CONTENTS

Preface xiii

Contributors xvii

1 The Chemistry and Biology of Epothilones—Lead Structures for the Discovery of Improved Microtubule Inhibitors 1

Karl-Heinz Altmann

1.1. Introduction 1

1.2. Biological Effects of Epo B 4

1.2.1 In Vitro Activity 4

1.2.2 In Vivo Antitumor Activity 8

1.3. Epothilone Analogs and SAR Studies 9

1.3.1 Lactam-Based Analogs 9

1.3.2 Modifications in the C9–C11 Region 10

1.3.3 Modifications of the Epoxide Moiety 13

1.3.4 C-26-Modified Analogs 17

1.3.5 Side-Chain Modifications 18

1.3.6 Aza-Epothilones 22

1.4. Pharmacophore Modeling and Conformational Studies 25

1.5. Epothilone Analogs in Clinical Development 26

1.6. Conclusions 28

Acknowledgments 29

References 29

v
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The Chemistry and Biology of Vancomycin and Other Glycopeptide Antibiotic Derivatives</td>
<td>35</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of Glycopeptide Antibiotics</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Mode of Action</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Glycopeptide Resistance</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Biosynthesis</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Total Synthesis</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Glycopeptides as Chiral Selectors in Chromatography and Capillary Electrophoresis</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Structural Modifications of Glycopeptide Antibiotics and Structure Activity Relationship (SAR) Studies</td>
<td>49</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Modifications of Glycopeptide Antibiotics</td>
<td>51</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Rational Concepts for the Design of Novel Glycopeptides</td>
<td>58</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Conclusions</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Structure Modifications and Their Influences on Antitumor and Other Related Activities of Taxol and Its Analogs</td>
<td>73</td>
</tr>
<tr>
<td>3.1</td>
<td>Discovery and Research and Development of Taxol</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Paclitaxel Analogs Active Against Normal Tumor Cells</td>
<td>74</td>
</tr>
<tr>
<td>3.2.1</td>
<td>C-13 Side Chain</td>
<td>74</td>
</tr>
<tr>
<td>3.2.2</td>
<td>A Ring and Its Substitutions</td>
<td>81</td>
</tr>
<tr>
<td>3.2.3</td>
<td>B Ring and Its Substitutions</td>
<td>87</td>
</tr>
<tr>
<td>3.2.4</td>
<td>C Ring and Its Substitutions</td>
<td>94</td>
</tr>
<tr>
<td>3.2.5</td>
<td>D Ring</td>
<td>101</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Macrocyclic Analogs</td>
<td>103</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Miscellaneous</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>Exploration on Mechanism of Paclitaxel Related to Tubulin Binding and Quest for Its Pharmacophore</td>
<td>106</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Biochemical Mechanism of Paclitaxel Related to Tubulin Binding</td>
<td>106</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Identification of Bioactive Conformations and Quest for a Pharmacophore for Paclitaxel</td>
<td>108</td>
</tr>
<tr>
<td>3.4</td>
<td>Natural and Semisynthetic Taxoids Overcoming Multidrug Resistance (MDR)</td>
<td>111</td>
</tr>
</tbody>
</table>
3.4.1 Structure-Modified Taxoids With Better Activity Toward MDR Tumors 111
3.4.2 Nonpaclitaxel-Type Taxoids With MDR Reversal Activities 114
3.4.3 Factors Contributing to the Resistance to Paclitaxel 115
3.5 Design, Synthesis and Pharmacological Activity of Prodrugs of Paclitaxel 117
 3.5.1 Prodrugs Prepared to Improve Water Solubility 117
 3.5.2 Prodrugs Designed for Enhancing Specificity 119
3.6 Other Biological Actions of Paclitaxel 121
3.7 New Antimicrotubule Molecules Mimicking Action of Paclitaxel 122
3.8 Conclusion 123
Acknowledgments 124
References 124

4 The Overview of Studies on Huperzine A: A Natural Drug for the Treatment of Alzheimer’s Disease 143
Da-Yuan Zhu, Chang-Heng Tan, and Yi-Ming Li
4.1 Introduction 143
 4.1.1 Powerful AChEI Originated From Traditional Chinese Medicine 143
 4.1.2 Alzheimer’s Disease 144
4.2 Profiles of HA 145
 4.2.1 Discovery of HA 145
 4.2.2 Physical Appearance of HA 145
4.3 Plant Resources 147
4.4 Pharmacology 148
 4.4.1 Effects on Cholinesterase Activity 148
 4.4.2 Effects on Learning and Memory 149
 4.4.3 Effects on the Protection of Neuronal Cells 150
 4.4.4 Toxicology 152
 4.4.5 Effects on Miscellaneous Targets 152
4.5 Clinical Trials 152
4.6 Synthesis of HA and Its Analogs 154
 4.6.1 Synthesis of Racemic HA 154
 4.6.2 Synthesis of Optically Pure (−)-HA 157
 4.6.3 Studies on the Structure–Activity Relationship 161
4.7 Structural Biology 166
 4.7.1 Interaction Between HA and AChE 166
5 Qinghaosu (Artemisinin)—A Fantastic Antimalarial Drug from a Traditional Chinese Medicine 183

Ying Li, Hao Huang, and Yu-Lin Wu

5.1. Introduction 183

5.2. Qinghaosu and Qinghao (Artemisia annua L. Composites) 184
 5.2.1. Discovery and Structure Determination of Qinghaosu 184
 5.2.2. The Phytochemistry of Qinghao and Other Natural Products from Qinghao 188

5.3. Reaction of Qinghaosu 197
 5.3.1. Reduction of Qinghaosu 198
 5.3.2. Acidic Degradation of Qinghaosu 199
 5.3.3. Miscellaneous Chemical Reaction 201
 5.3.4. Biotransformation 201

5.4. Chemical Synthesis and Biosynthesis of Qinghaosu 202
 5.4.1. Partial Synthesis and Total Synthesis of Qinghaosu 202
 5.4.2. Biogenetic Synthesis of Qinghaosu 204

5.5. Derivatives and Antimalarial Activity 206
 5.5.1 Modification on C-12 of Qinghaosu 207
 5.5.2 Water-Soluble Qinghaosu Derivatives 212
 5.5.3 Modification on C-11 or/and C-12 215
 5.5.4 Modification on C-4 or/and C-12 215
 5.5.5 Modification on C-3 or/and C-13 216
 5.5.6 Modification on C-13 216
 5.5.7 Modification on C-11 and C-12 217
 5.5.8 Azaartemisinin 217
 5.5.9 Carbaartemisinin 218
 5.5.10 Steroidal Qinghaosu Derivatives 218
 5.5.11 Dimers and Trimers 219
 5.5.12 1,2,4-Trioxanes and 1,2,4,5-Tetraoxanes 221
5.6. Pharmacology and Chemical Biology of Qinghaosu and Its Derivatives 221
 5.6.1 Bioactivities of Qinghaosu Derivatives and Analogs 221
 5.6.2 Early Biologically Morphologic Observation of the Antimalarial Action of Qinghaosu 224
 5.6.3 The Free Radical Reaction of Qinghaosu and Its Derivatives With Fe(II) 225
 5.6.4 Antimalarial Activity and the Free Radical Reaction of Qinghaosu and Its Derivatives 230
 5.6.5 Interaction of Biomolecules with Carbon-Centered Free Radical 235
 5.6.6 Another Point of View and Summary 238

5.7 Conclusion 239
References 239

6 Progress of Studies on the Natural Cembranoids from the Soft Coral Species of Sarcophyton Genus 257
Yulin Li, Lizeng Peng, and Tao Zhang

6.1. Introduction 257

6.2. Cembrane-Type Constituents from the Sarcophyton Genus 258
 6.2.1 Sarcophytols from the Sarcophyton Genus 258
 6.2.2 The Other Cembrane-Type Constituents from the Sarcophyton Genus 260

6.3. Physiological Action of Sarcophytol A and Sarcophytol B 265

6.4. Total Synthesis of the Natural Cembranoids 266
 6.4.1 Total Synthesis of Sarcophytols 267
 6.4.2 Total Synthesis of Cembrene A and C 271
 6.4.3 Total Synthesis of Several Natural Epoxy Cembranolides 277
 6.4.4 Total Synthesis of Cembranolides 287

6.5. Studies on Novel Macrocyclization Methods of Cembrane-Type Diterpenoids 291
 6.5.1 A Stille Cyclization Approach to (±)-Isocembrene 291

Acknowledgments 296
References 296

7 Medicinal Chemistry of Ginkgolides from Ginkgo biloba 301
Kristian Strømgaard

7.1. Introduction 301
 7.1.1 Ginkgo biloba Extract 301
9.3. Biphenyl Derivatives as Anti-HIV Agents
 9.3.1 SAR Analysis of Naturally Occurring Dibenzocyclooctadiene Lignans
 9.3.2 Structural Modifications
 9.3.3 SAR Conclusions
 9.3.4 Mechanism of Action of Biphenyl Derivatives

9.4. Triterpene Betulinic Acid Derivatives as Anti-HIV Agents
 9.4.1 Betulinic Acid Derivatives as Entry Inhibitors
 9.4.2 Betulinic Acid Derivatives as Maturation Inhibitors
 9.4.3 Bifunctional Betulinic Acid Derivatives with Dual Mechanisms of Action

9.5. Conclusions
Acknowledgments
References

10 Recent Progress on the Chemical Synthesis of Annonaceous Acetogenins and Their Structurally Modified Mimics
 Tai-Shan Hu, Yu-Lin Wu, and Zhu-Jun Yao

10.1. Introduction
10.2. Total Synthesis of Mono-THF Acetogenins
10.3. Total Synthesis of Bis-THF Acetogenins
10.4. Total Synthesis of THP-Containing Acetogenins
10.5. Design and Synthesis of Mimics of Acetogenins
10.6. Summary
References

Index