Contents

List of Contributors XIII
Preface XVII

Part One Medicinal Chemistry 1

1 Organometallic Complexes as Enzyme Inhibitors: A Conceptual Overview 3
Philipp Anstaett and Gilles Gasser
1.1 Introduction 3
1.2 Organometallic Compounds as Inert Structural Scaffolds for Enzyme Inhibition 3
1.3 Organometallic Compounds Targeting Specific Protein Residues 11
1.4 The Bioisosteric Substitution 14
1.5 Novel Mechanisms of Enzyme Inhibition with Organometallic Compounds 19
1.6 Organometallic Compounds as Cargo Delivers of Enzyme Inhibitors 25
1.7 Organometallic Enzyme Inhibitors for Theranostic Purposes 30
1.8 Conclusion 34
Acknowledgments 35
Abbreviations 35
References 36

2 The Biological Target Potential of Organometallic Steroids 43
Gérard Jaouen, Siden Top, and Michael J. McGlinchey
2.1 Introductory Note on Nuclear Receptors 43
2.1.1 Early History 43
2.1.2 Primary Structure of Nuclear Receptors 44
2.1.3 Estrogen Receptors 45
2.1.4 Androgens 45
2.1.5 Glucocorticoids 46
2.1.6 Progesterone and Progestogens 46
2.1.7 Mineralocorticoids and Aldosterone 46
2.1.8 Selective Modulators of Nuclear Receptors 47
 2.1.8.1 Selective Estrogen Receptor Modulators (SERMs) 47
 2.1.8.2 Selective Androgen Receptor Modulators (SARMs) 48
 2.1.8.3 Selective Progesterone Receptor Modulators (SPRMs) 48
2.1.9 Mechanism of Action of Nuclear Receptors 48
2.1.10 Endocrine Disruptors 50
2.2 Steroids and Organometallics: An Overview of the Transitional Period from the Use of Organometallics in Synthesis to the Emergence of Bioorganometallics 53
 2.2.1 Early Examples of Organometallic Estradiol Derivatives with Biological Potential: Modified Hormone Shown to Bind to Estrogen Receptor α 56
 2.2.2 Examples of Estrogens Modified by Organometallics at the 11β-Position 62
 2.2.3 Targeting Prostate Cancer with Organometallic Androgens and Antiandrogens 64
 2.2.4 Approach Toward Organometallic Radiopharmaceuticals 66
 2.2.4.1 Steroidal Derivatives 66
 2.2.4.2 Nonsteroidal Complexes 73
2.3 Epilog 75
 Acknowledgments 76
 References 76

3 Chirality in Organometallic Anticancer Complexes 85
 Maria J. Romero and Peter J. Sadler
 3.1 Introduction 85
 3.2 Chirality in Arene Complexes 87
 3.3 CIP System for the Nomenclature of Chiral-at-Metal Arene Complexes 89
 3.4 Chiral Organometallic Complexes as Anticancer Agents 90
 3.4.1 Chiral Carbene Complexes 90
 3.4.2 Chiral Metallocene Complexes 91
 3.4.3 Chiral Half-Sandwich Arene Complexes 93
 3.4.4 Chirality at Metal in Supramolecular Complexes 97
 3.5 Half-Sandwich Complexes with Chiral Metal Centers 99
 3.5.1 Factors Influencing the Chirality at the Metal Center 100
 3.5.1.1 Use of Chiral Ligands for Chiral Resolution at the Metal Center: Diastereoisomerism 100
 3.5.1.2 CH-π Interactions: β-Phenyl Effect and Hydrogen Bond Interactions 101
 3.5.1.3 Effect of the Temperature, Solvent and Ligands on the Metal Configuration 103
4 Gold Organometallics with Biological Properties 117
Maria Agostina Cinellu, Ingo Ott, and Angela Casini

4.1 Introduction: The Use of Gold in Medicine 117

4.2 Anticancer Gold Organometallics and Proposed Biological Targets 117

4.2.1 Cyclometalated Gold(III) Complexes with C,N-Donor Ligands 121

4.2.1.1 Types of Cycloaurated Complexes, Synthetic Methods, and Reactivity 122

4.2.1.2 Cycloaurated Complexes with Biological Activities 125

4.2.2 Gold N-Heterocyclic Carbene (NHC) Complexes 129

4.2.3 Gold Alkynyl Complexes 132

4.3 Conclusions and Perspectives 134

List of Abbreviations 135

5 On the Molecular Mechanisms of the Antimalarial Action of Ferroquine 141
Faustine Dubar and Christophe Biot

5.1 History and Development 141

5.2 Mechanism(s) of Action of 4-Aminoquinoline Antimalarials 141

5.3 Mechanism(s) of Action of Ferroquine as an Antimalarial 144

5.3.1 Antimalarial Activity 144

5.3.2 Metabolic Pathway of Ferroquine 144

5.3.3 Redox Properties of FQ 144

5.3.4 Basic Properties and Accumulation 147

5.3.5 Importance of Redox Properties of Ferrocene on Antimalarial Activity of FQ 155

5.3.6 Inhibition of Hemozoin Formation 157

5.4 Conclusion 160

Acknowledgments 161

List of Abbreviations 161

References 161

6 Metal Carbonyl Prodrugs: CO Delivery and Beyond 165
Carlos C. Romão and Helena L.A. Vieira

6.1 Introducing CO in Biology 165

6.1.1 Origin 165

6.1.2 Biological Action and Targets of CO 166

6.1.3 Therapeutic Outlook 166

6.1.4 Measuring CO in Biology 167

6.2 Therapeutic Delivery of CO 167
6.2.1 CO Gas and Inhalation 167
6.2.2 Prodrugs for CO Delivery: CO-Releasing Molecules (CORM) 168
6.2.2.1 Definitions and Concept 168
6.2.3 Early CORMs 169
6.2.3.1 Nonmetal-Based CORMs 169
6.2.3.2 Metal Carbonyl-Based CORMs 169
6.2.4 The Chemical Biology of Early CORMs 171
6.2.4.1 \([\text{Ru(CO)}_3]^2+\)-Based CORMs 171
6.2.4.2 \([\text{Mo(CO)}_n]\)-Based CORMs 176
6.2.4.3 Miscellaneous Biologically Significant Observations on Early-Stage CORMs 177
6.3 Biological and Therapeutic Results Obtained with the Early-Stage CORMs 178
6.3.1 CORM and Inflammatory Response 178
6.3.2 Cardioprotective Effects of CORM 180
6.3.3 Central Nervous System and CORMs 180
6.3.4 Transplantation 181
6.3.5 Bactericide Effects of CORMs 181
6.3.6 CORMs: Tissue Regeneration and Modulation of Cell Proliferation/Differentiation 182
6.3.7 CORMs and Cancer Therapy? 182
6.4 Beyond the Early-Stage CORMs: Strategies for Finding New Candidates 183
6.4.1 Evaluation of CO Release from CORMs 184
6.4.2 Light Activated or photoCORMs 185
6.4.3 Chemically Activated CORMs 187
6.4.4 Bioactivated or Enzyme-Triggered CORMs (ET-CORMs) 191
6.5 Intracellular Detection of CORMs, Mechanistic Studies, and Other Unanswered Questions 192
6.6 Designing Pharmacologically Useful, Drug-like CORMs 193
6.6.1 The First Drug-like CORM 195
6.7 Final Remarks and Perspectives 196

List of Abbreviations 196
References 198

7 Dinitrosyl Iron Complexes with Natural Thiol-Containing Ligands: Physicochemistry, Biology, and Medicine 203
Anatoly F. Vanin
7.1 Introduction 203
7.2 The History of Detection and Identification of DNIC with Thiol-Containing Ligands in Microorganisms and Animal Tissues 204
7.3 Physicochemistry of DNIC with Natural Thiol-Containing Ligands 208
7.3.1 Mono- and Binuclear forms of DNIC with Natural Thiol-Containing Ligands 208
7.3.2 Two Approaches to the Synthesis of DNIC with Natural Thiol-Containing Ligands 209
7.3.3 Mechanisms of Formation of DNIC with Natural Thiol-Containing Ligands 210
7.3.4 The Electronic and Spatial Structures of DNIC with Thiol-Containing Ligands 212
7.3.5 DNIC with Thiol-Containing Ligands as NO and NO⁺ Donors 213
7.4 Biological Effects of DNIC with Thiol-Containing Ligands 219
7.4.1 S-Nitrosating Effect of DNIC with Thiol-Containing Ligands 219
7.4.2 Vasodilator and Hypotensive Effects of DNIC with Thiol-Containing Ligands 220
7.4.3 Inhibiting Effect of DNIC with Thiol-Containing Ligands on Platelet Aggregation 224
7.4.4 DNIC with Thiol-Containing Ligands Increase Erythrocyte Elasticity 225
7.4.5 DNIC with Thiol-Containing Ligands Accelerate Skin Wound Healing in Animals 225
7.4.6 Erective Activity of DNIC 226
7.4.7 DNIC and Apoptosis 227
7.4.8 DNIC with Glutathione Inhibits the Development of Experimental Endometriosis in Rats 230
7.4.9 Other Examples of Biological Effects of DNIC with Thiol-Containing Ligands 232
7.5 DNIC with Thiol-Containing Ligands as a Basis in the Design of Drugs with a Broad Range of Therapeutic Activities 233

Part Two Metalloproteins, Catalysis, and Energy Production 239

8 The Bioorganometallic Chemistry of Hydrogenase 241
Ryan D. Bethel and Marcetta Y. Daresbourg
8.1 Introduction 241
8.1.1 Hydrogenase 241
8.1.2 The Chemistry of Hydrogen 243
8.1.3 Dihydrogen Metal Complexes 244
8.1.4 First Coordination Sphere Ligands 247
8.2 Structure and Function 247
8.2.1 The Active Sites of the Hydrogenases 247
8.2.1.1 [NiFe]- and [FeFe]-Hydrogenase 247
8.2.1.2 [Fe]-Hydrogenase 250
8.2.2 The Mechanisms of the Hydrogenases 251
8.3 Natural Biosynthesis and Synthetic Analogs of the Active Sites 253
8.3.1 Natural Biosynthesis of Hydrogenase Active Sites 253
8.3.1.1 Biosynthesis of [NiFe]-Hydrogenase 254
8.3.1.2 Biosynthesis of [FeFe]-Hydrogenase 255
8.3.2 Synthetic Analogs 256
8.3.2.1 Models of the [NiFe]-Hydrogenase Active Site 256
8.3.2.2 Models of the [FeFe]-Hydrogenase Active Site 259
8.3.2.3 Models of the [Fe]-Hydrogenase Active Site 263
8.4 Comments and Conclusion 265
References 268

Murielle Chavarot-Kerlidou, Pascale Chenevier, and Vincent Artero
9.1 Introduction 273
9.2 Electrode Materials for Hydrogen Evolution and Uptake 274
9.2.1 Electrode Materials-Based on Hydrogenases 274
9.2.2 Hydrogen Fuel Cell Electrodes Based on Hydrogenases 277
9.2.3 Electrode Materials Based on Bio-inspired Molecular Catalysts 279
9.2.3.1 Covalent Attachment of Catalyst to Electrode Material 279
9.2.3.2 Noncovalent Attachment of Catalyst to Electrode Material via π–π Stacking Interaction 283
9.3 Light-Driven Systems for Hydrogen Evolution 284
9.3.1 Biological and Biohybrid Systems 286
9.3.2 Bio-inspired Catalysis Approaches 288
9.3.2.1 Iron-Based Catalysts 289
9.3.2.2 Nickel-Based Catalysts 294
9.3.2.3 First Approaches toward Molecular-Based Photoelectrodes 295
9.4 Artificial Photosynthetic Systems 297
9.5 Summary and Conclusions 298
List of Abbreviations 298
References 299

10 Artificial Metalloenzymes Containing an Organometallic Active Site 305
Akira Onoda, Takashi Hayashi, and Michèle Salmain
10.1 Introduction 305
10.2 Dative Anchoring 306
10.2.1 Metalloproteins as Protein Hosts 306
10.2.2 Other Protein Hosts 313
10.3 Supramolecular Anchoring 316
10.3.1 (Strept)avidin as Protein Hosts 316
10.3.2 Antibodies as Protein Hosts 319
10.3.3 Other Protein Hosts 320
Part Three Bioanalysis 339

11 Organometallic Bioprobes for Cellular Imaging 341
Emanuela Licandro, Monica Panigati, Michèle Salmain, and Anne Vessières

11.1 Introduction 341
11.1.1 Definition of Organometallic Bioprobes 342
11.1.2 Comparison of Different Imaging Techniques 343
11.2 Luminescence 346
11.2.1 Photophysical Properties of an Ideal Fluorophore for Cell Imaging 347
11.2.2 Emission Properties of the Main Classes of Organometallic Complexes 348
11.2.3 Other Advantages in the Use of Organometallic Complexes for Luminescence Imaging 351
11.2.4 Time-Resolved Techniques 352
11.2.5 Rhenium 352
11.2.5.1 Mononuclear Rhenium Complexes 352
11.2.5.2 Dinuclear Rhenium Complexes 360
11.2.5.3 Bimodal Rhenium Agents 362
11.2.6 Iridium 362
11.2.6.1 Simple Organometallic Iridium Complexes 362
11.2.6.2 Iridium Bioconjugates 365
11.2.7 Rhodium 367
11.2.7.1 Simple Organometallic Rhodium Complexes 367
11.2.7.2 Rhodium Bioconjugates 367
11.2.8 Platinum 368
11.2.8.1 Confocal Fluorescence Microscopy Imaging with Platinum Complexes with One or Two Photon Excitation 368
11.2.8.2 Time-Resolved Imaging with Platinum Complexes 370
11.2.9 Gold 371
11.2.9.1 Simple Organometallic Gold Complexes 371
11.2.9.2 Gold Bioconjugates 372
11.3 Vibrational Spectroscopy 372
11.3.1 Infrared Microscopy 374
11.3.2 Bimodal Detection (by Infrared and Luminescence) 377
11.3.3 AFM-IR Spectroscopy 378
11.3.4 Raman Spectromicroscopy 379
11.4 Miscellaneous 381
11.4.1 Nanoimaging Based on X-Ray Fluorescence 381
11.4.2 Ferrocene-Based Fluorescent Probe 382
11.5 Conclusions 383

Acknowledgments 384
Abbreviations 384
References 386

Index 393