Index

italic used for figures, bold for tables

A
Africa, tropical, climate and hydrology fluctuation during the Quaternary 268
changes driven by Milankovitch forcing 268
Agassiz megalake
depth of incision following drainage to Mississippi River 151, 153
last meltwater discharge to Mississippi River 150
massive subglacial outburst 68
overflow/spill points 67
union with glacial Lake Ojibway 68
Aldan Shield 225, 226
alluvial architecture of large river systems, variability in 7, 17–21
fan–interfan setting 19, 20
interfluvies 19, 20–1
longitudinal trunk systems 11, 12, 18–20, 18
radial fans 18, 20
alluvial stratigraphy, controls on development within the basin 17
Amazon Basin
axial graben, tectonics of may affect modern river alignment 122, 124–5
characteristics 116–17, 118
the Andes 116
Basin centre, Tertiary and Quaternary sands and silts 116
collisional setting but other long-term effects 116–17
extent of tidal influence 116, 117
Guiana and Brazilian shields 116, 119, 121
Holocene floodplain 116, 118
mountain valleys, transition to meandering streams 116, 118
tributary-mouth lakes 116, 118, 121, 136
different river types 45–6
fracture patterns 121–5
alignment of lower River Negro 121–2
drainage networks reflecting deep basement fracturing 118, 121
gravity anomalies 122, 124–5
tilted fault block recognized 122
transfer zones 122, 123, 124–5
neotectonic deformation, effects on river alignments 122, 123, 139
percentage of sediment sourced from the Andes 46
secondary scale of tectonics affecting the river 117, 120, 121
evidence of tectonic deformation 121, 139
formations in basins pinch out near structural highs 120, 121
Gurupá Arch 117, 121
Iquitos Arch 117, 121
Jutaí Arch 117, 121, 126, 128
Monte Alegre Intrusion 117, 121, 122, 126
Purus Arch 117, 121, 122, 126, 128, 139
sediment transport, effects of variation in channel gradients and floodplain widths 126
tectonic construction 117, 119
tectonic setting 139
Amazon delta 78, 79
accumulation rates in subaqueous delta 86
multiple distributaries and islands 85
Amazon River 17, 31, 32–3, 102, 638
Amazon Cone (deep-sea fan) 117, 138–9
development 138
Upper Levee Complex (ULC) 138–9
Amazon Cooperation Treaty 572
association between channel gradient variations and channel and floodplain character 126, 128–30
anabranches common 126
bends less sinuous and longer downstream from the Negro 126, 129–30
dense network of floodplain channels 126
scalloped terrace edges 126, 129
straightened channel courses 126, 128
Basin straddles the Equator, effects 32
channel, position and alignment influenced by deep geologic structures 124–5, 132
controls on modern position of valley 117, 124–5, 139
drainage and sediment transport, gradual escape eastward 119

Large Rivers: Geomorphology and Management, Edited by A. Gupta
© 2007 John Wiley & Sons, Ltd
dry phases suggested in Brazilian and Ecuadorian rainforest regions 32
estimate of mainstem incision during LGM 116
floodplain channel density and width 126
and floodplain, influence of sea-level changes 135–9
average vertical accretion at the coast 130, 138
during the LGM 136–7
most accumulation on the delta plain 130, 138
sedimentation 138
floodplain, modern incomplete sedimentation of 129, 130, 138
SRTM data used for analysis 537, 539, 541
transition to estuary 130, 132
wider, and lakes 129, 132
gemorphology 125–6, 127–31, 132
foreland basin, tectonic deformation and development of terrace sequences 118, 125–6
large exchanges of sediment between channel and floodplain 125
sediment supplies, difference in estimates for different time periods 125
going to sea 57–9
Andean sediment transported northwest round Cabo Norte 58–9
in Orinoco delta region 59, 59
Holocene floodplain of the mainstem 116, 118, 119, 124–5
sediment deposition since sea-level began to rise 137–8, 137
increase in lakes downstream from Iquitos 127, 132
influences of climate change 132–5
large floodplain 31
major river still functioning as it did historically 40
massive avulsion of main channel 122, 123
mean annual precipitation variable across Basin 32
Middle Miocene drainage course 119
modern discharge, most generated in lowlands 135
MODIS data for surface sediment concentrations 544, 545
plate tectonics set fundamental characteristics 117, 119
sediment storage in lowermost valley 57
deposition of new sediment 53, 57
suspended sediment discharge at Óbidos 57
setting 49–52
ancestral river probably flowed westward 49
derivation of suspended sediment and fresh water 51–2, 53
flows between Guyana and Brazilian Shields 49, 52
sediment load measured at Óbidos 49, 51
still free from recognizable anthropogenic influence 115
storage and remobilization of floodplain sediment 52–6
destruction of floodplains by bank erosion 54
detailed view of 55, 56
implications for fates of sediment transported contaminants 56
lack of engineering helps understanding of processes 56
residence time in the floodplains 53, 54
sediment quantity involved in channel-floodplain exchanges 53, 54, 55
várzea, floodplains of Andean-derived sediment 52, 53, 54
structural control 2–3, 11
subtle impacts of tectonics on the landscape 132
suspended sediment load 91
valley underlain by deep east–west trending sag 117, 119, 120
water-surface elevation, gradient and discharge 543, 543
when crossing a structural high 126, 128
Amazon River, modern lithologic and tectonic influences 117–32
first-order Basin-scale influences 117, 119–21
fracture patterns 121–5
second-order transverse structures 121
structural influences on geomorphology 125–6, 132, 139
sand body formed by 100
Anabar Shield 225
Andean orogeny, altered structural character of entire Amazon Basin 121, 139
Andes examples of catastrophic-scale sediment production 46
Miocene uplift 116, 117, 117, 118, 119
source of fluvial sediments, and sediment storage 45–7
and Sub-Andes, supplying sediment to the Amazon Basin 119
Angara Shield 11
annual hydrograph, average Nile River 482, 482
strong seasonal peak 30–1, 33–4
Appalachian Basin, Kentucky interfluve surfaces, finer grained with palaeosol-bearing facies 106–7
multi-storey fluvial sandstone bodies 106
Asia 15
deltas investigation of 87
progradation 88, 88
east and southeast, large rivers of 32, 38–9
seasonally or perennially barotropic climates 31, 38
evolution of large river systems 8–9
freshwater, availability and quality of a concern 609
serious problems regarding some rivers 91
southern, all parts affected by monsoon driver 24
spillways and megalakes forming a temporary river 70, 70, 72
Assam Plains 381
active deformation of 379
anthropogenic activities, contributing to flooding 379
braided channel of Brahmaputra 382
devastating floods 378
still tectonically active 382
various flood control measures 379, 380
Aswan High Dam 263, 622
amount of discharge reaching the delta 279
anticipated impact on hydrology and sediment loads a concern 519
18 years after completion small maximum degradation 519, 521
armouring 521
coarse deposits underlie fine alluvial deposits 521
some water level lowering as far North as the Assiut Barrage 519, 521
effects of construction 484
impounds Lake Nasser 483
suspended sediment dynamics downstream from 283–4, 285
clay-sized material now major particulate fraction transported downstream 283
mean flux of suspended sediment passing through 283
trap efficiency of 282
Atchafalaya River 166, 167
capture of lower Mississippi River likely 152, 161, 162
Red and Ouachita rivers flow into 162
Australia 576
eastern, Upper Permian, thick sandstone- and conglomerate-dominated bodies 104–5, 104, 106
Bowen–Gunnedah–Sydney Basin System 105
previous interpretations 104–5
shown to belong to large meandering rivers 105
Landcare programme 577–8
River Murray Commission 571–2
replaced by Murray-Darling Basin Commission (MDBC) 572, 575
Upper Permian Moranbah and German Creek Coal Measures 107, 108
see also Murray-Darling Basin; Murray-Darling River
avulsion
Amazon River 122, 123
Brahmaputra-Jamuna River 399, 401, 402, 404, 414
Huanghe (Yellow River) Delta 89, 89
Lena River 230
Mississippi River 153, 161, 162
Willamette River 503, 504, 505
B
Baghmati alluvial plains, north Bihar 20
baroclinic vs. barotropic atmospheric conditions 29
bars and bar complexes, Jamuna River 407–13
braid bars 102, 411, 412, 445, 447
point bars 102–3, 241
Bengal Basin
deepening of 398
large magnitude earthquakes 398 and relative sea-level change 24
Bengal deep-sea fan 91, 347
sediment transport to 23
Black Sea
during the last glaciation 70
lower level during glacial times 254
main influx to 70
Blue Nile 287, 476
age hard to estimate 267–8
annual precipitation 483
and Atbara Basin 277–8, 476–7
climate and hydrology and the summer monsoon 277
deforestation, triggered soil erosion 282
Ethiopian headwaters, accelerated soil erosion 281–2
extensive areas of fan deposits 276, 278
Khashm el Griba Dam 281
main mechanisms influencing precipitation mechanics 277–8
major uplift, late Eocene 477
runoff from dominates Nile downstream from Khartoum 277, 277
storage losses to sedimentation 288
summer flood dominates Nile suspended sediment flux 280–1
catchment area 278
early Holocene, geomorphology summarized 270, 273
flood peak late August–early September 278
flows from Ethiopian Highlands 10, 13, 276, 277, 483
Highlands strongly dissected 278
generates lower Nile flood 35
Gezira fan complex (formation) 276, 278, 477
perched palaeochannels 269, 273
Gezira triangle 483
Late Pleistocene flood waters 269, 270
much of path structurally controlled 477
orographic rainfall associated with Indian Monsoon 477
reduced flows between Roseires and Khartoum 483
Roseires Dam 483
falling capacity due to sedimentation 281
suspended load 483
Bonneville Flood 66
Bonneville, Lake, palaeolake 66
Brahmaputra Basin
annual precipitation 377–8
seasonality of 377
contrasting climatic and hydrologic zones 377
control of physical and chemical weathering 389–91
chemical control over weathering 390, 391
controls over erosion rates and their variability 389
physical and chemical erosion rates high 391
runoff not only control over erosion 390
geological and climatic zones, contrasting 374–5
is pristine 373
outside Tibet, three seasons 377
tracing sediments in 382
weathering and erosions rates 373
Brahmaputra River 38, 102, 537, 538, 539, 540
becomes Brahmaputra in plains of Assam 374
characteristics of the channel 381–2
characteristics in the plains 382
variation in slope 376, 381
discharge decreased during LGM 38
dominated by monsoonal precipitation 37–8
intensified during early Holocene monsoon 38
Brahmaputra river system 373–91
bed load and weathering intensity 389
chemical weathering and erosion 386–9
Cenozoic global cooling 388
regional and global effects 373
silicate weathering 388–9, 391
silicate weathering rates and CO2 consumption for whole system 389, 389, 390
water chemistry 387–8, 387, 388
erosion and weathering 382–6
downstream variation of Sr, Nd and O isotope composition 383, 385, 385
Eastern Syntaxis Zone primary sediment contributor 385–6
isotopic compositions of sediments 382, 383–4
sediment and solutes, large quantities move oceanwards 382
flows along Indus-Tsangpo Suture 374
geology of the basin 375–7
Eastern Syntaxis 376, 385–6, 390
high plateau of Tibet 375–6
Himalaya mountains 376–7
Indo-Myanmar and Naga-Patkoi ranges (southern drainage) 377
Mishmi Hills (eastern drainage) 376
plains of Assam and Bangladesh 377
hydrology 377–8
discharge figures, Brahmaputra and main tributaries 378, 378
rainfall main source of water 378
sediment yield/erosion rate, various zones 386
individual zonal rates 386, 386, 386
isostatic rebound and intense, focused erosion in Eastern Syntaxis Zone 386
summary of long profile and cumulative discharge 374, 376
Brahmaputra-Jamuna River 395–430
applied geomorphology and engineering 423–7, 429
Bangabandhu Bridge 423–4, 424–5
bank erosion due to toe scour 423, 423
Brahmaputra Right Embankment (BRE) 423
effect of channel changes since 2002 424
Pabna Irrigation and Rural Development 426–7, 428, 429
prediction of how channel may evolve and change 426, 427
protective concrete embankment, Siraganj 424, 425, 426, 426
requires continual river engineering management 424
bars
common types 410–11
evolution of 411, 413, 413
frequently found attached to islands 407, 410
mid-channel bars 411, 413
sand braid-bar growth 411, 412
subsurface investigation by Ground-Penetrating Radar 102
bedform ‘classification’ 100
bedform types and dynamics 405–13
bed load, important in bedform creation 405, 406
large-scale bedforms 407–13
small-scale bedforms 405–7, 406, 408, 409, 410, 411
bifurcations, offakes and confl uences 413–14
bifurcation migration 413
channel abandonment as function of bifurcation angle 413, 413
channel confl uences, important sites of bed scour 414, 415, 416
channel offakes, significant during avulsion 414
Gorai offake study 414
catastrophic flooding, possible influences on 297
channel scale morphology and historical course changes 399–404
dramatic course changes, past 250 years 399, 400–1
possible avulsion 399, 401, 402
theories for triggering course change 399, 401
westward movement of Jamuna braidbelt 401, 403–4, 403
development of bankline curvature in the large-scale planform 403–4
initial planform after 1770–1830 avulsion 404
development of large-scale infrastructure within Bangladesh 397
dunes
large and macroturbulence 407, 411
smaller-scale bedforms (sand dunes) 405–6, 406, 408, 409, 410
Flood Action Plan 427, 429
floodplain sedimentation 414–18
important controls on local sedimentation rates 418
inundation and sedimentation, important for crop planning 414, 415, 418, 418
key role in controlling sediment yield to the ocean 418
net floodplain erosion 403
soil forming processes, east to west changes 414–15, 417
types of relief in Jamuna floodplain 414, 417
hydrolgy, sediment yield and channel size 398–9
Jamuna River hydrograph 398, 399
Padma River, highest sediment discharge 397
predominantly a braided river 398–9
changes in braiding intensity 404
the river 395–7
1998 flood, devastation caused by 395, 397
Bangladesh Flood Action Plan 397
grain size in 399
hope of predicting and understanding channel movement 397
increased intensity of flood damage 395
nodal points 404
rural economy relies on annual ‘normal’ floods 395
sedimentation, basinal setting and controls on 397–8
control of uplift and subsidence clear 398
controls by ‘fluvial loading’ 398
deepening of Bengal Basin 398
Jamuna River developed in region of significant tectonic activity 397–8
sedimentology of the Jamuna River 418–23
model of bar-top sedimentation 422–3, 422
seven styles of deposition found 418, 421, 422
use of ground penetrating radar and trench/core logging 418, 419–20
Teesta River as a tributary, date 404
Burdekin River
Ground-Penetrating Radar surveys over point bars 102–3
internal architecture of sand-dominated sector 103
last glacial lowstand channel 106
C
Caspian Sea, spilling through the Manych spillway 70
catastrophic glacial dam outbreaks 151, 495
Central Asian mountains, cataclysmic floods 70–1
Chuja-Kurai ice-dammed lake 70
Lake Baikal 71
Lake Issyk-Kul, an even larger ice-dammed lake 70–1
emplacement of outwash fan, mouth of Boam Canyon 70–1
Tuva palaeo-floods 70
Changjiang 9, 39, 102, See also Yangtze
dam construction 39
drainage at meeting point of India and Pacific monsoons 39
lower Basin affected by flow regulation and water transfer 39
serious problems from human activities 91
Changjiang Delta 82, 85
boreholes show increase in delta front progradation 90
evolution of distributary channels important 82, 89–90, 89
evolution reflects sea-level changes 87
not affected by avulsion 89
progradation of 39
sand-mud couplets in 85
sediment accumulation rates 87
channel geometry analysis technique, Lower Mississippi River 553–69
analytical approach and methodology 560–3
channel geometry analysis, parameter calculations 560–1
probability analysis 561, 562
spatial analysis 561, 563
temporal analysis 563
at-a-station channel geometry 563
archived results 563
results for 563, 564
channel geometry and analysis 563–8
average depth 564
cross-sectional area at LWRP and high flow 567–8
maximum depth 564, 566
spatial analysis 565, 568
temporal analysis, year-on-year changes 568
wetted perimeter and hydraulic radius 566–7
width 563–4
data acquisition and pre-processing 556–60
cross-section screening 559–60, 560
data projection 559
divided channels 557–8
Low Water Reference Plane (LWRP) of Mississippi River 556–7
pilot study reach 556
pre-processing procedure for hydrographic survey files 558–9, 558
separation of bends and crossings, technique 557, 558, 559
divided channels 557–8
in asymmetric cross-sections 558
Lower Mississippi channel geometry 554–6
adjustment responses post cutoff period 556, 556
Biedenharn and Watson model, overview of geomorphological response 556
can no longer adjust energy slope through planform adjustment 554
engineering modifications to improve flood control and navigation 554
geological drivers and behaviour of the river have changed 554–5
long-term balance between shortened and lengthened reaches 554
marked reduction in sediment carried 554
meandering planform 554
pre-cutoff period river a stable system 555–6
previous morphological adjustments have been inferred 555
Mississippi River and Tributaries (MR & T) project 553–4
initiated following 1927 catastrophic flood 553
spatial variability and adjustments 565, 657
temporal change in cross-sectional geometry 568, 569
temporal variability and adjustments 563, 566, 567
Channelled Scabland, ‘scablands debate’ 65
China
argument for not joining the Mekong River Commission 579
experts deny downstream impact on Mekong River from Xiaowan Dam 579
climatic change, past, fluvial responses
Ganga-Brahmaputra system 643–6
Grand Canyon 638–43, 640
Lower Mississippi River 646–9
Colorado pikeminnow endangered 213, 213
nursery habitat for 188
Colorado Plateau, gradient, valley width and channel form 191–3
debris flows and steep gradient of modern river, strong correlation 191
densest concentration of protected areas 183, 185
Holocene longitudinal profiles include convexities 191, 192
relationship between rock strength and width of alluvial valleys 192–3
fan- eddy complexes 193, 193, 640, 654
fixed meanders 188, 193
restricted meanders 188, 193
Colorado River 15, 30, 36, 40, 183–219
age of 189–91
two contrasting views 190
Bouse Formation, first arrival of Colorado River into Lower Colorado Trough 190–1
channel adjustment and change, 20th century 203–10
channel adjustment and river management program areas 205, 206
the river system within the Plateau 208–10
Colorado Plateau 640
hysteresis in sediment transport relations 203, 204
major source of fine sediment 203, 203
sediment delivery to delta is now essentially zero 203
Colorado Plateau river system 208–10
channel adjustment where capacity is less than supply 210
channel adjustment where transport capacity exceeds supply 208–10
dams control sediment and water flux of Upper Basin tributaries 208
dam construction 183
and dam operation, adverse effects on endangered fish 188, 213–14
effects in the lower river 186, 208
dams, large and almost complete elimination of sediment discharge 609
the endemic fishery 210–14, 219
endangered species 213, 213
introduction of non-native species 214
environmental management of the modern river 214–16
Endangered Species Act (1973) 214
Grand Canyon Adaptive Management Program 206, 215–16
MSCP, targets protection of six federally listed species 215, 217
opportunities for recovery of the delta ecosystem 216
SJRP, diversity of partners 215
UCR recovery program 214
flow highly regulated for water storage and HEP 36
the future 216–19
decommissioning of dams in upper basin possible 219
delta and lower river 217
demands for water and power 216–17
drought in the watershed 217
Grand Canyon ecosystem 217, 219
increasing demands for trans-basin diversions 217
interconnected transmission system 217, 218
requirements of Colorado River Compact 217
upper basin, rehabilitation opportunities 219
Glen Canyon dam, bed degradation downstream 209, 210
Grand Canyon 188, 189
evidence for onset of drainage establishment 190–1
fine sediment removed from recirculation zones 210, 211
hypotheses for formation of 191
possibility of by-passing fine sediment round Glen Canyon dam 217, 219
problems for GCDAMP in managing relict and artifact resources 217
spawning and summer water temperatures 214
Glen Canyon Dam Adaptive Management Program 206, 215–16
1996 controlled flood 202, 215–16, 217
attempting to maximize pre-dam and post-dam resources 215
expands scope of environmental river management 215
flood led to significant revision of dam management 216
includes representatives of diverse interests 215
later release of other flow regimes 216
Grand Canyon, fluvial response to past climate change 638–43, 640
downward-stepping suite of terraces 640, 641, 641
long-term incision well documented 640–1
major mainstem aggradation and incision 641
major phases of aggradation and incision by tributaries 641
potential preserved record highly fragmentary 641
rock shelters provide insights into palaeoflood history 643
sedimentological analysis, archaeologically significant areas 643
stratigraphic framework for eastern Grand Canyon 641, 642
Green River 187, 188–9, 188
confluence with the Colorado 188, 189
crosses Uintas through Canyon of Lodore 187, 187
entrenched meanders 188, 188
flows through the Wyoming Basin 187
Fontenelle and Flaming Gorge Dams 187
post-dam narrowing episodes 210, 212
upstream sources 187, 187
hydrology: post-dam 196–202
average runoff years, Hoover Dam releases barely fulfill commitments 199
baseflow release to Mexico fulfills treaty requirements 201
earlier regulation of stream flow in lower basin 199
Flaming Gorge Dam 196, 197, 208
Glen Canyon Dam, further alteration of hydrology 195, 199, 199, 200–1, 202
Hoover Dam, changed hydrology of Colorado River 199
hydraulic changes of upper river at Hot Sulphur Springs 196, 199, 200
stream flows into the delta 199
Theodore Roosevelt Dam 188
total basin reservoir storage increase, upper basin 186, 196
transformation of natural flow regime profound 196, 198, 199
water reaching the delta 201–2
hydrology: pre-dam 193–6
disproportionate role of mountain headwaters in mainstem flow 194, 194
divided into upper and lower basins 193, 194
mainstem flow predominantly from snowmelt 195, 195, 638
modern stream gauging, shift from large runoff to later lower runoff 195–6
periods of drought and periods of high runoff 195, 196
streamflow and suspended sediment measurements 194
wet and dry cycles in palaeoflood record 195
Imperial Valley and Salton Sea 207–8
creation of Salton Sea, maintained to present day 207–8
irrigation potential recognized 207
lake in the Salton Sink, tradition supported by evidence 207
the lower river 186, 208
early canal system 208
extensive degradation of the bed 208
use of steamboats 208
palæoflood records show periods of larger floods 36
peak annual flow dominated by snowmelt 36
physiography 156–9
channel entirely dewatered at Morelos Dam 189
crosses the Plateau in deep canyons 186
downstream crosses the Basin and Range mountains 186
flows in narrow canyons before entering the Basin and Range 188, 189
Green and Colorado rivers, from headwaters to sea 187–9
headwaters 184, 186
Imperial Dam, most of remaining flow diverted 189
Lake Havasu, water diverted 189
Lake Powell and Lake Mead reservoirs 188–9
Lower Colorado Trough 189, 190
Salton Trough, Salton Sea and Laguna Salada
river rehabilitation programs 183
sediment yield and transport, pre-dam and post-dam 202–3
substantial consumptive demands 183
see also USA, Worcester, ‘Hydraulic society in California: an ecological interpretation’
Colorado River Basin 196–202
Colorado River delta
the channels 205
conversion to agriculture 183
downstream intertidal zones 207
early biodiversity and abundance 205
endangered/threatened species 216
estuarine circulation today driven by marine evaporation 207
estuary marine species 212–13
and estuary, replenished only in years with larger runoff 183
increased salinity contributes to decline of the totaba and the vaquita 214
no fine sediment reaches modern delta 207
opportunities for recovery of the ecosystem 216
Rio Hardy perennial due to return agricultural flows 207
river flow diverted from 207
significant ecosystem recovery 216
small part of the ecosystem has recovered 183, 216
Colorado River salmon 212
Columbia River Basalt Group (CRBG) 495
Congo River 34–5, 293–308
Angolan and Shaba Highlands, geology and geomorphology
Kasai Shield 301–2
Katanga-system, sediments rich in raw materials 302
Asande Rise, geology and geomorphology
ferruginous and cuirassed planation surface 300
Mbonou amphibole-gneiss complex 300
not morphologically pronounced until mid-Tertiary 302
Precambrian magmatic and metamorphic rocks with greenstone belts 300
Atlantic Rise, geology and geomorphology
at least four episodes of mountain building 301
existing structures refolded by pan-African orogenesis 301
later (Pliocene?) dammed course of the Congo, lake survives as Malebo Pool 298, 301
Oligocene to Miocene epeirogenetic movements 301
Palaeozoic mountain chain resembled a peneplain in Gondwana times 301
period of plate collision and marginal deformation 301
central Congo Basin, geology and geomorphology 299–300
Congo Lake hypothesis 299
deepened by epeirogenic crustal movement and later deformation 299
Permian coal forming gymnosperm imprints 299
rainforest-covered basin centre since aridity during the LGM 299–300
sediments mainly Carboniferous to Permain or Mesozoic 299
Congo fan core suggests time for major discharge pulse 35
Congo mouth and the submarine canyon 306–7
canyon deeply incised into the continental shelf 306, 306
early hypothesis 306–7
gravity based processes suggested 307
possible tectonic origin 307
possibly initiated by turbidity currents 307
course 293–9
complex sources 293
evolution of 302–3
Congo-Lualaba, bends in wide curve crossing the Equator twice 302
course alteration probably initiated at Miocene–Pliocene transition 302
hypothesis, palaeo-Congo partly followed current Asande Rise drainage 297, 302
Proto-Congo, original drainage from South to North 302
reaching the Atlantic for the second time 302–3
flow regime 303
certain long-term records available 303
determination of seasonal runoff pattern 303
mean annual discharge 303, 305
two flow regimes depending on geographical location 303
gleology and geomorphology of the basin 299–301
and its economic importance 307–8
Democratic Republic of Congo a potentially rich country 307
economic use locally restricted by falls and rapids 307
hydropower facility at Inga Falls 307
importance of railways 307
Matadi–Kinshasa section a major barrier 307
lower course
becomes tidal at Boma 299
crosses Atlantic Rise 299
deep sea fan and submarine canyon extend into the river mouth 299
descends in three-stage section of falls and rapids to Matadi 299
Matadi to the Atlantic, part of an estuarine coast 299
middle course
crosses savanna-covered Batéké Plateau 298
Kasai River joins at Kwamoth 298
large tributaries substantially increase discharge 298
Malebo Pool, Brazzaville and Kinshasa sited on stepped terraces either side 298, 298
natural national border between Brazzaville and Kinshasa 293
rise of the slave trade 293
rises on western shoulder of East African Rift 10
seasonal migration of ITCZ and mean annual precipitation 34–5
solid, suspended and dissolved load 303–6
early estimates not systematically determined 303
an exceptionally clean system 306, 308
most of dissolved load silica or bicarbonate 306
organic content high 305
regular measurements 1987–1992, total fluvial and solute output 305
traditional migration pathway for centuries 293
upper course, Congo-Lualaba
c character change with added
discharge 296
further tributary, Lukuga River
296
influenced by warping and
faulting, Bukama to
Kisangani 294, 294, 297
Kisangani marks end of the
upper course 298
Luvua River, source in northern
Zambia 294, 296
majority of tributaries enter
from the east 296
Nzilo Gorge, a strongly incised
narrow valley 294
stepped topography 293–4
Ubundu to Kisangani, rapids,
cataracts and falls 296,
298
Upemba Graben, meanders
through a series of marshy
lakes 294
very complex with steep
gradient 293, 294, 295
Western Rift Rise, geology and
geomorphology 302
Miocene, fracture tectonism,
strong uplift and
volcanism 302
continental collision belts, large
rivers in 9–10
continental margin stratigraphy 17
cratonic catchments/areas 25
cratonic settings, rivers 2, 10–11
doming associated with mantle
plumes 10
crustal thickening by magmatic
differentiation 21

dam construction 39, 653
Colorado River 183, 186, 188,
208, 213–14, 609
ecological impact, Zambezi River
311, 320–1, 320
Mississippi River 171–4
Willamette River 500, 500, 511
Yangtze River 616, 619, 621
Dandara Formation 476
Danube delta 242–5, 254
biodiversity threatened 243
common habitat types 243–4
Danube Delta Biosphere Reserve
244
delta habitats and environmental
problems 243–5
modern maps show three main
distributary channels 242–3,
243–4
mosaic of shallow lakes and
channels 243
primary causes of ecosystem
decline 244–5
salt water intrusion 245
Danube River 11, 37, 235–57, 583
asymmetry of catchment and
valley 240, 241
catchment 235, 236
Danube River Protection
Convention 572
headwaters 238–9
formed by Breg and Brigach
238–9, 239, 248
human impacts 254–7
brief history of channelization
254–5
Gabcikovo Barrage, Slovakia
256
pollution 256–7
Rhine–Main–Danube Canal
256
lower Danube 242
Iskár, a braided tributary 242
large-scale deposition below the
Iron Gate 242
river terraces 242
west of the Dobrogea Hills 242
yazoo rivers 242
middle Danube 241–2
before barrages coarse bedload
arrived via left-bank
tributaries 241
entering Pannonian Basin 241
Great Hungarian Plain,
meanders and point bars
241
leaving the Pannonian Basin,
reaching the Iron Gate
Gorge 241–2, 242
Little Hungarian Plain 241
river follows tectonic Buda
Thermal Line 241
Visegrad Gorge (Danube Bend)
241
regularly loses water to the Rhine
system 239–40, 239, 240
upper Danube in Germany and
Austria 239–40
breaks through the Swabian
Jura 239
downstream from Regensburg,
large alluvial fans and
terraces 240
elevated Upper Molasse sands
240
enters Swabian-Bavarian basin
at Sigmaringen 240
tectonic control increases along
Austrian section 240
Wachau Gorge and Vienna
Basin 240
water and sediment 235–8
annual discharge to Black Sea
235, 237
channel conditions variable
237
estimates for transported
sediment 237–8, 238
graded longitudinal section
237, 237
two periods of flooding 237
Danube valley evolution 245–54
the delta 254
development of delta lobes
254
first gulf barrier development
254
present gulf barrier development
254
lower sequence accumulated
during the Holocene 254
lower section 253
evolution of Romanian
(Wallachian) Lowlands,
controls on 253
Iron Gate, recognized as an
antecedent valley 253
middle section 251–3
Carpathian Basin, ancient
drainage 251–3, 251–2
Danube–Tisza interfluve,
alluvial deposits 253
formation of an anastomosing
system 252, 253
Great Hungarian Plain, tracing
ancient river courses 253
Little Hungarian Plain 251–2
Miocene age of deltaic deposits
253
modern development
interrupted by arid spell
251
tectonic movements, variable
height of delta, alluvial
fan and terrace deposits
253
Visegrad Gorge, origin of 253
upper section 245–51
Alpine Foreland geomorphic
surface 249
development of the Aare-
Danube 245, 247, 248
evidence of channel shifting 249
class Plio-Pleistocene channel changes 249
tectonic processes and development of three major European river catchments 245
terrace development 250–1, 250
Vienna Basin subsidence 250–1, 250
deep-sea fan systems, S Asia, important climatic role 23
delta classification 79–82, 83
asymmetry index A, for wave-influenced deltas 79, 81
on basis of coastal environment 81–2, 84
fluvial-dominated deltas 77, 79
mixed tide- and wave-influenced (type 2) deltas 81, 81, 83–5, 84, 85
tide-influenced (type 3) deltas 77, 79, 81, 82, 84, 85
use of quantitative data 79, 81–2, 84
wave-influenced (type 1) deltas 77, 79, 81, 83, 84
delta evolution 87–90
changes in channel course and of distributaries 88–90
response to Holocene sea-level change 87–8
control on initiation 87
relative sea-level change after initiation 87
delta progradation
Asia 88, 88
changes to river-mouth environment 90
Changjiang Delta 39
and coastal environment change 90
facies succession 86
delta front to delta plain succession 86
Mekong Delta 84–5, 90
deltas 15, 17, 24, 40
borehole sediments, radiocarbon dating 97
definition, and delta components 77–9
Gilbert-type delta 77–8, 78, 79
glaciocluvial 39–40
large river 7
problems of sediment supply 90–1
morphology 80, 81, 82–5, 82, 84
sediment accumulation rates 86–7, 91
impact of Holocene sea-level changes 87–8
vary considerably on different timescales 86–7
sediment budgets and sediment supply to the oceans 91
sediments and sediment facies 85–6
delta front sediments 85
delta plain 85
peaty facies 85
prodelta facies 85
subaerial 78, 91
subaqueous 78
delta front 77, 78, 79
prodelta 77, 79
see also large river deltas, classification, architecture and evolution
developing countries, river management in 581–3
capacity 581–2
data analysis and interpretation, skills lacking 581
lacking due to insufficient funding 581
management skills lacking 581–2
trained personnel few 581
environmental impact assessment processes for managing river basins 574
lack of inclusivity in government 582
need for rapid development 582
development strategies will be different 582
donor emphasis on poverty reduction strategies 582
opportunity to choose different development paths 582
river restoration projects 576
subsistence use 582–3
compensation for subsistence users difficult 583
extent often poorly understood and documented 582–3
disturbance geography, Murray Darling Basin 601, 603–4
dome-flank drainage 10, 12, 13, 21–2
preservation 22
Dongting Lake, Yangtze River 467, 624
1998 flood, flood peaks at 461, 463
decreasing role in flood modulation 620
decrease in sediment trapping 620, 621
extensive reclamation and siltation 467, 619–20, 620
shrinking due to siltation 464
wetland reclamation weakening flood alleviation capability 467
drainage type complexity 11–13
drylands, large rivers of 35–6
interannual variability in peak discharge 32, 35
E
East China Sea
decline in sediment supply, decline in primary production 621–2
studies, controls on valley fills in the region 24
Eastern Mediterranean
course of Nile determined by tectonic framework 265–6
effect of base level fall on Nile River 265–7, 267
carving of deep bedrock canyon 265–7, 267
importance of the Nile pre Aswan Dam 279
Nile Delta and coastal zone 284–7
costal erosion and sediment redistribution, major concerns 284
division into Damietta and Rosetta channels 284, 286
human impact on delta drainage network 284, 286
largest depocentre in the Mediterranean region 284
main sources of sediment post-
Aswan Dam closure 284
sediment budget at the coast 284
pattern of Nile sediment dispersal
284, 287, 287
Pliocene sea levels, marine gulf in
Nile Valley 267
presence of sapropels in pre-
Quaternary record 267
records of Nile behaviour 273
sapropel deposition and enhanced discharge 273, 284
sediment supply to 187, 284, 284–7
El Niño years, drier and warmer in
Amazonia 133
ENSO (El Niño–Southern
Oscillation) circulation 30, 33, 36
affects precipitation and river
flow in the Amazon Basin 132–3
and floodplain deposits in Bolivia 637, 637
and hydrological variability in the
Murray-Darling Basin 591
river flows and sedimentation
patterns sensitive to subtle
shifts 133
erosion processes, controlled by
climatic effects 13
erosion/denudation, primary controls on
98
Ethiopian Highlands 10, 13, 276, 277, 278, 483
accelerated soil erosion in 281–2
Ethiopian Tableland 472, 474
Eurasian Ice Sheets 68–70
Khvalynian palaeolake 69, 69
Lake Mansi palaeolake 68–9, 69
Murray-Darling River, historical
31
Ob, Yenesei and Lena rivers, contemporary and historical
39
floodplain sediment, storage and remobilization 3, 52–6
floodplain sedimentation 414–18
flow regulation and channel alteration, effects of 31
fluid discharge, complex relationships with sediment 24
fluvial lithosomes, large, reinterpretation as ‘incised
valley fills’ 105–7
Fly River Delta 90
front sediments 85
foothills-fed river systems 11, 12
functional process zones 594–5, 600–3
G
Gandak-Kosi interfan, shallow
alluvial architectural studies 20
Ganga Delta 362–5
accelerated phase of sediment
transportation and deltaic
deposition 366
many distributaries become tidal
 creeks 362, 365
subsurface, coarse sandy fluvial
channel deposits 366
surface 366
three rivers combine 362
upper delta 365
see also Ganga-Brahmaputra Delta
Ganga foreland basin
dominated by transverse river
systems since the Pliocene 13
Middle Miocene to Middle
Pleistocene
southward shift of depocenter
11–12
an ‘under-filled Basin’ 12–13
tectonically active 348, 356
Ganga plains
alluvial architecture governed by
monsoonal rainfall
fluctuations 20
distal interfl uves, site of
floodplain accumulation 21
interfluve successions 19, 20–1
large agricultural population
dependent on groundwater 38
Marine Isotope Stages (MIS) 3–5,
period of strong fluvial
activity 20–1
occurrence of inhomogeneities,
differential sensitivity to climate change 21
western, no development of
megafans 21
Ganga River 9, 11, 38, 347–68
alluvial architecture of upper and
middle course 18, 18, 20
current geomorphic processes
summarized 365–6
changes in channel and bar
morphology 358, 362, 366
changes perceived on a decadal
scale 366
entrenched within a cliff-
bounded alluvial surface
365–6, 366
discharge dominated by
monsoonal rain 37–8
enters delta at Farakka, two main
distributaries 347, 348, 349
fed by glacier- and snow-melt 38
heavy metal and pollutants in
sediment 356
anthropogenically induced
heavy metal enrichment 356
background concentration of
heavy metals 356
hydrology 347–53
annual flooding by all Ganga
Plain rivers 352–3
hydrograph at Farakka 350, 350
main sources of river discharge
350–1, 350
river discharge varies
seasonally 348, 350, 351, 351, 352
south-west monsoon brings
most rain 347–8
mineralogy and geochemistry of
sediments 355–6
chemical weathering of
sediments in Ganga Plain 356
common heavy metals 355
major clay minerals in lower
reaches 355–6
major clay minerals in upper
reaches 355, 356
sand fraction mainly quartz 355
the plain and the river 356–62
channel and active floodplain
entrenched 357–8
channel braided 358, 358, 359,
362, 363
distorted meanders and
complex bar-channel
system 360, 363
Ganga megafan and Piedmont
fan 357
Ganga River Valley (khadar) 356
higher plain adjacent to valley,
the bangar 356
in Himalayas 356, 359, 361
luminescence ages 357
plain a combination of variety
of alluvial surfaces 356–7,
357
plain represents shallow
asymmetrical depression 356
sediment transfer 358–9
upper Ganga Plain 357, 359,
361
valley and channel forms along
the river summarized 359,
359–60
valley incised in regional
upland surface 352, 357
present day position consistent
with erosion-driven
Himalayan uplift 13
Quaternary evolution of 366–7
beginning of aggradation in
Ganga channel 367
present active river 352, 366
sediment transfer 353–5
bed load 354–5
bed load grain size
characteristics 354–5, 355
bed load and suspended load
consist mainly of fine sand
355
dissolved load 353
overlap between bed load and
suspended load grain size
354, 354
suspended load 353–4
source and early course 347, 348
summary of system behaviour,
late Quaternary 646, 646
utilization of and associated
problems 367–8
effects of religion and culture
367–8
Farakka barrage, diversion of
water to the Hugli 368
large quantities of water drawn
for irrigation 368
much sediment comes from
mass failures in Himalayas
and intense soil erosion
367
quality of surface and
groundwater fast
deteriorating 367
water management structures
affecting the hydraulic
regime 367
water quality 353
amount of dissolved oxygen
diminishes downstream
353
contamination 367–8
traditionally considered pure
353
Yamuna, largest tributary 347
Ganga River system 24
controlled by Himalaya collision
tectonics 347, 348
effects of changes in south-west
monsoon precipitation 23
Ganga-Brahmaputra Delta 38, 49,
51, 78, 79, 85, 87, 91, 347
attempts to quantify partitioning
of sediment load 91
changes in discharge of the
system 367
current aggradational state 88
influenced by glacioeustatic
changes 24
sediment yield to between 11 and
7ka 23
sedimentation rates measured by
radiochemical techniques 86
Ganga-Brahmaputra system, India
and Bangladesh 6
fluvial response to past climate
change 643–6
annual monsoon cycle varied
over time 643
modern discharge regime 643
Gezira Fan Formation (fan complex)
269, 273, 276, 278, 477
Glacial Lake Agassiz see Agassiz
megalake
Glacial Lake Missoula, flood waters
followed Cascadia submarine
channel 66
glaciation, affecting some large
rivers 14
Mississippi River 14, 151–3
Quaternary glaciation 148–50
Yukon River 14
glacioeustasy 23, 24
Glen Canyon dam 215–16, 217,
219, 654, 654
bed degradation downstream from
209, 210
further alteration of hydrology
195, 199, 199, 200–1, 202
Grand Canyon, Colorado River 188,
189, 190–1
fluvial response to past climate
change 638–43, 640
Glen Canyon Dam Adaptive
Management Program 206,
215–16, 217
Guiana and Brazilian shields 116,
119, 121
Guiana current, influence of 85
H
Hawkesbury Sandstone (Triassic)
alluvial architectural study 103
generally accepted explanation
103, 104
headwater mountains, sustain
discharge and supply sediment 3
Himalaya
active fluvial transport of
sediment from 46
deformed N edge of Indian
continental plate 334
glacioeustasy 23, 24
Arbor Volcanics 377
Lesser Himalaya 376
Siwalik Hills 376–7
growth and development of large
river systems 21
growth and development of the
foredeep 21
major drainage reorganization
21
tectonic loading associated
with Main Boundary
Thrust 21
large rivers draining south 37–8
seasonally barotropic climates
31, 37–8
precise estimates of catchment
uplift possible 17
progressive truncation of
longitudinal courses of some
rivers 9
rise due to plate collision 449
Himalayan foreland basin 344,
643–4, 644, 645
Ganga-Yamuna interfluvies,
sedimentological,
stratigraphic and
geochemical framework
644, 646
most recent aggradation and incision cycle corresponds well to precessional cycle 644
Siwalik Group 22
Hoover Dam, Colorado River 1, 199
Huanghe (Yellow River) 38–9, 98
delta 80
avulsion resulting in changing river mouth locations 89, 89
decreased flow, ecological and engineering problems 38
a wave-influenced delta 83
flow decreasing due to climate change, diversion and regulation 38
historical record, long time span 38–9
ice floods may occur 38
sediment load 51, 83, 86
increased, causes of 90
most from Loess Plateau 38
suspended load, much deposited on the delta plain 91
human impact 653
on Nile Delta drainage network 284, 286
in the Yangtze Basin 610
human impacts, Danube valley 254–7
channelization, a brief history 254–5
Ferenc Canal 254–5
Fertő-Hanság natural disaster 254
flood control 254, 255
Iron Gate problem, solved by dams 255
navigation always a problem 254
regulation has increased incision 255
Gabcíkovo Barrage 256
damming groundwater reservoir of the Szigetköz 256
environmentally controversial 256
implementation only partial 256
problem, sharing water between Slovakia and Hungary 256
pollution 256–7
nutrients and heavy metals 257, 257
organic compounds, most dangerous pollutants 257
salt concentrations in the delta 257
Rhine–Main–Danube Canal 256
key section the Main–Danube Canal 246
human influence and increased runoff 132
in the lower Colorado River 208
on the lower Mississippi 166–7
Neolithic settlement, Dongola Reach, Egypt 272, 279
and sediment supply 90, 91
hydraulic civilizations 487–8
Nile River 485–8
hydrological cycle, and large rivers 7
hydrology and sediment dispersal, modern large rivers 15–17
characterized on basis of precipitation, length and discharge 15, 15
data include some anthropogenic influence 17
data pertain to modern settings 17
hydrological and sediment supply characteristics, selected rivers 15–17

I
ice-jams and log-jams
Lena River 228, 230
study on the Milk River 230–1
impoundments
Mackenzie River 40
reduce sediment load and water discharge 2
incised valley fills 99–100
definitions of 105
rigorous application of criteria necessary 107–8
India-Asia collision, and river systems of South, Southeast and East Asia 9–10, 9, 449
Indus Canyon
deeply incised 338
initiation and progressive development 339
relict feature of pre-Holocene relief 337
turbidity currents transport sediments through to Indus Fan 339
widens and transforms to large channel-levee systems at mouth 339
Indus Delta 336–8, 345
abandoned channels reworked into dendritic tidal creeks 337, 338
alluvial plain, probable time of formation 336–7
drumstick-shaped barrier islands 338, 338
Holocene, vast deltaic complex 336
human-induced changes 342–4
destruction of agriculture by saline intrusion 343, 344
eastern tide-dominated coast stays stable 344
effects of anthropogenic change seen 343, 343
release of water to delta considered wastage 342
river contributes little sediment 343
widespread coastal retreat and deepening of tidal inlets 344, 344
Indus shelf, compound clinoform morphology 338, 344
lobe delta formed under conditions favouring rapid expansion 337
lower delta plain, flooding during summer monsoon 337, 338
much of rural population depend on fishing for income 341
outer shelf largely nondepositional during Holocene 337
sediment dispersal by tidal and wind-driven currents 337–8
Indus foreland basin, dominated by longitudinal river systems 13
Indus River 36, 333–44, 537, 538, 539, 540
diversion due to tectonic processes 11
drainage basin, geology and hydrology 334–5
continued tectonic activity, erosion and uplift 334
formation of Sindh and Pakistan Shelf plains 334, 344
formation of volcanic arc, collision with active Asia margin 334
lower Indus carries reduced discharge and sediment load 334–5
region arid to semi-arid 334
environmental change 342
diminishing mangrove forest 342, 343

Index

environmental change 342
diminishing mangrove forest 342, 343
evolution of 335–6
 followed course along Indus-Tsangpo Suture Zone 336, 344
Katwaz Delta 336
large-scale capture of Punjabi tributaries 336
larger changes seen near mouth 336
one of oldest documented rivers 335
five major tributaries, of great importance to agriculture 335
flow in basin now extensively altered 36
Indus Basin Irrigation System (IBIS) 33
the Indus dolphins 341–2
initiation probably after Indian–Eurasian Plate collision 333
lifeline for country’s economy and culture 334
precipitation and streamflow highly variable and seasonal 36
seasonal and annual river flows highly variable 333
source lies in Tibet 333, 335
submarine Indus system 338–9
upper Indus
 a braided stream interrupted by gorges 335
 source of large quantities of sediment 335
water management 339–41
 construction of barrages and canals 339–40, 340
 ecology in lower Sindh and coastal areas affected 340–1
engineered structures affect water discharge 341, 342
engineering structures reduce sediment load 340
ground water contribution to irrigation falling 339–40
high irrigated to rain-fed land ratio 339
mangrove system degraded 340, 345

problems of waterlogging and salinity 340
sea water intrusion 340, 340, 343, 344
variation in below Kotri 341, 341
Indus Submarine Fan 333
Indus-Tsangpo Suture Zone 336, 344, 374, 375, 376
industrialization, late, advantage of 582
integrated water resource management (IWRM) 576
interfl uves 19, 20–1
discontinuities recognizable by palaeosols in coastal plains 20
Intertropical Convergence Zone (ITCZ) 29, 32, 34–5, 38, 319
cyclical migration of and past wetter periods 480
White Nile Basin 477
and hydroclimatology of the Amazon Basin 131, 132
isostatic rebound 386
J
Jamuna River see Brahmaputra-Jamuna River
K
Kalahari Formation 313
Karoo Supergroup 200
Kissimmee River, Florida, restoration 576
knickpoints 13, 381
Kolyma River, forms estuary into Arctic Ocean 11
Kosi River, example of radial fan 18, 20
Kruger Experience, South Africa 588
L
large river basin hydrology 29–32
large river basins are contingent systems 494
diverse controls on channel form 491
international politics in 578–9
long overlapping histories of human and natural disturbances 491
large river deltas, classification, architecture and evolution 17, 24, 75–92
large river management, technical and political challenges 571–83
1995 Agreement on the Cooperation for Sustainable Development of the Mekong River Basin 573
Amazon Cooperation Treaty 572
Australia, River Murray Commission 571–2
catchment significance 574–5
influence of riparian vegetation 574, 574
land managers, committed to amelioration programmes 575
water quality management needs catchment management 574–5
Central Commission for Navigation on the Rhine 572
commitment and political influence 580–1
gains and losses for all in cooperative basin use 580
need for connection at right political level 580–1
Committee for the Coordination of Investigations of the Lower Mekong Basin 572–3
Danube River Protection Convention 572
environmental impact assessments 574
floodplain significance 575–6
floods trigger responses in riverine and floodplain biota 575–6
hydrological regime, ecological significance of 575
flow regime and maintenance of river channel structure 575
link between biota and catchment 575
International Commission for the Protection of the Rhine (ICPR) 572
international politics in large international river basins 578–9
International Convention in the Law of the Non-Navigational Uses of International Watercourses 579
international law of little practical assistance 578
principle of equitability 578–9
principle of prior appropriation 578
principle of sovereign rights (Harmon Doctrine) 579
upstream countries may deny negative impacts 579
upstream countries use principles of sovereign rights or equitable use 579
management challenges 573
management of large rivers in developing countries 573, 573, 581–3
capacity 581–2
lack of inclusivity in governance 582
need for rapid development 582
subsistence use 582–3
Mekong River Commission (MRC) 441, 443, 451, 573, 579
need to develop coherent catchment management programmes 571
Nile Basin Initiative (NBI)(was Teconile) 572
political challenges 576–9
developing the vision for the future 577
effectiveness of large river basin organizations 579
resources 579–80
and donors 580
not necessarily limited to direct funding 580
river basin management organizations (RMBOs) 571
technical challenges 574–6
integrated water resource management (IWRM) 576
Tennessee Valley Authority (TV) 571
value judgments in environmental decisions 577–8
conflicts of values between smaller and larger groups 578
consensus more easily achieved in small basins 577–8
developing a shared vision difficult 577, 578
stakeholders and value judgments 577
large river systems characterized on basis of hinterland characteristics 11
dome-flank systems 10, 12, 13
duration of and the rock record 22
evolution–Wilson Cycle link 8
flowed entirely subocean, NAMOC 8
flowing across stable platforms 12, 13
flowing along and within structural grain of fold belts 12, 13
growth and development of 21–2, 24–5
linked to tectonic processes and long climatic variability 21
lithospheric flexure and subsidence play major role 25
topographic barriers promote focused denudation 21, 25
hydrological changes in 24
integrate signals from large areas 627
in long-term history positioning and configuration may change 11–13
longitudinal and transverse systems 11, 12
modern, tectonic settings 8–11, 9, 10
preservation of deposits 99
sea level, tectonic and climatic controls on 22–4
sediment supply a complex function 99
large river systems and climate change 627–56
brief history of ideas 627–31
concept of average Earth system conditions 628, 631
correlation of terraces to glacial periods 628, 629
definition of base level 627
development of 14C dating 628
development of MIS nomenclature and timescale 628, 630
emergence of tectonic geomorphology 631
fluvial response to climate change issues 628, 631
glacial–interglacial cycles, correlations with fluvial landforms more sensitive 628
graded stream concept 627, 628
Milankovitch orbital forcing 628
new geochronological methods with longer time windows 631
sea level change as a singular causal mechanism 628, 629
‘square-wave’ model for glacial–interglacial climate change 627–8, 629
continental interiors, uplift subsidence and climate change, fluvial responses 634–7
alluvial valleys and plains, net aggradation over geologic time 636
application of radiogenic isotope geochronology 637
conceptual model, large river systems from source-to-sink 634, 634
flights of terraces may reflect climate control unsteadiness 635
fluvial responses to Holocene-scale climate 635, 636
inferred links, El Niño–Southern Oscillation and floodplain deposits in Bolivia 637, 637
mixed bedrock-alluvial valleys 634, 635, 636
rapidly incising bedrock valleys 634
response of floods to climate change 636–7
sediments delivered to subsiding basins 635, 636
continental margins, importance of relative sea-level change 637–8, 639
fluvial response to climate change, general concepts 631–8
conceptual model, fluvial responses to external forcing 631, 632
continental margins, importance of sea level 637–8
discharge regime-sediment supply relationship, channel response to change in 631, 632
response of upstream and downstream reaches to climate change 633
fluvial response to past climate change, contrasting examples 638–49
Colorado River in Grand Canyon 638–43
complications introduced by large river systems 631
fluvial systems, timescale needed to reach equilibrium following perturbation 631, 633
Ganga-Brahmaputra system, India and Bangladesh 643–6
Lower Mississippi River 646–9
past to future 649–56
dam construction, significant impacts of 653
future climate change, coupling of river systems with 656
model predictions of effects of climate change on river systems 652–3, 653
new methods and tools will define relationships more precisely 648, 652
sensitivity of river systems to climate changes 652
themes deserving specific mention 652
large river systems, geology of 7–28
complexity of drainage types 11–13
tectonic settings 8–11
variability in alluvial architecture 17–21
large rivers
abundance of deep scours in river beds 103
abundance of large-scale cross-bedding 102
approach for interpreting multiple impacts 493–5
associated with growth of human civilizations 1
climatic settings and climatic variability 13–15
defined 2, 97, 98
deposits in the rock record 22
discussions based on top twenty-four rivers 2, 3
distinguishing human impact from intrinsic evolution and change 491
draining south from the Himalaya 37–8
of the drylands 35–6
ecosystems assumed to be more complex than small river ecosystems 587
of the equatorial regions 32–5
evidence in sedimentary record may be unnoticed or misinterpreted 4
extending lessons learned on the Willamette 511–13
channel evolution is inevitably contingent 513
features determining sensitivity response to drivers of change 511–12
hierarchy of factors controlling pattern and evolution of rivers 511
human interventions, important implications of sequence and timing 512
influences on channel condition 512
role of human activities on geomorphic evolution of 512
large length allows flow across range of environments 2
have undergone large shifts in discharge 3–4
high-latitude 39–40
perennially baroclinic climates 31, 39
historically source of immense natural wealth 40
interconnection between flood pulse, sediment flux and riverine ecology 1
large changes in discharge, flow depth and bed condition recorded 100
location 7, 8
longevity of courses 99
major 75, 76
meandering, seen as scaled-up versions of small meandering streams 101, 102
in mid-latitude regions 25, 37
modern hydrology and sediment dispersal 15–17
scaled to modern discharge levels 100
sedimentology and stratigraphy 100–3
transport high volumes of sediment to the oceans 97–8, 98
record influences not apparent in small streams 115
require large precipitation over the basins 3
role of regional plate tectonics and local structures in 97
scale invariance in facies architecture of sediment bodies 100, 101
and the sediment transfer system 7
with significantly large deltas 17
large rivers, ancient
deposits of vs ‘incised valley fills’ 105–7
diagnostic criteria for recognizing incised valley fill 105–6
disparity in facies associations not diagnostic 106
important from an exploration perspective 105
not all incised channels are incised valleys 106
sedimentology and stratigraphy 103–5
scale invariance may be present in a range of elements 103
large rivers from space 535–50
basin characteristics 536–7
basin shapes and extents 536, 539
electronic noise and interference from canopy cover 536–7
general structural patterns 536, 538, 539, 540
Brahmaputra River 537, 538, 539, 540
geomorphology 539–42
advantage and disadvantage of remote sensing data 540
four types of effort 540, 542
Indus River 537, 538, 539, 540
mapping sediment concentration 542–6
able to derive absolute concentration in mgs per
litre for surface waters 542, 544
success of linear mixing technique proved for
several instruments 544
Mesopotamian Marshlands,
change detection 548–50
circumstances and severity of human impact 548–9
recent destruction of large area 548, 549
remote sensing images, extreme changes in conditions,
 thirty year period 548–9, 549–50
unexpected consequence of US–Iraqi confl ict 549
remote sensing instruments 535, 537
footprint required for data acquisition 535
improvement in cloud detection techniques 536
spatial and temporal resolution 535, 536
thermal properties 546
valley configuration 537–9
Amazon floodplain, SRTM data used for analysis 537, 539, 541
data related geometry of each river 538, 539
valley patterns within context of basin shape 537, 540
water extent and inundation mapping 542
SAR and SLAR, C band responsive to water under vegetation 542, 544
water-surface elevation, gradient and discharge 542
acquisition of critical data sets 542, 543
Hayden hydroclimatological codes 538, 542
Zambezi River, water type mapping on floodplains 546, 547
Last Glacial Maximum (LGM) 24, 38, 39–40, 67
Amazon River 116, 139
assumptions required for bed incision estimate 136–7
deepth of incision below present level 136, 137
lower sea level effects 136, 137
sedimentation in estuary and offshore 136
upstream limit of base-level effects, areas influenced by Purús Arch 137
Andes drying immediately after 134
higher sediment load for lowland Amazon and Madeira rivers 135
periods of large discharge as glaciers melted 40
response of rivers to 40
 timing of in the Andes and Amazon 133
White Nile, changing fl uvial geomorphology during 268, 269
Laurentide Ice Sheet 66–8
achieved maximum extent during LGM 67
development of enigmatic landforms beneath 68
released megafloods carving spillways 67, 67
three major drainageways proposed 68, 68
Lee Formation (Westphalian A) 103–4
Lena Delta Nature Reserve 225
Lena floodplain alases and mature alas valleys 227
fluvial thermokarst 227
massive ice and ice wedges in permafrost 227
subaerial delta 227, 228
Lena River 11, 39–40, 225–32
drainage basin 225–7
Aldan River higher energy tributary 227
Archaean continental nucleus 225
asymmetric floodplain 227
four Pleistocene terraces in Yakutia 227
three major tectonic units 225–6
upper valleys incised 226
Verkhoyano-Kolimean folded region 226
floodplain, delta and periglacial landforms 227
flora and fauna, great diversity of 225
fluvial dynamics and landforms 227–31
anastamosed branches 229
at Aldan junction 229, 229
extremely episodic fl ow regime 228, 228, 232
floodplain downstream, multiple channel patterns 229
ice-jams and log-jams 228, 230, 230
May 2001, worst fl ood for 100 years 228–9
may be compared with an anabranching river 229–30
not a major hydrosystem 228
spring ice break-up migrates downstream 228
impact of climate change on the hydrosystem 232
increase in global air surface temperature 232
river fl ow reinforced by winter precipitation 232
thinning of river ice cover 232
important contribution to Laptev Sea 225
main tributaries 225
periglacial environment 227
central Yakutia, much not glaciated 227
controlling spectacular floods 227
preservation of deep permafrost 227
thermal erosion, impact on alluvial forms 231–2
and fast bank retreat 231, 232
main channel bank retreat 231, 231
thermo-erosive niches 231–3, 232
unfrozen ground present under the bed 227
Levantine Basin
dispersal of Nile-derived suspended sediment across 284, 287, 287
sediment dynamics changed by Aswan High Dam 287
levees, reduce frequency of fl oodplain inundation 167, 576
Lhasa Block 375–6
Little Ice Age 36, 37, 40
longitudinal trunk drainage systems
11, 12, 18–20, 18
Lower Mississippi River, see also
channel geometry analysis
 technique, Lower Mississippi
River
Lower Mississippi River, fluvial
response to past climate change
646–9
glacial periods, drainage area
much enlarged 647, 647
initial model for evolution of
LMV and revisions 647
northern LMV, key aspects of
history summarized 647, 648, 649
Ohio River provides most water
for 647
response to early-middle
Holocene sea-level rise 649, 651
southern LMV, detailed history
during last glacial period less
well known 648, 649, 650
Lower Mississippi River
geomorphology 165–7
1927 flood, led to new
management system 166
channel slope and stream power
pre- and post-cutoff 166
levee development 166–7
little convexity or concavity on
longitudinal profile 165
local influences 165–6
pre-regulation, division into 24
gemorphic reaches 152, 165
relative stability of river
morphology 165–6
result of diversion of waters into
the Atchafalaya 167
river shortening due to
straightening 167
wetland losses in coastal
Louisiana 167
Lower Mississippi Valley 636
alluvial responses to upper valley
Holocene environmental
change 160–2
avulsions have been common
161
delta lobes switch location 161
evolution of meander belts and
delta lobes may be related
161, 161
possible cause of lower valley
avulsion 162

sediment load from Missouri
basin 161
base level influences and upstream
aggradational effects 151, 153
Embayment region extent 148, 151, 152
Holocene meander belt
development 153
late Wisconsin glaciation and
wide braided river 151
OSL dating of alluvial deposits
151
response to Upper Valley
glaciation and flooding
151–3
suspended sediment reduction
caused by dam closures 174, 175
Lower Yangtze 457, 460, 468
connected to several large inland
lakes 460
transfer of sediment 466
widespread occurrence of medium
and medium fine sands 466, 466

M
Mackenzie River 11, 546, 546–7
discharge peaks 40
drains north to the Arctic Ocean
40
strongly affected by glacio-fluvial
processes 14
temporary glacial lakes
impounded by retreating ice
40
Magdalena River, large
anastomosing river 101, 103
magmatic underplating 10
mantle plumes
continental doming over 324–5
and dome-flank drainage 10
rivers owing origin to
development as dome-flank
systems 13
role in development of some
continental drainage patterns
21–2
mega ripples, scaled to water depth
100
megadeltas 75, 77
current, formed during Holocene
3
megafans 18, 20, 21, 22
Ganga megafan 357
Himalayan foreland basin 644

megafloods
late Quaternary 4, 65
and mega rivers, extra-terrestrial
71–2
Mars, largest known
megafloods 71–2, 71
Venus 71
terrestrial, glacial 66–71
Central Asian Mountains
70–1
Cordilleran Ice Sheet 66
Eurasia Ice Sheets 68–70
Laurentide Ice Sheet 66–8
properties of 72
Mekong Basin 437–43, 582
1995 Agreement on the
Committee for Coordination of
Investigations of the
Lower Mekong Basin
572–3
deforestation and shifting
cultivation 452–3
environmental degradation, effects
on fish and people 453
geology 437, 438
basin lithology, Chinese border
to Vientiane 437
lower region, varying
thicknesses of alluvium 437
volcanic rocks exposed 437
hydrology 439–40
large floods in lower basin late
in wet season 439, 441
rainfall, strongly seasonal 439
river flow reflects seasonality
of precipitation 439, 440
tributaries extremely seasonal
439, 442
land use 440–3
Committee for Coordination of
Investigations of the Lower
Mekong 441
concern over dam building in
China 443
controversy over utilisation of
waters 443
highlands, forest or shifting
cultivation 440, 452–3
population density low 440
wet rice growth 440
Mekong River Commission
(MRC) 451, 573, 579
agreed vision 441, 443
primarily rural 451
relief
Annamite Chain 437, 439, 440, 445
Korat Plateau 429
narrow steep-sided valley in Yunnan 437
Tonlé Sap 437, 439
valley widens near Vientiane 438, 439
Mekong Delta 81, 85
delta progradation 84–5, 90
rate roughly constant 90–1
drainage modified by canals 448
flooding only affects upper delta 441, 448–9
formed mostly after mid-Holocene 448
important for fish and shrimps 453
little significant change in sediment transport to most fertile region 452
origin 449
subaerial delta
lower delta 448
upper delta 448
Mekong River 9, 13, 39, 435–53
and basin, resource and management 451–3
dams built on tributaries, HEP an exportable resource 451–2
fish important in the wetlands 453
Mekong Cascade – never built 451
Mekong River Commission, performance is crucial 451
in China
slope failure, from structural variation and vegetation destruction 443
steep structure-guided river 443
stripping and redistribution of sediment if dams built 452
dimensions 437
downstream from the Chinese border 438, 443–9, 443
effects of wet-dry season difference 444
erosion and sediment transfer 450–1
overbank sedimentation 450–1
sediment accommodation space limited and localized 450
sediment sources 450
sediment transfer seasonal and episodic 450
stratigraphic bank section described 448, 451
estimated sediment discharge relatively constant 39
freshwater dolphins 453
géomorphie history 449–50
curious features possible related to river evolution 449–50
erosional features in rock, presumption of past larger floods 450
plate collision and rise of the Hiamalaya 449
Quaternary shifting of coastline across South China Sea 449
sharp bends explained by fault reversal 449
strengthening of monsoon in Early Holocene 449
structure-guided river, location determined by extrusion tectonics 449
time limits for evolution of the river 450
location 435, 436
Lower Mekong River, substantial subsistence fishing, data difficult to find 582–3
river basin history 435, 437
serious problems from human activities 91
Tonlé Sap area 576 especially threatened 453
total discharge, much supplied by monsoon rainfall 39
Unit 1 crosses active Nam Ma Fault 444
effect of Mae Chan Fault 444
nature changes several times 443–4
Unit 1a 444
Unit 1b cross-channel rock ribs 444, 444
and the Loei Fold Belt 444
three sharp elbows 444
Unit 1c and 1d 444–5, 446
Unit 2a, dry season, braid bars near Vientiane 445, 447
Unit 2b, bigger depositional forms 445
Unit 3 445–7
U-bends with scour pools 446, 447–8, 449
Unit 4 scour pools 447
zone of waterfalls 447
Unit 5, alternating between straight and anastomosing channels 446, 447
Unit 6, alternating between south-flowing and west-flowing reaches 447
Unit 7 moves freely across wide floodplain 446, 447–8
overbank flooding in the rainy season 441, 448
wet season flow reversal in Tonlé Sap river 448
Unit 8 the delta 448
Messinian Salinity Crisis 251, 265
Middle Mississippi River, hydrology 530–2
approval of plan for regulation (1881) 530–1
changing channel morphology significantly affects hydrology 530
deepened for navigation by levee building 531–2, 531
largest flood discharges 531, 531, 532
Middle Yangtze Basin 1998 flood, flood peaks at Dongting Lake 461, 463
delineated by two tectonically-controlled subsidence basins 458, 460
flood events are standard hazards 467
Middle Yangtze River channel may become major sediment source for downstream 467
inputs from three new sources 460
sediment sources and sinks 463–6
aggradation at the Jingjiang reach 463, 465
aggradation in and reduction of wetlands 464, 466
Dongting Lake shrinking due to siltation 464
much sediment deposited below the gorges 463
suspended grain-size distribution (May 2000) 463–4, 465

Mississippi Delta 78, 79, 80, 83, 85
accumulation rate estimated 86
channel switching 77, 88–9, 89
coastal land loss 654–5, 655
pioneering studies 75, 77
six major delta complexes built 80, 87
Mississippi River 10, 11, 37, 622, 624, 638
armour 521–3
1932 bed sampling 521, 522
1989 bed sampling 521–2, 523
gravel-armoured sand bars, semi-permanent channel control 520, 522–3
impact of gravel removal 523
lower river subject to shortening and channel constriction 521
significant decrease in gravel between samplings 522
average discharge to Gulf of Mexico during deglaciation 151
diversion due to glaciation 14
dramatic post-glacial changes in discharge 37
history goes back to Late Jurassic 2
human impact and changes in hydrology and discharge 37
hurricanes and fragility of a naturally subsiding alluvial-deltaic plain 654
late Wisconsin displacement to present position 153
a long-lived river 22, 99
loss of meltwater floods 37
may take shorter route to Gulf via Atchafalaya River 152, 161, 162
Missouri River provides much sediment 37
Ohio Basin provides most of discharge 37
Old River Control Structure 151, 161, 162, 174
sedimentological shift due to incision 152, 153
Mississippi River system 145–77
active since at least late Jurassic 146
aeolian sand sheets and dune complexes 145
Cenozoic drainage evolution 145–7
lower river flows through Mississippi Embayment 146, 148
major uplift in Rocky Mountain Region 146–7
drainage basin 145, 146
20th century dam closures, effects of 171–4, 173
discharge along lower Mississippi, dominant role of Ohio River 171, 172
diurnal temperature range decreasing 177
early Holocene valley aggradation, mid-continent 156
east to west reduction in runoff across western part 167, 169
eastern part dominated by mainly humid climates 167
forest dominated areas 154, 155
grassland dominated areas 154, 155
grasslands sensitive to climate change 156
large scale vegetation biomes 154
late Holocene, stabilization of alluvial fans 156
present-day sediment discharges to Gulf of Mexico 174
rapid increase in runoff in Rocky Mountains 167, 169, 170
runoff disproportionately from humid sector 170–1, 170
temperature and precipitation 167, 168–9
TVA, downstream flood protection, HEP and economic assistance 171, 183
western part dominated by semi-arid climates 167
drainage in Cretaceous times 149
during the Holocene 153–62
climate and vegetation change 153–6
drier mid-Holocene climate mid-continent 155–6
fluctuation of the prairie-forest ecotone 154
Holocene alluvial episodes 155, 156
Holocene flood episodes in the upper valley 156–60
lower valley alluvial responses to upper valley environmental change 160–2
maximum Holocene dryness 154
mid-continent environmental changes 155–6
Great Plains 156
alluviation of 146–7
headwater drainage modification in response to regional glacial advance and retreat 148
pre-Quaternary northern drainage divide unknown 148, 148
previously drained northwards 145, 146, 147
incision across dolomite cuestas 149
influence of Quaternary glaciations 148–50
incision of Mississippi River 149
late Wisconsin glaciation, development of proglacial lake 148, 149–50 ‘out of accordance with structure’ 148, 149
temporary diversion of river by Illinoian glaciation 149
topography associated with movement and stagnation of glacial ice 146, 147, 150
Wisconsin Stage drained most of southern margin of Laurentide ice sheet 150
large input of sediment from the Missouri 145
large input of water from the Ohio 145
large upper Mississippi floods 177
loess cover 145, 147
modern hydrology 167–74
climate, runoff and floods 167–71
dams: flow modification and sediment storage 171–4
morphology of the river 162–7
lower Mississippi River 165–7
upper Mississippi River 162–5
Ogallala Group (west Nebraska)
small differential uplift 146
proglacial lakes and extreme floods 150–1
catastrophic failure of ice dam, Glacial Lake Wisconsin 151
channel incision promoted by catastrophic floods 151
drainage of proglacial lakes caused river incision in cuestas 149
evidence for upper Mississippi large flood 150
flooding from Glacial Lake Agassiz 150
flooding from Glacial Lake Duluth 150, 151
incision of new river course along Illinois-Iowa border 148, 149–50
‘Kanakee floods’ 151, 153
regime for upper river dominated by degradation 150
summary and outlook 174–7
alteration of natural land cover 174, 176
flooding/pollution by sediments and chemicals major problems 176–7
heavily modified by human activity 170
possibility of serious flooding along lower river 177
upper river, responses to anticipated global warming 177
Teays-Mahomet preglacial valley system 147
see also Lower Mississippi Valley
Missouri River, armour 517–18
effects of small amount of gravel in channel sediment 517–18
Fort Randall Dam 622
depth of erosion greatly reduced by armour 518, 519
estimates of scour depth anticipated 517–18
high releases will cause future degradation 518, 520
river replacing sediment load by bank erosion 518, 520
mixed-fed river systems 11
mountain-fed river systems 12
high discharge and sediment loads 11
Murray Group 590
Murray-Darling Basin, physical diversity and assessment 587–605
assessing physical condition of rivers at catchment scale 596–7, 598
(Aggregate) Environment Index 596, 597, 598
Catchment Disturbance Index 596, 598
Habitat Index 596, 598
Hydrological Disturbance Index 596, 598
Suspected Sediment and Nutrition Load Index 596, 598
the Basin 588–91
catchment area 588–90
complex evolution 590–1
four main climatic regions 591
hydrological variability feature of the rivers 591
seasonal pattern in rainfall 591
Darling Basin 589, 590
central, inland drainage system associated with deposition 590
Darling River, structurally-controlled 590
fault-bound sub-basins 590
valleys along eastern rim are old 590
functional process zones 594–5, 600–3
(Aggregate) Environment Index 601, 602–3
Anabranch, Meandering, Armoured, Confined, Mobile, Pool zones 602
Anabranchied, Distributary, Low Confined, Mobile Zones 600
Armoured, Confined, Pool Zones 600
Catchment Disturbance Index 599–600, 601
Habitat Index 599, 600–2
Hydrological Disturbance Index 599, 600, 601, 602
Suspected Sediment and Nutrition Load Index 599, 600, 601, 602
geography of disturbance 601, 603–4
catchment disturbance 601, 603
degradation of riparian vegetation 603
headwater reaches substantially or severely modified 604
highly fragmented habitat disturbance 601, 603–4
most rivers moderately to substantially modified 604
potential for some restoration 604
several patterns emerge with the SSNLI 604
spatial patterns of habitat disturbance, many unassessed reaches 603–4
Murray Basin 590
Cadell Fault and Cadell Block 590
headwaters in wet Southeastern Highlands 590
Lachlan Geosyncline 590
subsidence, infilled with marine and fluvio-lacustrine deposits 590
physical condition of rivers 598–603
natural resource managers challenged to make assessments 588
possible ways of targeting management initiatives 604–5
use of precautionary principle by government 605
science challenge for assessing the basin rivers 591–6
application 593, 594–5, 596, 597
functional zones identified 593, 594–5, 596, 597
hierarchy theory 591–2, 592
river characterization focused at functional process zone scale 592, 593, 593
Simpson Diversity Index values for Murray and Darling basins 593
typical river characterization hierarchy 592, 593
Sustainable Rivers Audit 604
Murray-Darling River 36, 572, 575
Basin contains much of Australia’s agricultural land 36
change recorded in Murray Basin circa 15–13 ka ago 36
historical flooding 31
mean annual precipitation 36
river redgum trees, germination 576

N
natural ecosystems, positive relationship between scale and complexity 587
Niger River, unusual crescent-shaped course, Guinean Shield to the Atlantic 13
Niger River Basin, modern, sediment yield 135
Nile Basin 261, 262, 277
allocation and use of waters, source of international political tension 263
Aswan High Dam and other major dams 263
ever Holocene humid phase 272
highest point, Mount Stanley 275
issue of climate change and its effect on water discharge 288–9
Nile Waters Treaty 263, 288
river environments 263–5
five differing regions 262, 263, 264, 265
shaped by tectonic events of great antiquity 265, 266
unique context for study of global climate change and its impacts 289
watershed has expanded and contracted 266, 267, 268
wide range of sedimentary archives 268
Nile Delta 80, 83, 87
current aggradational state 88
deposition in outer delta plain 85
development of barrier–lagoon system 86
and the eastern Mediterranean 284–7
delta and coastal zone 286
sediment supply to the Eastern Mediterranean Sea 284–7
onset of modern discharge regime 271
sediment core records changes in basin hydrology 480
strontium isotope record, Manzala Lagoon 272, 274
shows decline in Nile flows 273
significant sediment flux from White Nile valley 272–3
Nile River 15, 35–6, 261–89, 471–88, 622
ancient beginnings preserved in Nubian Sandstone 22
armour 518, 520–1
anticipated and actual impact of Aswan High Dam 519, 520–1, 521
climate and climate change 477–81
aridity developed during late Pleistocene 477, 480
below the Atbara course crosses hyperarid Sahara 477, 479
Cenozoic to Pliocene, climate much wetter 477
climatic chronology based on Saharan oases records proposed 480
climatic conditions Pleistocene to present 481, 481
early Holocene, generally wetter climate in tropics 480, 481
precipitation concentrated in two regions 477, 478
confluence zone and desert Nile from Khartoum 278–9
cataracts, Khartoum to Aswan 279
last normal discharge to reach the delta 279
softer Nubian sandstone basins between cataracts 273, 279, 474
Dongola Reach, northern Sudan 279
geomorphology of 272, 273
Neolithic use of river environment 272
permanent settlement concentrated on west bank 272
early origins and the late Miocene and Pliocene Nile 265–8
connections to headwaters of Blue Nile and White Nile 266, 267
early integration of sub-Saharan drainage with Egyptian Nile 267
effect of Tertiary tectonic events 267
the integrated Nile 267–8
late Miocene Nile Canyon in Egypt 265–7, 474–5
sediment-filled valley downstream from First Cataract 475
effects of construction of Aswan High Dam 484
in Egypt, geologic history 475–6
dropping base level with north-flowing streams 476
Early Miocene, development of river flowing along present Wadi Qena 476
Fayum depression, outcrops of early Oligocene fluvial sediments 476
headward-cutting north-flowing river captured Qena system 476
retreat of Tethys Sea and uplift in the west 475–6
uplift from doming preceded Miocene uplift 475
flow in Basin highly regulated 35
geologic history 471, 475–7
Blue Nile and Atbara, Ethiopia 476–7
Egypt 475–6
tectonic uplifts and sea-level changes 475
White Nile, Uganda, Kenya and Sudan 475
human impacts 289
development of diversity of cultures 261
Dongola Reach 272, 279
and hydraulic civilizations 485–8
attention drawn to changing social and economic values of water 488
Butzer’s analysis 486–7, 487
Butzer’s four ‘systemic variables’ 487
comparisons with smaller systems of water management (hydro-agriculture) 486
concept of environmental determinism and rise and fall of civilizations 486–7
major features of the concept 485–6
modern management a complicated task 488
Nile, Tigris-Euphrates and Indus civilizations 486, 488
hydrology 471, 481–4
annual hydrographs, White, Blue and Main Nile at and below Khartoum 482, 482
the Blue Nile 483
mean annual discharge, downstream locations 479, 481
modern manipulation of flows, higher flows at Aswan 479, 481–2
Nile flows in Egypt 483–4
rainfall over sources of the Nile 471, 478
the White Nile 482–3
Lake Nasser and Lake Nubia 283
nature of three storage zones 282
‘the New Nile Delta’ 282
trap efficiency 283
large dams and almost complete elimination of sediment discharge 609
late Pleistocene and Holocene 268–73
20 000 to 12 500 14C years BP 268–70
5000 14C years BP to present 272–3
12 500 to 5000 14C years BP 270–2
long-term historical flood series 279
long-term observation of stage and river flow
Palermo Stone 484
Roda gauge, Cairo 483–4
low annual volume of flow 31, 35
modern, hydrology and geomorphology 274–9
annual runoff 271
Blue Nile and Atbara Basins 277–8
White Nile Basin 274–7
northern Sudan
earlier link to Nile, higher water table 480
large early Holocene palaeochannels 272
palaeochannels associated with Neolithic sites, Northern Dongola Reach 272
physiography 471–8
the alluvial Nile 474–5
the cataract reach 474
division into five sub-basins 471–2, 473, 474
the Ethiopian tableland 472, 474
the Lake district 472
lowlands of southern Sudan 472
possibility of fragmentation by river capture 475
river basin management and global change 287–9
major water resource development projects 288
Nile flows and riparian environments can change abruptly 287
political tensions over water allocations surfaced in 2004 288
wide range of resource management issues 287–8
supports domestic and economic needs of many people 261, 263
suspended sediment budget 279–84
modest 279, 280
production and delivery vary in tributary basins 279–80
reservoir sedimentation 281–2, 283
sediment peaks in August at Aswan 281
summary of major findings of sampling programmes 281
suspended sediment dynamics downstream from Aswan High Dam 283–4
a unique record 484–5
high and low flows related to variations in global circulations 485
‘Hurst effect’ 485, 485
sequence of high and low flows (Joseph effect) 484–5, 485
see also Aswan High Dam; Blue Nile; Eastern Mediterranean; White Nile
Nile sediment system, behaviour influenced by Quaternary climate and hydrology fluctuations 268
Niobrara River, hydrology 530
aggradation at mouth of 530
North America, ice-age spillways feeding megaflood rivers 67, 72
Nubia Formation (Nubian Sandstone) 22, 273, 279, 474, 476
O
Ob River 11, 39–40
Ob, Yenisei and Lena rivers, Siberian Arctic 39–40
ice dams important sources of contemporary and historical flooding 39
pattern of drainage changes since LGM 39–40
periods of aggradation and erosion 40
Ogallala Group 146
Okavango River 320, 327
Orange River system 10, 13
considered to have developed in the Jurassic 21–2
Orinoco Delta 81, 89
natural levees and scroll bar topography 85
Orinoco River 17, 47–9
alluvial plains (llanos) built on Andean foreland 47
Andean-derived sands lose a quarter of mass to solution 49, 51
flowed between rising Andes and Guayana Shields 47, 47
llanos function as immense sediment storage compartment 49, 50
sediment discharge 47, 48
orogenic belts 2
active, catchments with high sediment yields 17, 46
P
Parana River 13
longitudinal drainage 11
peak unit discharge 31
interannual variability in 29–30, 32
reflects precipitation-generating mechanisms 29
periglacial environment, Lena River 227
permafrost 227
Peru, Andean, arid conditions in Late Glacial and Early Holocene 134
plains-fed river systems 11
plate tectonics
and the Amazon River 117, 119, 132
influence on continental-scale rivers 97, 115
regional 97
Platte River, hydrology 524–30, 524
1860, trend of average channel width unusual 525, 525, 526, 527, 528
between Brady and Grand Island, variability through time 526, 527, 528, 528
large number of no-flow days until 1942 528, 529
narrowed between 1860 and 1995, adjustment differed between reaches 525, 528, 529
characteristics of North and South Platte 524
current condition differs from those prior to settlement 524–5
development of explanations for width changes 1860–1995 525, 529–30, 529
documenting vegetation encroachment into the channel 525, 525
precipitation 32, 36, 277–8
annual
Blue Nile 277–8, 483
Brahmaputra Basin 377–8, 377
Yangtze Basin 460, 461, 614, 618–19, 618
Brahmaputra River 37–8, 377–8
and ENSO circulation 132–3
and formation of large rivers 3, 13–14, 24–5
important effects of mountain barriers 14
Mekong Basin, seasonality of 439, 440
Mississippi
river flow reflects seasonality 439, 440
and temperature 167, 168–9
and river flow, affected by ENSO 132–3
south-west monsoon, and Ganga River System 23, 37–8
winter, Lena River 232
Q
Quaternary river systems
channel incision and extension 99
Pleistocene glacio-eustatic cycles, 'conveyor belt model' 99
Quaternary sea-level changes, able to penetrate far inland 115
R
radial fans 18, 20
rain shadows 14
relative sea-level changes 87
impacting large river systems and their deltas 24
importance of, continental margins 637–8, 639
Renmark Group 590
reservoir sedimentation, Nile River 281–2, 283
reservoirs form effective sediment traps 281
Rhine River
Alpine Rhine later diverted into Rhine System 248–9
capture of uppermost Danube in foreseeable geologic future 249
Central Commission for Navigation on the Rhine 572, 580
extent during LGM 24
headwaters extended South through headward erosion 248
International Commission for the Protection of the Rhine (ICPR) 572
Rhine-Meuse river system, an anastomosing system 103
rift settings, large rivers in 10, 324
Rio Grande, rift a pull-apart structure 10
river management, in developing countries 581–3
capacity 581–2
lack of inclusivity in governance 582
need for rapid development 582–3
subsistence use 582–3
river management, of large rivers 4
river-channel shift
caused by short-term and long-term processes 89
linked closely to delta formation 88–90
rivers
assessing physical condition at catchment scale 596–7, 598
strong trend to manage as ecosystems 588
rivers and humans – unintended consequences 517–32
armour 517–23
care necessary when modifying rivers 532
hydrology 524–32
prevention of problems, consideration of concerns 532
S
St Lawrence River 11
Salween River 9, 17
Sao Francisco River 17
scale, in interpretation of incised valley complexes 106
scale invariance 100, 101, 103, 107
sea levels, global, stabilization of 40
sea-level changes, influence on Amazon River and floodplain 135–9
deposition of sediment since sea-level began to rise 124–5, 137–8
fluctuating throughout the late Cenozoic 138
a sediment budget for the coastal region 135–6
sedimentary deposits of inner coastal region 138–9
sedimentation in estuary and offshore, different during LGM 136–7, 137
sea-level fluctuation, and accumulation of thick fluvial sandstones 107
sediment deficit segments, Colorado Plateau river system 208–9, 214
debris-fan affected segments 209–10
sediment discharge 39, 174
almost eliminated by large dams, Nile River 609
large 76
Orinoco River 47, 48
past, estimation of 90–1
Yangtze River
anthropogenic impacts 619–21
climatic impacts 613, 614, 614, 616–19, 618
sediment load
Huanghe (Yellow River) 38, 51, 83, 86, 90
part stored in extensive floodplains and subaerial deltas 91
reduced by engineering structures, Indus River 340
Yangtze River 613, 615, 620, 621
sediment particles, fate determines fate of many contaminants 56
sediment pulses 24, 57
sediment storage
during periods of excess yield, and preservation of fluvial channel bodies 99
prolonged, chemical consequences of 47
sediment supply 17
problems of 90–1
to the oceans, and sediment budgets in deltas 91
sediment yield vs. unit discharge 16–17
Himalayan drainages (Cluster 2) 16
relatively low sediment yield at river mouth (Clusters 3 and 4) 16–17
rivers with highest values of both (Cluster 1) 16
sediments, fluvial
from the Andes, storage and movement 46–7
most derived from regions of greatest tectonism 46
soil particles, tale of two! 59–60
Solimões megashear 121
Solimões River 126, 128–9
Solimões River
former alignment 122, 123
gradient varies 117, 126, 127, 139
Sông Hồng (Red) Delta 81, 84, 91
South American Convergence Zone (SACZ), effects on the Amazon Basin 132
supercontinents and creation of large rivers 8
suspended sediments
Amazon River 51–2, 53, 57, 91
Lower Mississippi Valley 174, 175
the Nile 279–84, 287, 287
supplied by large rivers 97, 98
Swabian Jura, percolation of Danube waters 239–40
between Immingden and Fridingen 239–40, 239, 240
karst leads to percolation to the Rhine 239
T
tectonic deformation 299, 301, 495
Amazon Basin 118, 121, 122, 125–6, 139
Assam Plains 379
continental-scale, controls physiographic setting of large rivers 116
tectonic uplift
Barotse floodplain linked to 327, 329–30
processes may generate catchment/drainage for large rivers 9
and sea-level changes, Nile River 475
tectonics
collision tectonics and Ganga River system 347, 348
as a control on large river Basins 22, 23, 24–5
extrusion tectonics 449
secondary scale of, Amazon Basin 117, 120, 121, 122, 126, 128, 139
Tectonism, source of most fluvial sediment 46
Three Gorges Dam, Changjiang (Yangtze) 1, 463, 612, 619, 620–1
one of objectives flood control 460
and planned water transfer 467–8
threatened impact on downstream channel and coastal ecosystem 610
tides, neap–spring cycles, influence on delta front sediments 85
topographic doming, associated with mantle plumes 21
Trans-Himalaya Plutonic Belt (TPB) 376, 382
transverse drainage systems 11, 12
U
UK
Durham Coalfield, one anomalously thick sandstone body 107, 108
Upper Carboniferous large fluvial sandstone bodies 107
uniformitarianism 65
Upper Levee Complex (ULC), Amazon River 137, 138–9
deposited during latest Pleistocene 138
Upper Mississippi River
climatic changes in 154–5
dams, little impact on reducing large floods 171
deep entrenchment of alluvial fills 153
drainage basin, Keokuk, ‘Great Flood of 1993’ 158, 171
Holocene fans developed at tributary mouths 153–4
Holocene flood episodes 156–60
anomalous large variations in sand 158
anomalous warm periods 159
large overbank floods 157–8, 157
paleofloods, equivalence with modern floods 159
proxies suggest episode of smaller floods 157, 158–9
proxy records show abrupt shift to larger floods 157, 159
tendency towards increased extreme short-term variability 160
variations in 157, 158
weak out-of-phase relation, snow-dominated floods 157, 159
most floods involve runoff from snowmelt 159
progressive Holocene alluviation 154
Upper Mississippi River morphology
162–5
convexities in longitudinal profile 162–3, 163
division into four segments 163–5
first segment, river headwaters reach 163
low gradient and intense meandering 163
fourth segment 165
major downcutting and sediment erosion 165
referenced as the ‘open river’ section 165
second segment 163–4, 287
2.75 channel project, effects of 164
island-braided system 163
sandy bed load/sand bars made navigation improvement difficult 163–4
use of wing dams, closing dams and bank armoring 164
third rather complex segment 164–5
Keokuk Gorge, navigation problems with lower rapids 165
Quaternary diversion and incision 164
sediment yields increase southward 164–5
Upper Yangtze 457, 458
headwaters originate on Tibetan Plateau 460
Yichang gauging station, evaluates variations in sediment budget 462
USA
examples of thick multi-storey fluvial sandstone bodies 106
Tennessee Valley Authority (TVA) 571
westward migration and irrigation projects 517
v valley formation and filling, large river basins, simplified model 22, 23
valley forms, complexly filled, cyclothemic Pennsylvanian record 107
Warming trends, late Holocene 40
White Nile 13
20,000 to 12,500 14C years BP 270–2
enhanced rainfall, overflow of lakes Victoria and Albert 262, 270–1
already active during middle Pleistocene 475
basin hydrology and geomorphology 274–7
central Sudan arid and semi-arid 275
effects of early/mid Tertiary uplift 475
geological evolution complex 275
Lake Victoria, important control on White Nile discharge 275
long profile 264, 275
southern headwaters, Equatorial lakes region 262, 264, 274–5, 472
stratigraphic evidence of recent fault displacement, lakes region 472
subsidence of major sedimentary basins 475
two wet and two dry seasons 477
western mountains of the Lake Plateau wet 275
cautions needed when draining major wetlands 288
contributions low during Little Ice Age 36
fed by overflow from Lakes Victoria and Albert 35
flood peak 278, 278
headwaters 482
hydrology 275, 275
rainfall over Lake Victoria 482
Ugandan, isolation from 268
Holocene fluctuations 35–6
Jonglei Canal 483
projects in the Sudd remain unfinished 288
lower valley changing fluvial geomorphology during LGM 268, 269
increased water fluxes from Blue Nile 271, 272
large flood discharges 269, 271–2
relatively young 267
terminal Pleistocene White Nile lake 271, 272
palaeolake near Khartoum 475
shows Victoria and Albert overflow, Middle Pleistocene 480–1
Sudd swamp (The Sudd) 472, 482–3
biochemical filter 281
evaporation losses from 275, 276, 277
stretches from Juba to Malakal 264, 276, 277
suspended sediment concentration lower in flood waters 278, 281
Willamette River 491–514
agricultural development (1895–1932) 499
increased development of the floodplain 499
riparian forests logged for paper production 499
approach for interpreting multiple impacts on large rivers 493–5
channel responses to drivers of channel change 493
drivers of channel change 493–5, 493
floods, initiating and promoting accelerated channel change 494
floods as trigger to disturbance cascades 494
planform change through floods 494
scale of any activity critical 494
channel change, measuring rates and styles 502–3
assessment of relative dominance of each erosion style 503
channel polygons, classified according to erosion style 502
channel width, transect and centrelines used 502
meander migration 502–3, 513
measuring channel migration 503
migration rates, avulsion rates and other metrics calculated 502
data and methods for measuring historical channel change 501–3
measuring rates and styles of channel change 502–3
development of 2-D flood model 503
early settlement (1850–1895) 498–9
avoidance of floodplains 498–9
Corps of Engineers began channelization of river 498, 499
floodplain lands increasingly used for agriculture 499
riparian logging 499
steam boat transportation required snagging 499, 499
early work emphasized role of humans on channel change 492
flood history 498, 500–1, 501
extreme events 500, 501
flood control dams lessened flood magnitudes 498, 501
peak flows associated with rain-on-snow events 500
gеological setting in relation to channel stability 495–7
bank height also controlled by geological features 497
flood basalts form local uplands 495
flows against older, more indurated margins 497, 497
Holocene floodplain 497, 497
Missoula Floods 495
other resistant units locally important 497
Pleistocene, braided rivers 495, 496
regional incision and anastomosing planform, Holocene 497
Tertiary marine sandstones form valley basement 495, 496
on historical channel change 507–13
dam construction limited size of winter floods 511
extending lessons learned to other large rivers 511–13
historical channel maps 501–2, 502
and aerial photos, channel defined 502, 511
McKenzie Reach, rapidly migrating bends 1930–50s 501
interpreting historical channel change (1850–95) 508–11, 513
frequent moderate floods and accelerated lateral migration 501, 507, 508, 510
impact of large magnitude floods mid-late nineteenth century 504, 508, 508, 509
increased channel stability and incision 500, 510–11
rapid migration rates and presence of erodible banks 507, 510
results compared against natural and anthropogenic impacts 493, 508
timing of human settlement and avulsion to lateral migration shift 498, 519
Long Tom Reach (1850–1955) 501, 506
net decrease in channel width and length 504, 506
lower and middle Willamette, no significant channel change 1932–1995 period 501
McKenzie Reach (1850–1995) 501, 503–6
1850–1895, increase in channel width, 11 avulsions 503, 504, 505
1895–1932, narrowing as lateral migration became dominant 503, 504, 505
1972–1995 channel change more subtle 504, 506
evolution by migration 503, 504
patterns and controls on historic channel changes 503–7
flood model results 507
percentage of resistant banks increased 507, 507
summary of channel change (1850–1955) 506–7
Santiam Reach (1850–1995) 501, 506
always dominated by lateral migration 506
followed similar trends to other reaches 506
a series of geomorphologically distinct reaches 402
study length delineation 497–8
Long Tom Reach 496, 497
McKenzie Reach 496, 497
Santiam Reach 496, 497–8
timeline and consequences of Euro-American interaction with the river 498–501, 498
development of the Oregon Trail 498
post-development and continued change (1972–1995) 500
twentieth century channel changes 504, 506
urbanization, development and dam construction 500
increase in rate and extent of bank stabilization 500, 500
watershed physiography and climate 495
flood results from rain-on-snow events 495
planform varies over the river length 495
situation 492, 495
Y
Yangtze Delta, modern estuary saltwater intrusion earlier and for longer 622
recession of wetlands in east 621
sediment discharge below maintenance level 615, 621
Yangtze estuary, major sediment sink 466–7
delta plain, seaward prograding tidal flats 467
tidal currents in 466
present progradation rate augmented by reclamation 467
Yangtze River basin geology and landforms 457–60
complex variety of geological units 457, 458
landforms of the eastern Tibetan Plateau 457, 459, 460
major faults trending NW–SE 457
Yangtze River, climatic and anthropogenic impacts on water and sediment discharges 609–24
anthropogenic impacts 619–21
dam construction, reducing sediment transport 616, 619
lake reclamation 612, 619–20, 620
water consumption 615, 619
channel erosion downstream of dams 621
climatic impacts 613, 614, 614, 616–19, 618
decrease in evapotranspiration in sub-basin South 617–18
heavy human impact of water consumption 616–17
precipitation, key role in eroding and transporting sediment 614, 618–19, 618
runoff decrease greater than precipitation decline, sub-basin North 614, 618
runoff increased more than precipitation, sub-basin South 614, 614

data and methods 611
monthly precipitation data 611, 611
water and suspended sediment discharges 611
Dongting Lake 467, 612, 619–20, 620, 620, 624
future change and coastal responses 615, 621–2
impact of dam building upstream from Three Gorges Dam 621
reduction of nutrient supply, decrease in primary production 621–2
sediment load 613, 615, 620, 621
water discharge 621
physical setting 610
mean annual precipitation increases downstream 610, 611
South–North Water Diversion Project 468, 621

Yenisey River 11, 39–40
discharge peaks 40
drainage reversal due to glaciation 14

Z
Zaire River see Congo River
Zambezi River 311–31, 346–7
cultural and economic aspects 330
drainage evolution and speciation 311, 328–30
dambos, focus of major speciation 328
endemism in lechwe 328–9
formation of wetlands by river piracy 329
hotspot of biodiversity and endemic species 328
radiation of cryptophilic plants (geoxylic suffrutices) 329–30

See also Changjiang; Lower Yangtze; Middle Yangtze; Three Gorges Dam, Changjiang (Yangtze); Upper Yangtze; Yangtze estuary

Spatial variations of water and sediment 611–13
annual sediment discharges, decline since 1980s 614–15, 615
division into sub-basins 611, 612
runoff controlled by precipitation 611, 612
sediment discharge 611, 612, 613
temporal annual variations of sediment 614–15, 615, 616
of water (precipitation and runoff) 613, 614, 614, 615
temporal monthly variations 615–16, 617
sediment discharges 616, 617
strong seasonal pattern 615, 616
water discharges 615–16, 617
water discharge, no significant change over last fifty years 619
Yangtze Soil and Water Conservation Project 610
Yellow River 622
impact from dams amplified by decreasing precipitation 609

Younger Dryas 133

Aridity in the Amazon Basin 134–5

Yukon River 11, 40
discharge peaks 40
drainage reversal due to glaciation 14

Z
some determinants of species richness and endemism 329
suffrutesces tracked dambo formation 329
Upper Zambezi Basin, at centre of Zambezian phytochorion 328
ecological impact of major dams 311, 320–1
human and ecological costs 320
Kariba and Cahora Bassa dams, economic benefits 320, 320
major wetlands providing important wildlife refuges 313, 320
severe ecological impacts on major floodplains 320–1
hydrology 317–20
cumulative annual flow 317, 317, 318, 319
effects of movement of climatic boundaries 319
influence of water exploitation, dams 317, 318, 319
mean monthly flows, Upper Zambezi 319, 319
Victoria Falls, records of water level 318, 319–20
increasing human demands 330
link between geological, ecological and evolutionary processes 330–1
three major segments 311, 312, 313
tsetse fly and human occupation 311
pesticides and environmental impact 331
water type mapping on floodplains 546, 547
Zambezi River system 10, 35, 311, 312, 313–17
development of 22

realtime_321–8
Barotse floodplain linked to tectonic uplift 327, 329–30
broad sequence of evolutionary changes postulated 321–8
Chambeshi River 322, 327
complex Pleistocene drainage reorganization 315, 323, 325–6
continental doming over mantle plumes 324–5
Cuando floodplain, probable tectonic origin 327
deep incision of Cahora Bassa Gorge 325
early Cretaceous proto-Zambezi-Limpopo drainage 321, 322, 325
early Stone Age site, floor of Makgadikgadi Pans 326
evidence for major changes in the system geometry 321
Kafue River 321, 326–7
Lake Palaeo-Makgadikgadi 322, 323, 324, 326
Lake Patrick 326–7
lower Cretaceous Zambezi-Limpopo River 323–4
Luangwa River 321, 323
Machili River and Basin 231, 323
Makgadikgadi Pans, lacustrine deposits link into Machili Basin 324, 325–6
modern distribution patterns of certain fish, tigerfish 327–8, 327
Okavango-Kalahari-Zimbabwe (OKZ) Axis, effects of 322, 325
re-established of link to Indian Ocean 322, 325
significance of ferricrete bar across the Zambezi 326, 327
timing of Upper Zambezi capture not well constrained 325
lower Zambezi 316–17
coastline has highest tidal range on the continent 316–17
course controlled by major rift faulting 324
Cuando River 317, 326
floodplain-delta system below Shire confluence 316, 316
intensive agriculture on rich alluvial soils 317
Kafue River, links with Mana Pools Basin 313, 317
Luangwa River 313, 317
Marromeu Game Reserve 317
Mulonga-Matabele Plain 313, 317
middle Zambezi
Batoka Gorge 314, 315, 326
Cahora Bassa gorge 316
characterized by a steeper gradient 314, 315
Chimamba Rapids 315, 316, 326
flows through Kariba, Mana Pools and Chicoa (Cahora Bassa) basins 313, 316, 316
wilderness areas of world importance 313, 316
profile above and below Victoria Falls 314, 315
rainfall determined by position of ITCZ 35
upper reaches
dambos 314, 328, 329–30
incised into Pre-Cambrian basement 313
pans to east and west of Barotse floodplain 314
terminates abruptly at Victoria Falls 314, 314
widens into Barotse floodplain 313, 313