Subject Index

Akaikie information criterion, 666, 668–669
Ansari-Bradley dispersion test, 152–169

- asymptotic relative efficiency, 200
- consistency, 167–168
- example, 157–159
- large-sample approximation, 155, 164–165
- motivation, 160
- properties, 168
- ties, 156–157, 166–167

Asymptotically distribution-free, 99, 176
Asymptotic relative efficiency:
 - independence procedures, 450
 - odds ratio procedures, 534
 - one- and paired-sample procedures, 112–114
 - one-way layout procedures, 287–288
 - regression procedures, 494
 - success probability estimators, 24, 38
 - two-sample dispersion procedures, 200–201
 - two-sample location procedures, 149–150
 - two-way layout procedures, 390–392

Balanced incomplete block designs, 332–343
Bandwidth, 624–627
 - bootstrap, 627
 - cross-validation, 625
 - effect of changing the size on density estimation, 613–614, 625
 - fixed bandwidth, 624–625
 - Nadaraya-Watson estimator, 668, 670–671
 - plug-in estimate, 625
 - variable bandwidth, 625–627
Basis functions, orthogonal, 630
Bayes estimators, 33–38, 744–762
 - binomial distribution, 33–38
 - distribution function, 746–752
 - distribution function with censored data, 755–758
 - multinomial distribution, 37–38
 - rank order estimation, 752–754
Barlow-Doksum increasing failure rate tests, 540
Behrens-Fisher problem:
 - k-sample, 211, 238, 248
 - two-sample, 145
Bernoulli trials, 11
Bias:
 - reduction by jackknife, 176–177
 - in histograms, 614–615
 - in density estimates, 623, 625
 - in kernel smoothers, 673
Bickel-Doksum increasing failure rate tests, 545
Bin width, 612, 615–616, *see also* Bandwidth
 - Freedman-Diaconis selection rule, 615
 - Scott selection rule, 615
 - Sturges selection rule, 615
Binomial confidence interval, 24–27
 - example, 25
 - large-sample approximation, 26
 - motivation, 24–27
 - properties, 24–27, 31
Binomial distribution, 16
Binomial estimator, 22
 - example, 22
 - motivation, 22
 - properties, 24
 - sample-size determination, 23
 - standard deviation, estimated, 22
Binomial test, 11–21, 68
 - consistency, 20
 - example, 13–15
 - large-sample approximation, 13
 - motivation, 16
 - power, 19–20
 - properties, 20

809
Subject Index

Bivariate distribution function:
 in bivariate symmetry problem, 103
 in independence problems, 393–394, 407
Bivariate symmetry, test for, 102–112
 Blum-Kiefer-Rosenblatt independence test, 444, 448–449
 relation to Hoeffding’s test, 444
Bohn-Wolfe ranked set sample analogue of Mann-Whitney-Wilcoxon procedure,
 717–737
 asymptotic modifications to accommodate imperfect rankings, 729
 consistence, 730
 effect of imperfect rankings, 728–729
 example, 721–722
 Fligner-MacEachern adjustment using only within-judgment ranks, 729–730
 large-sample approximation, 720, 726–727
 motivation, 722
 null distribution, 722–725
 power, 729–730
 properties, 730
 ties, 721
Bootstrap, 420–427, 627
 bandwidth selection, 627
 bias-corrected and accelerated, 425–426
 confidence interval for tau, 420–423
 estimated standard error, 423–424
 jackknife versus bootstrap, 426
 number of bootstrap replications, 426
 one-sample framework, 424–425
Boyles-Samaniego new better than used estimator, 553
Campbell-Hollander Bayes rank order estimator,
 752–755
Cascade algorithm, 634, 642–643
Censored data, 551, 578–605
 confidence bands for survival function, 585–590
 new better than used test, 590–591
 quantile function confidence bands, 591–592
 survival function estimators, 578–594
 two-sample tests, 594–601
Chen-Hollander-Langberg new better than used test for censored data, 590–591
Chi-squared test of homogeneity, 495–509
Chi-squared test of independence, 495–509
Collecting a ranked set sample, 677–681, 737–739
 balanced versus unbalanced, 738–739
 comparison with a simple random sample, 680–681
 constructive approach to obtain a balanced ranked set sample, 677–678
cost considerations, 739
example, 678–680
imperfect rankings, 737–738
multiple observations per set, 739
set size, 737
unequal set sizes, 739
Concordance, multivariate, 408
Concordant pairs, 399–400
Conditional test:
 balanced incomplete block design, 338
 bivariate symmetry, 102–112
 broad alternatives, 196–197
 center of symmetry, 50–52
 common odds ratio, 527–530
 equal means, 124–125
 equal success rates, 511–513
 equal variances, 166–167
 independence, 438–439
 odds ratio, 520
 one-way layout, 209–210, 253
 two-way layout, 299–300, 310, 338, 350–351, 359
Confidence intervals for the binomial parameter,
 24–33
 Agresti-Coull interval, 26–27
 Clopper-Pearson interval, 27
 Laplace-Wald interval, 26
 Wilson interval, 25–26
Contingency tables, 495–534
 2 x 2, 495–534
 k strata of 2 x 2 tables, 522–534
Continuity corrections:
 Edwards, 508–509
 Yates, 506
Contrasts:
 in one-way layout, 278–287
 in two-way layout, 328–331, 386–390
Correlation coefficient:
 Gripenberg partial, 419
 Kendall, 394, 399, 413–414
 Pearson, 427, 429, 431–432
 Spearman, 427, 429, 431–432, 440
Cox’s proportional hazards model, 601–602
 fitting a proportional hazards model, 602
 partial likelihood, 602
 test of the proportional hazards assumption, 602
Critchlow-Fligner simultaneous confidence intervals
 for simple contrasts in one-way layout, 282–287
 example, 283–285
 large-sample approximation, 283, 286
 motivation, 285
 properties, 286
Cross-validation methods:
 - density bandwidth selection, 625
 - generalized cross-validation, 662–663, 665–666
 - least squares, 660, 668
 - wavelet thresholding, 651, 653

Cumulative distribution function, see Distribution function

Cumulative hazard function, 585–586

Decreasing failure rate, see Failure rate

Density estimation, 609–628
 - histogram, 611–616
 - kernel estimator, 617–624
 - nearest neighbor estimator, 628
 - orthogonal series estimator, 628

Density function, 609–610

Dirichlet process, see Ferguson’s Dirichlet process

Discordant pairs, 399–499

Discrete wavelet transform, 633–637, 640
 - sample size, 634, 637, 641–643

Dispersion:
 - confidence intervals, 167, 178–179
 - estimators, 167, 178–179
 - tests, 151–190

Distribution-free, 2

Distribution function:
 - confidence bands, censored case, 586–590
 - confidence bands, uncensored case, 568–578
 - estimation of, censored case, 578–594
 - estimation of, ranked set sample, 705–706
 - estimation of, uncensored case, 191, 568–578, 610

Doksum contrast estimator in two-way layout:
 - asymptotic relative efficiency, 390–391
 - example, 329–330
 - large-sample approximation, 331
 - motivation, 330
 - properties, 331

Doksum test based on signed ranks for general alternatives in two-way layout, 370–375
 - asymptotic relative efficiency, 391
 - example, 372–374
 - large-sample approximation, 372
 - motivation, 374
 - properties, 375
 - ties, 372, 375

Durbin, Skillings-Mack test for balanced incomplete block design, 332–340
 - asymptotic relative efficiency, 391
 - example, 333–335
 - large-sample approximation, 333, 337–339
 - motivation, 335
 - properties, 339
 - ties, 333, 338

Dwass, Steel, Critchlow-Fligner one-way layout all treatments multiple comparisons, 256–265
 - asymptotic relative efficiency, 287
 - example, 257–260
 - large-sample approximation, 257, 262–263, 265
 - motivation, 260
 - properties, 265
 - ties, 257

Edwards continuity correction, 508–509

Efficiency, see Asymptotic relative efficiency

Efron bootstrap, see Bootstrap

Efron redistribute-to-the-right algorithm, 583

Empirical distribution function, 191, 610–612, 705–706
 - example, 611–612
 - in goodness-of-fit test, 572–575
 - in Kolmogorov-Smirnov test, 190–200

Epstein increasing failure rate test, 536–545
 - asymptotic relative efficiency, 605
 - example, 538–539
 - large-sample approximation, 538
 - motivation, 539–540
 - properties, 544

Equivariance, 27

Experimentwise error rate:
 - in a one-way layout, 260–261
 - in a two-way layout, 319

Exponentiality, tests of, 535–568

Failure rate, 536

Fisher exact test, 511–513
 - example, 512
 - motivation, 513
 - properties, 513

Fisher sign test, for paired replicates, 63–74
 - asymptotic relative efficiency, 113
 - confidence interval, 80–83
 - consistency, 73
 - examples, 65–66, 90–92
 - large-sample approximation, 65, 70–71, 74
 - motivation, 67
 - for one-sample data, 90–93
 - power, 71–73
 - properties, 73–74
 - sample size determination, 73
 - ties, 65, 71
Fisher-Yates-Terry-Hoeffding two-sample location test, 130–132
asymptotic relative efficiency, 150
large-sample approximation, 132
Fligner-Policello two-sample test, 145–149
asymptotic relative efficiency, 150
consistency, 149
example, 147–148
large-sample approximation, 146
motivation, 148
properties, 149
ties, 146
Fligner-Wolfe one-way layout treatments versus control test, 249–255
asymptotic relative efficiency, 287
consistency, 255
dexample, 251–252
large-sample approximation, 250
motivation, 252
properties, 255
ties, 251, 253
Friedman, Kendall-Babington Smith two-way layout test, 292–304
asymptotic relative efficiency, 390
consistency, 301
example, 293–295
large-sample approximation, 293, 300
motivation, 296
properties, 301
ties, 293, 299–300
Ferguson’s Bayes estimator of the distribution function, 746–752
Ferguson’s Dirichlet process, 745–748
Gasser-Müller kernel estimator, 673
Gehan two-sample test for censored data, 600
Gibbs sampling, 760–761
Gibbs sampling with the Dirichlet, 760–761
Goodness-of-fit tests, 29–30
exponentiality, 575
normality, 575–577
specified distribution, 572
Greenwood formula, 585
Gripenberg estimator and confidence interval for partial correlation, 419
Guess-Hollander-Proshan test for trend change in mean residual life, 563–568
dexample, 565–566
motivation, 566
power, 568
properties, 568
Halperin-Gilbert-Lachin confidence interval for $P(X < Y)$, 140–141
Hall-Wellner mean residual life confidence bands, 560–562
Hall-Wellner survival function confidence bands, 586–588
Hawkins-Kochar-Loader tests for trend change in mean residual life, 567–568
Hayter-Stone ordered alternatives multiple comparisons, one-way layout, 265–271
dexample, 267–268
large-sample approximation, 266–267, 270–271
motivation, 269
properties, 271
ties, 267
Hettmansperger-McKean-Sheather intercept estimator, 463–465
Histogram, 611–616
average shifted histogram, 616
bias, 614–615
bin width, 612, 615–616
centered, 617–618
consistency, 616
effect of changing the bandwidth, 613
equivalency to kernel density estimate, 622–623
dexamples, 613–614, 617–618
integrated mean squared error, 614–615
properties, 616
variance, 614–615
Hodges-Lehmann one-sample estimator based on Walsh averages, 56–58, 84–87
asymptotic relative efficiency, 113
dexamples, 56–57, 85–87
motivation, 57
properties, 58
standard deviation, estimated, 58, 62
Hodges-Lehmann two-sample estimator, 136–142
asymptotic relative efficiency, 150
dexample, 137
motivation, 137–138
properties, 141
standard deviation, estimated, 141, 143
Hoeffding independence test, 442–449
consistency, 449
dexample, 445–447
large-sample approximation, 444
motivation, 447–448
properties, 449
relation to Blum-Kiefer-Rosenblatt test, 448
ties, 444–445
Hollander bivariate symmetry test, 102–112
consistency, 111
dexample, 105–110
large-sample approximation, 104
motivation, 110
properties, 111
ties, 105
Hollander test based on signed ranks for ordered
alternatives in two-way layout, 376–379
asymptotic relative efficiency, 391–392
consistency, 379
example, 377–378
large-sample approximation, 376, 379
motivation, 378
properties, 379
ties, 377
Hollander two-way layout treatment versus control
multiple comparisons based on signed ranks,
382–386
asymptotic relative efficiency, 392
example, 383–384
large-sample approximation, 382–383
motivation, 384
properties, 385
ties, 383
Hollander-Peña confidence bands for survival
function, 586–588
Hollander-Prochan decreasing mean residual life
test, 555–562
asymptotic relative efficiency, 605
example, 557–558
large-sample approximation, 557
motivation, 558–559
properties, 562
Hollander-Prochan new better than used test,
545–555
asymptotic relative efficiency, 605
consistency, 554
example, 549–550
large-sample approximation, 547–548
motivation, 551
properties, 554
ties, 548

Imperfect rankings, 704, 728–729, 737–738
Incomplete block designs, 331–354
balanced, 332–343
arbitrary, 343–354
Increasing failure rate:
class, 536, 558–559
tests for, 536–545
Increasing failure rate average:
class, 540–541
tests for, 541–542
Independence:
Blum-Kiefer-Rosenblatt test of, 444, 448–449
Hoeffding test of, 442–449
in 2 x 2 contingency tables, 495–514
Kendall test of, 393–409
Spearman test of, 427–440
Initially increasing, then decreasing, mean residual
life:
class, 555
tests for, 555–562
Interquartile range, 612
Intentionally representative sampling, 742–743
Intercept estimator, 463–465
Inverse discrete wavelet transform, 637, 644–645,
647
Jackknife, 176–178
asymptotic relative efficiency, 201
dispersion confidence interval, 178–179
dispersion estimator, 178–179
dispersion test, 169–181
estimated variance of general estimator, 176–177
general confidence interval, 177
versus bootstrap, 176–177
Jaeckel-Hettmansperger-McKean test for general
multiple linear regression, 475–485
asymptotic relative efficiency, 494
example, 479–483
large-sample approximation, 478–479
motivation, 483
properties, 485
ties, 479
Jonckheere ordered alternatives test, 215–225
asymptotic relative efficiency, 287
consistency, 224
eexample, 217–219
large-sample approximation, 216, 222–223
motivation, 219
power, 223
properties, 224
ties, 216–217
Judgment post-stratification, 742
Kaplan-Meier estimator of the survival function for
censored data, 578–594
asymptotic relative efficiency, 606–607
bias, 586
certainty bands based on, 586–590
motivation, 582
properties, 592
redistribute-to-the-right algorithm, 583
self-consistency property, 583–584
tail probability estimation, 584
Kendall’s test of independence, 393–409
asymptotic relative efficiency, 450
consistency, 409
texample, 397–399
Kendall’s test of independence (Continued)
 large-sample approximation, 396, 403–405
 motivation, 399
 power, 406–407
 properties, 409
 sample-size determination, 407
 ties, 396–397, 406
 trend test, 407
Kernel density estimation, 617–624
 binned kernel estimate, 623
 consistency, 624
 effect of changing the kernel, 622–623
 effect of changing the bandwidth, 619–621
 examples, 619–622
 mean integrated squared error, 623
Kernel function, 618–619
 bandwidth, 619
 effect of changing kernel on density estimation, 622
 Epanichnikov, 621, 623, 626–627
 normal, 619
 order, 671–672
 properties, 618–619
 rectangular, 618
 triangle, 621
Kernel smoother, 667–674
 local linear kernel smoother, 662–666
 Gasser-Müller estimator, 673
 Nadaraya-Watson estimator, 667–670
 Priestly-Chao estimator, 673
 Klefsjö increasing failure rate test, 541–542
 Klefsjö increasing failure rate average test, 541–542
Kolmogorov confidence band for distribution function, 568–578
 asymptotic relative efficiency, 577, 606
 example, 570–571
 large-sample approximation, 570
 motivation, 571–572
 properties, 577
Kolmogorov goodness-of-fit test, 572–575
Kolmogorov-Smirnov test, 190–200
 asymptotic relative efficiency, 201
 consistency, 198
 example, 192–194
 large-sample approximation, 192, 197–198
 properties, 198
 ties, 192, 195–197
Koul new better than used test, 553
Kruskal-Wallis one-way layout test, 204–215
 asymptotic relative efficiency, 287
 consistency, 211–212
 example, 205–206
 large-sample approximation, 205, 210
 motivation, 206–207
 properties, 212
 ties, 205, 209–210
k-sample tests, one-way layout, 202–255
Lehmann contrast estimator in two-way layout, 386–390
 asymptotic relative efficiency, 392
 example, 387–389
 large-sample approximation, 389
 motivation, 389
 properties, 389
Lepage test for location and dispersion, 181–190
 consistency, 188
 example, 183–185
 large-sample approximation, 182, 187
 motivation, 185
 properties, 188
 ties, 182, 187–188
Li-Hollander-Mckeague-Yang quantile function
 confidence bands, 591–592
Lilliefors normality test, 575–577
Linear regression, 451–490, 662–666
 Local averaging smoother, 657–661
 bass, 657, 659–660
 cross-validation, 657–660
 example, 657–659
 span, 657–661
 windows, 659–660
 Local regression smoother, 662–666
 cross-validation, 662
 example, 662–664
 generalized cross-validation, 662
 multivariate regression, 666
 polynomial regression, 665
 properties, 666
 weighted regression, 664–665
 Location-shift function, 132
Logrank test, see Mantel two-sample test for censored data
Mack-Skillings all treatments multiple comparisons, 367–370
 equal number of replications in each treatment-block configuration, 367–370
 asymptotic relative efficiency, 391
 example, 368
 motivation, 368
 properties, 369
 ties, 367
Mack-Skillings test for randomized block design with equal number of replications per treatment-block configuration, 354–367
asymptotic relative efficiency, 391
example, 356–358
large-sample approximation, 355–356, 359
motivation, 358
properties, 364
ties, 356, 359
Mack-Wolfe umbrella alternatives test, peak known, 226–240
asymptotic relative efficiency, 287
consistency, 238
element, 228–230
large-sample approximation, 227–228, 235–238
motivation, 230–231
properties, 238
ties, 228
Mack-Wolfe umbrella alternatives test, peak unknown, 241–249
estimation of umbrella peak, 245
example, 242–244
motivation, 244
power, 247
ties, 242
Mann trend test, 407
Mann-Whitney test, see Wilcoxon rank sum test
Mantel-Haenszel estimator of common odds ratio, 531–532
asymptotic relative efficiency, 534
example, 532
Mantel-Haenszel odds ratio test for \(k \) strata of 2 x 2 tables, 522–532
element, 525–527
motivation, 527
properties, 532
Mantel two-sample test for censored data, 594–605
asymptotic relative efficiency, 608
example, 597–598
large-sample approximation, 596–597
motivation, 598–599
properties, 602
McIntyre’s concept of a ranked set sample, 676–677
McNemar dependent proportions test, 506–508
Mean residual life function, 551, 559–560
confidence bands for, 560–562
decreasing, 555
estimator, 559–560
increasing, 555
Median:
estimated standard deviation of sample median, 78
median absolute deviation estimator, 652
of a sample, 76
test for population median being a specified value, 46, 68, 84–93
Miller jackknife test for dispersion, 169–181
asymptotic relative efficiency, 201
consistency, 179
example, 172–175
motivation, 177
properties, 179
ties, 172
Modeling imperfect rankings, 737–738
Moses confidence interval for location differences, 142–145
asymptotic relative efficiency, 150
example, 143
large-sample approximation, 142
motivation, 143
properties, 144
Moses goodness-of-fit test, 198
Multinomial distribution, 27–29
estimation, 28–29, 37–38
goodness-of-fit test, 29
Multiple comparisons, one-way layout, 255–278
all treatments, 256–271
treatment versus control, 271–278

treatment versus control, 322–327, 382–386
Multiresolution analysis, 630–633, 635–639
example, 632–633, 635–637
Nadaraya-Watson estimator, 667–674
bandwidth selection, 668, 670–671
derivation, 673–674
example, 668–670
properties, 674
Nearest neighbor methods:
density estimation, 628
kernel smoother, 670–671
local averaging smoother, 657–661
local regression smoother, 662–666
Nelson-Aalen cumulative hazard function estimator, 585
Nemenyi, Damico-Wolfe one-way layout treatment versus control multiple comparisons, 271–278
asymptotic relative efficiency, 287
example, 273–274
large-sample approximation, 272–273, 277
motivation, 274
properties, 277
ties, 273
Subject Index

Nemenyi two-way layout all treatments multiple comparisons based on signed ranks, 379–382
asymptotic relative efficiency, 392
example, 380–381
large-sample approximation, 380
motivation, 381
properties, 381
ties, 380
Nemenyi, Wilcoxon-Wilcox, Miller rank sum
two-way layout treatment versus control procedures, 322–327
asymptotic relative efficiency, 390
example, 323–324
large-sample approximation, 323, 326
motivation, 325
properties, 327
ties, 323
New better than used:
class, 546
estimator, 553
tests for, 545–555
New better than used in expectation:
class, 551
tests for, 552–553
Nonparametric statistical procedures:
advantages of, 1–2
Normality, tests of, 575–577
Odds ratio, 515–534
confidence interval for common odds ratio, 531–532
confidence interval for odds ratio, 516–517
estimator, 516–521
estimator of common odds ratio, 516–521
exact conditional test that odds ratio is a specified value, 520
population, 515
test for a common odds ratio, 527–530
test that a common odds ratio equals 1, 522–533
One-sample tests, location, 84–95
population symmetry, 94–102
One-way layout, 202–288
Ordered alternatives, one-way layout, 215–225
Order restricted randomization, 742
Order statistics, in estimation of population median, 78
Orthogonal basis functions, 630
Orthogonal series, 628, 630
Page test for ordered alternatives in two-way layout, 304–315
asymptotic relative efficiency, 390
consistency, 313
example, 306–307
large-sample approximation, 305, 310–313
motivation, 307
properties, 313
ties, 306, 310
Paired replicates analyses, 39–84
Parallelism test, see Sen-Adichie parallelism test
Partial correlation, 419
confidence interval, 419
estimator, 419
Pearson’s chi-squared goodness-of-fit test, 29
Pearson test for comparing two proportions, 496–509
Pitman asymptotic relative efficiency, see Asymptotic relative efficiency
Placements, 145
Polynomial regression, 665–666, 672
Priestly-Chao kernel estimator, 673
Probability that \(X < Y \), 138–141
estimator, 138
confidence intervals, 139–141
Proportional hazards, 601–602
Quenouille-Tukey jackknife, 176–178
Quantile function, 591–592
Quasimedian, 77–78
R, computing with, 8–9
index, 791–797
Randles-Fligner-Policello-Wolfe, Davis-Quade
symmetry test, 94–102
consistency, 101–102
example, 96–99
large-sample approximation, 96, 102
motivation, 99
properties, 102
ties, 96
Randomized blocks, 289–331, 370–390
Ranked set sampling estimators, 685–717, 727–728
distribution function, 705–706
examples, 688–695, 695–704
mean, 685–717
ordered categorical probabilities, 706
population proportion, 706
variance, 704–705
Rank order estimation, 752–755
Rank sum test, see Wilcoxon rank sum test
Redistribute-to-the-right algorithm, 583
Regression, 451–494
arbitrary regression function, 490–494
confidence intervals, 460–463
estimators, 458–460, 484
intercept estimators, 463–465, 484
kernel regression smoother, 492, 667–674
local regression smoother, 493, 662–666
multiple linear, 475–490
non-rank based, 490–494, 656–675
one line, 451–466
running line smoother, 492
parallelism, 466–475
several lines, 466–490
slope estimator, 458–460
spline regression smoother, 493, 675
tests, 452–460, 466–473, 475–485
Robins-Breslow-Greenland odds ratio confidence interval, 531–532
example, 532
Samara-Randles, Fligner-Rust, Noether confidence interval for Kendall’s \(\tau \), 415–420
example, 415–417
motivation, 417
properties, 420
ties, 417
Sampling from partially rank-ordered sets, 743
Scale parameter(s), 152–153, 162–163
confidence intervals for ratio of, 167, 178–179
estimators for ratio of, 167, 178–179
tests for ratio of, 152–169, 169–181
Self-consistency property, 583–584
Sen-Adichie parallelism test, 466–475
asymptotic relative efficiency, 494
example, 468–471
large-sample approximation, 467
motivation, 471–472
properties, 473
ties, 468
Sen confidence interval for \(P(X < Y) \), 139–140
Sensory difference tests, 14–15
Sethuraman’s constructive definition of the Dirichlet process, 746
Signed rank test, see Wilcoxon signed rank test
Sign test, see Fisher sign test
Simpson paradox, 532
Skewness, 96
example, 613
left, 100
right, 100
Skillings-Mack multiple comparison procedure for balanced incomplete block designs, 341–343
asymptotic relative efficiency, 391
example, 341–342
large-sample approximation, 341, 343
motivation, 342
properties, 343
ties, 341
Skillings-Mack test for arbitrary incomplete block design, 343–354
example, 346–348
large-sample approximation, 345, 350–351
motivation, 348
properties, 351
ties, 346, 350–351
Smoothers, 490–494, 656–675
Spearman independence test, 427–440
asymptotic relative efficiency, 450
example, 430–432
large-sample approximation, 428–429, 436–438
motivation, 432
properties, 440
ties, 429–430, 438–439
Spearman rank correlation coefficient, 427, 429,
341–432, 440
Spjøtvoll contrast estimator in one-way layout, 278–282
asymptotic relative efficiency, 287
example, 279–280
large-sample approximation, 281
motivation, 281
properties, 281
Susarla-van Ryzin distribution function estimator for right-censored data, 755–758
Symmetry, 94, 103
test of bivariate symmetry, 102–112
test of population symmetry, 94–102
Tarone-Ware two-sample tests for censored data, 600
Tau, confidence interval for, 415–427
estimator of, 413–414
measure of association, 399
Theil confidence interval for slope, 460–463
asymptotic relative efficiency, 494
example, 461
large-sample approximation, 461
motivation, 462
properties, 463
Theil slope estimator, 458–460
asymptotic relative efficiency, 494
example, 458
large-sample approximation, 460
motivation, 458
properties, 459–460
Theil test for slope, 452–456
asymptotic relative efficiency, 494
consistency, 456
example, 454–456
Subject Index

Theil test for slope (Continued)
 large-sample approximation, 454
 motivation, 456
 properties, 456
 ties, 454

Thresholding, 644–651
 block, 652–653
 cross-validation, 651, 653
 examples, 645, 648–651
 hard, 646
 hybrid, 649–651
 soft, 646
 sparsity, 645
 SureShrink, 649–651, 654
 translation-invariant, 652–653
 VisuShrink, 647–651

Total-time-on-test statistic, 539–540

Trend:
 in mean residual life, 555–568
 in one-way layout effects, 215–225
 in sample, 407, 440
 in two-way layout effects, 304–313, 376–379

Triangle test, 14

Triple:
 left, 95
 right, 95

Tukey confidence interval for location, 59–63
 asymptotic relative efficiency, 113
 example, 59–60
 large-sample approximation, 59
 motivation, 60
 properties, 62

Turning point in mean residual life, 563–568
 tests when turning point known, 563–568
 tests when turning point unknown, 567–568

Two-sample tests:
 broad alternatives, 190–200
 dispersion and location, 181–190
 dispersion differences, 152–181
 location differences, 115–136, 145–149

Two-way layout, 289–392

Umbrella alternatives:
 one-way layout, 225–249
 test for, peak known, 226–240
 test for, peak unknown, 241–249

Van der Waerden two-sample location test, 130–132
 asymptotic relative efficiency, 150
 example, 131–132
 large-sample approximation, 131

Variance:
 of histogram estimates, 614–615
 tests for equality of population variances, 151–190, see also Dispersion

Walsh average, 56

Wavelets, 630–632, 637–638
 coefficients, exact, 630, 640
 Daubechies family, 630, 640
 father wavelet, 632
 Haar wavelet, 630, 632–633, 641–642
 mother wavelet, 632
 multiresolution analysis, 630–633, 635–639
 periodic, 640
 properties, 643
 resolution level, 631–632, 638

Wavelet estimation, 640–651, see also
 Thresholding

Weighted regression, 662–666, 675

Wilcoxon, Nemenyi, McDonald-Thompson rank
 sum two-way layout all treatments multiple
 comparisons, 316–322
 asymptotic relative efficiency, 390
 example, 317–318
 large-sample approximation, 316–317, 321
 motivation, 318
 properties, 321
 ties, 317

Wilcoxon rank sum test, 115–136
 asymptotic relative efficiency, 150
 consistency, 133
 examples, 119–122
 large-sample approximation, 117–118
 motivation, 122
 power, 128–129
 properties, 133
 sample-size determination, 129–130
 ties, 118

Wilcoxon signed rank test, 39–55, 84–87
 asymptotic relative efficiency, 113
 consistency, 53
 examples, 43–45, 85–87
 large-sample approximation, 41–42
 motivation, 45
for one-sample data, 84–87
power, 52
properties, 53
sample-size determination, 53
ties, 42–43, 49–52

Yates continuity correction, 506
Yule association measure, 520–521
Zelen test for common odds ratio, 527–530
element, 528–530