CONTENTS

Preface xi
Introduction 1

Goals of the Book
Discrete Signals
Advantages of Discrete-Signal Analysis and Design
DFT and IDFT
Mathcad Program
MATLAB and Less Expensive Approaches
Multisim Program from National Instruments Co.
Mathtype Program
LabVIEW
Search Engines
Personal Productivity Software Capability

1 First Principles 9

Sequence Structure in the Time and Frequency Domains
Two-Sided Time and Frequency
Discrete Fourier Transform
Inverse Discrete Fourier Transform
CONTENTS

Frequency and Time Scaling
Number of Samples
Complex Frequency-Domain Sequences
\(x(n) \) Versus Time and \(X(k) \) Versus Frequency

2 Sine, Cosine, and \(\theta \) 27
One-Sided Sequences
Combinations of Two-Sided Phasors
Time and Spectrum Transformations
Transforming Two-Sided Phasor Sequences into
One-Sided Sine, Cosine, \(\theta \)
Example 2-1: Nonlinear Amplifier Distortion
and Square Law Modulator
Example 2-2: Analysis of the Ramp Function

3 Spectral Leakage and Aliasing 43
Spectral Leakage. Noninteger Values of Time \(x(n) \) and
Frequency \(X(k) \)
Example 3-1: Frequency Scaling to Reduce Leakage
Aliasing in the Frequency Domain
Example 3-2: Analysis of Frequency-Domain Aliasing
Aliasing in the Time Domain

4 Smoothing and Windowing 61
Smoothing the Rectangular Window, Without Noise
and with Noise
Smoothed Sequences Near the Beginning and End
Rectangular Window
Hamming Window
Hanning (Hann) Window
Relative Merits of the Three Windows
Scaling the Windows

5 Multiplication and Convolution 77
Sequence Multiplication
Polynomial Multiplication
Convolution
Discrete Convolution Basic Equation
Relating Convolution to Polynomial Multiplication
“Fold and Slide” Concept
Circular Discrete Convolution (Try to Avoid)
Sequence Time and Phase Shift
DFT and IDFT of Discrete Convolution
Fig. 5-6. Compare Convolution and Multiplication
Deconvolution

6 Probability and Correlation

Properties of a Discrete Sequence
Expected Value of $x(n)$
Include Some Additive Noise
Envelope Detection of Noisy Sequence
Average Power of Noiseless Sequence
Power of Noisy Sequence
Sequence Averaging
Variance
Gaussian (Normal) Distribution
Cumulative Distribution
Correlation and Covariance
Autocorrelation
Cross-Correlation
Autocovariance
Cross-Covariance
Correlation Coefficient

7 The Power Spectrum

Finding the Power Spectrum
Two-Sided Phasor Spectrum, One-Sided Power Spectrum
Example 7-1: The Use of Eq. (7-2)
Random Gaussian Noise Spectrum
Measuring the Power Spectrum
Spectrum Analyzer Example
Wiener-Khintchine Theorem