Contents

Preface XIII
List of Contributors XV

1 Introduction: Antibody Structure and Function
 Arvind Rajpal, Pavel Strop, Yik Andy Yeung, and Javier Chaparro-Riggers, and Jaume Pons
 1.1 Introduction to Antibodies 1
 1.2 General Domain and Structure of IgG 6
 1.2.1 Structural Aspects Important for Fc Fusion(s) 6
 1.2.1.1 Fc Protein–Protein Interactions 6
 1.2.1.2 Fc Glycosylation 8
 1.2.1.3 Hinge and Interchain Disulfide Bonds 8
 1.3 The Neonatal Fc Receptor 9
 1.3.1 FcRn Function and Expression 9
 1.3.2 Species Difference in FcRn 13
 1.3.3 Engineering to Modulate Pharmacokinetics 14
 1.3.3.1 Fc Engineering 14
 1.3.3.2 Other Engineering Efforts to Modify PK of an IgG or Fc Fusion 15
 1.4 Introduction to FcγR- and Complement-Mediated Effector Functions 16
 1.4.1 Cell Lysis and Phagocytosis Mediation 17
 1.4.2 FcγR-Mediated Effector Functions 17
 1.4.2.1 FcγR Biology 17
 1.4.2.2 Expression Profiles 18
 1.4.2.3 Therapeutic Relevancy 19
 1.4.3 Complement 20
 1.4.3.1 C1q Biology 20
 1.4.3.2 Therapeutic Relevancy 20
 1.4.4 Modifying Effector Functions 21
 1.4.4.1 FcγR-Dependent Effector Function 21
 1.4.4.2 Engineering 22
 1.4.4.3 Glycoengineering 22
Part One Methods of Production for Fc-Fusion Proteins 45

2 Fc-Fusion Protein Expression Technology 47
 Jody D. Berry, Catherine Yang, Janean Fisher, Ella Mendoza, Shanique Young, and Dwayne Stupack

2.1 Introduction 47
2.2 Expression Systems Used for Fc-Fusion Proteins 50
2.2.1 Expression Using Mammalian Cell Lines 50
2.2.1.1 Host Cells 51
2.2.1.2 Codon Optimization 52
2.2.1.3 Vectors 52
2.2.1.4 Stable versus Transient Expression 53
2.2.1.5 Viral Transduction and Transfection Methods 55
2.2.2 Expression Using Prokaryotic Cells 57
2.2.2.1 Vectors 59
2.2.3 Expression Using Baculovirus/Insect Cells 60
2.2.3.1 Host Cells 61
2.2.3.2 Vectors 61
2.2.3.3 Additional Considerations 62
2.3 Summary 62
References 62

3 Cell Culture-Based Production 67
 Yao-Ming Huang, Rashmi Kshirsagar, and Barbara Woppmann, and Thomas Ryll

3.1 Introduction 67
3.2 Basic Aspects of Industrial Cell Culture 69
3.2.1 The Central Role of the Production Cell Line 69
3.2.2 Production Systems 70
3.2.3 Production Mode: Fed-Batch or Perfusion? 71
3.2.4 Scale-Up 73
3.2.5 Raw Materials and Process Control 74
3.2.6 How to Develop or Optimize a Culture Production Process for Fc-Fusion Molecules 74
3.3 Specific Process Considerations for Fc-Fusion Molecules 77
3.3.1 Product Quality Challenges 77
3.3.2 Process Strategies and Process Parameters 78
3.3.2.1 Temperature and Misfolding 78
3.3.2.2 Other Process Parameters 79
3.3.2.3 Glycosylation 81
3.4 Case Studies 82
3.4.1 LTBr-Fc (Baminercept) 82
3.4.2 rFVIIIFc 85
3.5 Conclusions 87
References 87

4 Downstream Processing of Fc-Fusion Proteins 97
Abhinav A. Shukla and Uwe Gottschalk
4.1 Introduction and Overview of Fc-Fusion Proteins 97
4.2 Biochemistry of Fc-Fusion Proteins 99
4.3 Purification of Fc-Fusion Proteins from Mammalian Cells 100
4.3.1 Platform Approaches for Downstream Purification 100
4.3.2 Comparison of Protein A Chromatography, Viral Inactivation, and Polishing Steps 103
4.4 Purification of Fc-Fusion Protein from Microbial Systems 107
4.5 Future Innovations in Fc-Fusion Protein Downstream Processing 109
4.6 Conclusions 110
References 111

5 Formulation, Drug Product, and Delivery: Considerations for Fc-Fusion Proteins 115
Wenjin Cao, Deirdre Murphy Piedmonte, and Margaret Speed Ricci, and Ping Y. Yeh
5.1 Challenges of Molecule Design and Protein Formulation 115
5.2 The Promise of Fc-Fusion Proteins 116
5.3 Current Landscape of Commercial Antibody-Related Products 118
5.4 Fc Conjugates Compared to mAb Counterparts 118
5.5 Factors in Selecting Liquid versus Lyophilized Formulations 126
5.6 Advantages and Disadvantages of a Lyophilized Product 126
5.7 The General Lyophilization Formulation Strategy for Fc-Fusion Proteins 127
5.7.1 pH and Buffer 128
5.7.2 Stabilizing Agents (Cryoprotectant and Lyoprotectant) 129
5.8 Bulking Agent 132
5.9 Surfactant 134
5.10 The Impact of Residual Moisture 135
5.11 Practical Considerations for Low-Protein-Concentration Lyophilized Products 138
5.12 Drug Delivery Considerations 139
5.13 Device Considerations 141
5.14 Assessing Feasibility of a Multidose Formulation 142
5.15 Overage Considerations 142
5.16 Summary 143
References 144

6 Quality by Design Applied to a Fc-Fusion Protein: A Case Study 155
Alex Eon-Duval, Ralf Gleixner, Pascal Valax, Miroslav Soos,
Benjamin Neunstoecklin, Massimo Morbidelli, and Hervé Broly
6.1 Introduction 155
6.1.1 Atacicept: A Novel Immunomodulator with B Cell Targeting
 Properties 155
6.1.2 Molecular Characteristics 155
6.1.3 Quality by Design Concept 157
6.2 Critical Quality Attributes 159
6.3 Critical Process Parameters 160
6.4 Process Characterization 161
6.5 Global Multistep Design Space 164
6.6 Robustness Studies 168
6.7 Adaptive Strategy 169
6.8 Engineering Design Space 171
6.8.1 Principle of the Engineering Design Space 171
6.8.2 The Shear Stress as One Element of the Engineering
 Design Space 173
6.9 Control Strategy 176
6.9.1 Process Controls 177
6.9.2 Testing Controls 177
6.9.3 Process Monitoring 179
6.9.4 Material Control 179
6.10 Continuous Process Verification 180
6.11 Expanded Change Protocol and Continual Improvement 182
6.12 Business Case 183
References 187

7 Analytical Methods Used to Characterize Fc-Fusion Proteins 191
Esohe Idusogie and Michael Mulkerrin
7.1 Background 191
7.2 Product Characterization 193
7.2.1 Physiochemical Analysis 195
7.2.1.1 Measurement of Strength by Absorbance at 280 nm 195
7.2.1.2 Determination of Identity and Evaluation of Charge Variants 195
7.2.1.3 Measurement of Purity and Integrity 198
7.2.1.4 Mass Analysis and Confirmation of Primary Structure 198
7.2.1.5 Oligosaccharide Analysis 199
7.2.1.6 Purity (Product-Related Variants) 200
7.2.2 Measurement of Potency 201
7.2.3 Process-Related Impurities and Contaminants 204
13.2 Structure and Function of Factor IX and Factor VIII 352
13.2.1 Factor IX 352
13.2.2 Factor VIII 354
13.3 Rationale and Design of rFIXFc- and rFVIIIFc-Fusion Proteins 356
13.3.1 Fc/FcRn Pathway for Half-Life Extension and the Monomeric Fc-Fusion 356
13.3.2 Beyond Science: Outside Factors for Applying Monomeric Fc Technology to Hemophilia 356
13.3.3 rFIXFc: Putting It Into Practice 358
13.3.4 rFVIIIFc: Putting It Into Practice 363
13.4 Development of a Clinical Candidate and Beyond 365
13.4.1 Preclinical and Clinical Development 365
13.4.1.1 Preclinical Development 366
13.4.1.2 Clinical Development 367
References 368

Index 371