Contents

CHAPTER 1 INTRODUCTION 1
 1.1 Introduction to Fluid Mechanics 2
 Note to Students 2
 Scope of Fluid Mechanics 3
 Definition of a Fluid 3
 1.2 Basic Equations 4
 1.3 Methods of Analysis 5
 System and Control Volume 6
 Differential versus Integral Approach 7
 Methods of Description 7
 1.4 Dimensions and Units 9
 Systems of Dimensions 9
 Systems of Units 10
 Preferred Systems of Units 11
 Dimensional Consistency and “Engineering” Equations 11
 1.5 Analysis of Experimental Error 13
 1.6 Summary 14
 Problems 14

CHAPTER 2 FUNDAMENTAL CONCEPTS 17
 2.1 Fluid as a Continuum 18
 2.2 Velocity Field 19
 One-, Two-, and Three-Dimensional Flows 20
 Timelines, Pathlines, Streaklines, and Streamlines 21
 2.3 Stress Field 25
 2.4 Viscosity 27
 Newtonian Fluid 28
 Non-Newtonian Fluids 30
 2.5 Surface Tension 31
 2.6 Description and Classification of Fluid Motions 34
 Viscous and Inviscid Flows 34
 Laminar and Turbulent Flows 36
 Compressible and Incompressible Flows 37
 Internal and External Flows 38
 2.7 Summary and Useful Equations 39
 References 40
 Problems 40

CHAPTER 3 FLUID STATICS 46
 3.1 The Basic Equation of Fluid Statics 47
 3.2 The Standard Atmosphere 50
 3.3 Pressure Variation in a Static Fluid 51
 Incompressible Liquids: Manometers 51
 Gases 56
 3.4 Hydrostatic Force on Submerged Surfaces 58
 Hydrostatic Force on a Plane Submerged Surface 58
 Hydrostatic Force on a Curved Submerged Surface 65
 3.5 Buoyancy and Stability 68
 3.6 Fluids in Rigid-Body Motion (on the Web) 71
 3.7 Summary and Useful Equations 71
 References 72
 Problems 72

CHAPTER 4 BASIC EQUATIONS IN INTEGRAL FORM FOR A CONTROL VOLUME 82
 4.1 Basic Laws for a System 84
 Conservation of Mass 84
 Newton’s Second Law 84
 The Angular-Momentum Principle 84
 The First Law of Thermodynamics 85
 The Second Law of Thermodynamics 85
 4.2 Relation of System Derivatives to the Control Volume Formulation 85
 Derivation 86
 Physical Interpretation 88
 4.3 Conservation of Mass 89
 Special Cases 90
 4.4 Momentum Equation for Inertial Control Volume 94
CHAPTER 8 INTERNAL INCOMPRESSIBLE VISCOUS FLOW 275

8.1 Internal Flow Characteristics 276
Laminar versus Turbulent Flow 276
The Entrance Region 277

PART A. FULLY DEVELOPED LAMINAR FLOW 277
8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates 277
Both Plates Stationary 278
Upper Plate Moving with Constant Speed, U 283
8.3 Fully Developed Laminar Flow in a Pipe 288

PART B. FLOW IN PIPES AND DUCTS 292
8.4 Shear Stress Distribution in Fully Developed Pipe Flow 293
8.5 Turbulent Velocity Profiles in Fully Developed Pipe Flow 294
8.6 Energy Considerations in Pipe Flow 297
Kinetic Energy Coefficient 298
Head Loss 298
8.7 Calculation of Head Loss 299
Major Losses: Friction Factor 299
Minor Losses 303
Pumps, Fans, and Blowers in Fluid Systems 308
Noncircular Ducts 309
8.8 Solution of Pipe Flow Problems 309
Single-Path Systems 310
Multiple-Path Systems 322

PART C. FLOW MEASUREMENT 326
8.9 Restriction Flow Meters for Internal Flows 326
The Orifice Plate 329
The Flow Nozzle 330

CHAPTER 9EXTERNAL INCOMPRESSIBLE VISCOUS FLOW 352

PART A. BOUNDARY LAYERS 354
9.1 The Boundary-Layer Concept 354
9.2 Laminar Flat-Plate Boundary Layer: Exact Solution (on the Web) 358
9.3 Momentum Integral Equation 358
9.4 Use of the Momentum Integral Equation for Flow with Zero Pressure Gradient 362
Laminar Flow 363
Turbulent Flow 367
Summary of Results for Boundary-Layer Flow with Zero Pressure Gradient 370
9.5 Pressure Gradients in Boundary-Layer Flow 370

PART B. FLUID FLOW ABOUT IMMERSED BODIES 373
9.6 Drag 373
Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow 374
Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow 377
Friction and Pressure Drag: Flow over a Sphere and Cylinder 377
Streamlining 383
9.7 Lift 385
9.8 Summary and Useful Equations 399
References 401
Problems 402

CHAPTER 10 FLUID MACHINERY 412
10.1 Introduction and Classification of Fluid Machines 413
Machines for Doing Work on a Fluid 413
Machines for Extracting Work (Power) from a Fluid 415
Scope of Coverage 417
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.7</td>
<td>Normal Shocks 597</td>
</tr>
<tr>
<td>12.8</td>
<td>Supersonic Channel Flow with Shocks 604</td>
</tr>
<tr>
<td>12.9</td>
<td>Flow in a Constant–Area Duct with Friction (continued, at www.wiley.com/college/fox) 606</td>
</tr>
<tr>
<td>12.10</td>
<td>Frictionless Flow in a Constant–Area Duct with Heat Exchange (www.wiley.com/college/fox) 606</td>
</tr>
<tr>
<td>12.11</td>
<td>Oblique Shocks and Expansion Waves (www.wiley.com/college/fox) 606</td>
</tr>
<tr>
<td>12.12</td>
<td>Summary and Useful Equations 606</td>
</tr>
</tbody>
</table>

References 609
Problems 609

APPENDIX A FLUID PROPERTY DATA 613
APPENDIX B VIDEOS FOR FLUID MECHANICS 624
APPENDIX C SELECTED PERFORMANCE CURVES FOR PUMPS AND FANS 626
APPENDIX D FLOW FUNCTIONS FOR COMPUTATION OF COMPRESSIBLE FLOW 641
APPENDIX E ANALYSIS OF EXPERIMENTAL UNCERTAINTY 644
APPENDIX F ADDITIONAL COMPRESSIBLE FLOW FUNCTIONS (WWW.WILEY.COM/COLLEGE/FOX) WF-1
APPENDIX G A BRIEF REVIEW OF MICROSOFT EXCEL (WWW.WILEY.COM/COLLEGE/FOX) WG-1

Answers to Selected Problems 650
Index 660