125
Photobacterium leiognathi, 121
photosynthetic organisms, 33
photosystem II (PSII), 33–35, 34f, 136
P450 mimics, in Mb, 125
polyamidoamine (PAMAM) dendrimer, 256–257, 263
polyethyleneimine (PEI), 319
polyhedral oligomeric silsesiquioxane (POSS) nanoparticles, 344–345, 344f
polymerase chain reaction (PCR) amplification, 244
polymeric protein, 340–346. See also Silk fibroin
polymerization, see Protein-polymer composite materials
polymer synthesis, in protein cages, 185–188
Populus tremula, 335
porphycene iron complex, 92–93, 99
porphyrin assemblers, 75–77, 76f, 76t
porter protein, 314
INDEX

PPDK-displaying magnetosomes, 260
P450 peroxygenases, 129–130
PPIs, see Protein-protein interactions (PPIs)
promoters proteins, 253
propranolol, 130
protein cage-directed mineralization, 279
protein cage nanoparticles (PCNs), 276–277, 276f. See also Protein cages; Viruses
and coordination polymer synthesis (see Coordination polymers)
stabilization of, 296–298
protein cages, 175–176, 305, 332. See also Nanoparticles (NPs)
biological function of, 332
bimineral formation in, 277
Dps, mineralization in, 279–282
icosahedral protein cages, 282
mineralization, 278–279
nucleation of inorganic nanoparticles within viruses, 282–283
nucleation site-driven mineralization, 279
coordination polymers in, 292–298
discrete, 332–334
functional groups on external periphery of cages, 368–370
hollow cages, chemical modification of internal wall of, 367–368, 368f
incorporation of metal compounds, 176–177
metal-directed, tetrahedral, in crystal lattice, 382f
metal ion accumulation in, process of, 177
natural, 366–367
peptide-modified, use of, 332
polymer synthesis in, 185–188
Suzuki-Miyaura coupling reaction in, 182–185
protein crystallization, MDPSA in, 159
protein Data Bank (PDB), 72
α4 protein, designing, 47
protein-directed NPs delivery, 313
protein-encapsulated nanomaterials, 334
protein encapsulation, metal-organic cages for, 370
protein labeling methods, 223
genetically encodable labeling method, 223–224
posttranslational modification methods, 224
tag–probe pair strategy, 224–225. See also Tag-probe pair method
protein of interest (POI), 223
protein–polymer composite materials, 283–285
atom transfer radical polymerization in P22, 287–290, 289f
azide–alkyne click chemistry in P22, 286–287, 287f
in sHsp, 285–286, 286f
as magnetic resonance imaging contrast agents, 290–292
protein–protein interactions (PPIs), 152–153
proteins, see also Protein cages
functions of, 223
polymeric, 340–346
proteins and metals composites, preparation methods, 176–177
protein tyrosine phosphatase (PTP), 226
pseudo-contact shifts (PCS), 236
Pseudomonas aeruginosa, 127
Pseudomonas putida, 130
pyrophosphate pyrophosphoric acid (PPI), 260
pyrosequencing, 260
pyruvate phosphate dikinase (PPDK), 260
quasi-cage proteins, 340
rancieite, 35
rational design approach, for metalloprotein models, 60–63
reactive tag system, 233–235
ReAsH, 225, 226f
redox potentials, in biological systems, 112–115
Reiske-type Fe–S cluster protein, 131, 132
residual dipolar couplings (RDC), 236
retrostructural analysis approach, 58
RGD-4C peptide, 312
Rhizoctonia solani, 123
INDEX

Rh(nbd)•apo-rHLFr
- crystal structure of, 185–186, 186f
- polymerization of phenylacetylene using, 186–188, 187f
- preparation of, 185, 185f
- size-exclusion column chromatography elution profile of, 186, 187f
- time course of monomer increase in, 186–187, 187f

Rhodobacter sphaeroides, 136, 137
Rhodospirillum rubrum, 265
rubredoxin, 58
rubredoxin mimic (RM1), 58
Ru(p-cymene), 157
Ru(p-cymene)-apo-rHLFr, 196–197, 197f
ruthenium-bipyridyl complex, 102
Salmonella typhimurium bacteriophage P22, 286
SCADS (statistical computationally assisted designed strategy), 58, 64, 75, 77
Schiff base complexes, 155–156
Schiff base metal complexes, 103–106
sea squirts, 27
self-assembly
- mechanism of, 366
- of triangular complex, 356, 356f
SELIP (Silk and Elastin-Like Protein), 345
semiconductor NPs synthesis, in apoferritin cavity, 308–311
semaphthorhodafluor (SNARF), 231
SET, see Single-electron transistor (SET)
Sharpless’s osmium-catalyzed asymmetric dihydroxylation, 215–216, 216f
silk fibroin, 340–341
- antimicrobial materials, creation of, 342–343
- gold nanoparticles formation, role in, 341–342
- as scaffold for tissue engineering, 343–345
silver/silk nanocomposites, antimicrobial, 342–343
- simultaneous incorporation and adjustment of functional elements (SIAFE), 135
- single-crystal X-ray structural analysis, 177
- single-electron transistor (SET), 318
- fabrication of, 321–326, 322f–325f
- selective adhesion of ferritin molecule to surface of Ti layer, 388f
- single-walled carbon nanotubes (SWNT), 332
- site-directed mutagenesis, 114–115, 123, 124
- size exclusion chromatography (SEC), 314
- S-layer proteins, 334
- slow chemical reaction system (SCRY), for synthesis of semiconductor NPs, 309, 311
SNAP-tag method, 225
- sperm whale Mb (swMb)
 - crystal structure of, 380f
 - peroxidase activity of, enhancement of, 124, 124f
- sphere-in-sphere complex, 364, 365f
- stability/function tradeoff, 46
- stable Protein 1 (SP1), 335–337
- stellacyanin, 112
- STITCH program, 77
- streptavidin-modified magnetosomes, 255
- streptavidin (Sav), 205
- structural extension, of caged complex, 358–365
Sulfolobus shibatae, 335
- sulfo-NHS-LC-LC-biotin, 255
- sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (SMCC), 255
- superoxide dismutase (SOD) proteins, 132–133
- surface-directed electrostatic model, of mineralization, 279
- Suzuki-Miyaura coupling reaction, 182–185
tag–probe pair method, 224
- enzyme-substrate tag, 224f, 225
- enzyme tag, 224f, 225
- metal-chelating peptide tag, 224f, 225.
 See also Metal-chelation system, for protein analysis
- T2 copper Diels–Alder catalyst, 120
- T1 copper proteins, 113–115, 113f
- template-and-stabilize approach, 164
- template-assembled synthetic proteins (TASP) approach, 77, 78
- temporin L, 255
tetracycline-inducible expression system, 253
TetraCys/arsenical compounds pair, for protein labeling, 225–226, 226f
tetravanadate, 27, 27f, 28
tetravanadate, interaction of, 376f
TFG-Au NPs array, 316–317, 317f
TF55β octadecamer, 335–336, 338, 389f
thermoresistant proteins, 335
THPTA, Cu-binding ligand, 285
three-stranded coiled-coil peptide (CSL9C), 47, 49f
three-stranded coiled-coil protein (3SCC), 51
Ti-binding peptide conjugated ferritin, 312
time-of-flight (TOF) mass analyzer, 280
time-resolved X-ray crystallography, 159
ti substrate recognizing peptide, 313
titanium oxide nanoparticles, 342
T4 lysozyme (T4L) mutants, 159
topologies, of four-helix bundle maquettes anti topology, 72, 73f
syn topology, 72, 73f
transition metal (TM) bimetallic nanocomposites, 337
transmembrane protein, 253
transmission electron microscopy (TEM), 280, 287, 307, 345
TRI families, 47–49, 48t
TRIL9CL23H, 52
TRI peptides, structure of, 47, 49–50, 49f
Tween-20, 313
type 2 (T2) copper sites, 118–121, 119f
type 0 (T0) cupredoxin, 115, 116f
tyrosinase, 122
ubiquitin, encapsulation of, 370, 370f, 390f
unnatural amino acids, use of, 114
uranyl proteins, 138
uridine monophosphate (UMP) kinase, hexameric, 29, 32
UV-vis spectroscopy, 58, 77
vanabins, 27–28
vanadate, 26
vanadium oxides, in protein cavities, 26–28, 27f
vanadium proteins, 138–139
vanadocytes, 27
vault, 354
virus cages, pH-dependent swelling of, 185
virus capsids, 355
viruses, 276, 282, 306, 354
nucleation and mineralization of iron oxides, 282
bacteriophage P22, 283, 284f
CCMV, 282–283
and protein–polymer composite formation, 284–285. See also Protein-polymer composite materials
W3 cluster, 378f
X-ray photoemission spectroscopy (XPS), 307
X-ray powder diffraction (XRD) structure analysis, 307
yeast CcP, engineered, 128–129
YKCAQCH, 108
zinc proteins, 134–135
zinc selenide (ZnSe) NPs, synthesis of, 309–311, 310f
Zn30:CFMC112, 159–162, 160f, 161f
Zn4:MBPC14, 163
Zn(II)-METP complex, 59
Zn4:RIDC14, 164
Zn4:CSSRDC14, 164–166, 165f
Zn4:NBMOE RIDC14, 169–170, 170f