Preprocessing and Cleaning the Data .. 23
2.5 Predictive Power and Overfitting .. 27
Creation and Use of Data Partitions .. 28
Overfitting ... 30
2.6 Building a Predictive Model with XLMiner 32
Predicting Home Values in the West Roxbury Neighborhood 32
Modeling Process .. 34
2.7 Using Excel for Data Mining .. 41
2.8 Automating Data Mining Solutions 42
Data Mining Software Tools: the State of the Market (by Herb Edelstein) ... 43
Problems ... 47

PART II DATA EXPLORATION AND DIMENSION REDUCTION

CHAPTER 3 Data Visualization .. 52

3.1 Uses of Data Visualization .. 52
3.2 Data Examples ... 54
Example 1: Boston Housing Data .. 54
Example 2: Ridership on Amtrak Trains 55
3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots 55
Distribution Plots: Boxplots and Histograms 57
Heatmaps: Visualizing Correlations and Missing Values 60
3.4 Multidimensional Visualization .. 62
Adding Variables: Color, Size, Shape, Multiple Panels, and Animation .. 62
Manipulations: Rescaling, Aggregation and Hierarchies, Zooming, Filtering .. 64
Reference: Trend Line and Labels ... 67
Scaling up to Large Datasets ... 67
Multivariate Plot: Parallel Coordinates Plot 69
Interactive Visualization .. 70
3.5 Specialized Visualizations .. 73
Visualizing Networked Data ... 73
Visualizing Hierarchical Data: Treemaps 75
Visualizing Geographical Data: Map Charts 76
3.6 Summary: Major Visualizations and Operations, by Data Mining Goal .. 78
Prediction .. 78
Classification .. 78
Time Series Forecasting .. 78
Unsupervised Learning .. 79
Problems ... 80
CHAPTER 4 Dimension Reduction 82

4.1 Introduction 82
4.2 Curse of Dimensionality 83
4.3 Practical Considerations 83
 Example 1: House Prices in Boston 84
4.4 Data Summaries 84
 Summary Statistics 86
 Pivot Tables 87
4.5 Correlation Analysis 88
4.6 Reducing the Number of Categories in
 Categorical Variables 89
4.7 Converting a Categorical Variable to a Numerical Variable 90
4.8 Principal Components Analysis 90
 Example 2: Breakfast Cereals 91
 Principal Components 95
 Normalizing the Data 97
 Using Principal Components for Classification and Prediction 100
4.9 Dimension Reduction Using Regression Models 100
4.10 Dimension Reduction Using Classification and
 Regression Trees 101
Problems 102

PART III PERFORMANCE EVALUATION

CHAPTER 5 Evaluating Predictive Performance 106

5.1 Introduction 107
5.2 Evaluating Predictive Performance 107
 Benchmark: The Average 108
 Prediction Accuracy Measures 108
 Comparing Training and Validation Performance 109
 Lift Chart 110
5.3 Judging Classifier Performance 112
 Benchmark: The Naive Rule 112
 Class Separation 112
 The Classification Matrix 113
 Using the Validation Data 114
 Accuracy Measures 115
 Propensities and Cutoff for Classification 115
 Performance in Unequal Importance of Classes 119
 Asymmetric Misclassification Costs 121
 Generalization to More Than Two Classes 124
5.4 Judging Ranking Performance 124
 Lift Charts for Binary Data 125
Using the Cutoff Probability Method .. 172
Practical Difficulty with the Complete (Exact) Bayes Procedure 172
Solution: Naive Bayes ... 173
Example 2: Predicting Fraudulent Financial Reports, Two Predictors 175
Example 3: Predicting Delayed Flights ... 176
8.3 Advantages and Shortcomings of the Naive Bayes Classifier 180
Problems ... 184

CHAPTER 9 Classification and Regression Trees 186
9.1 Introduction ... 187
9.2 Classification Trees .. 188
Recursive Partitioning ... 188
Example 1: Riding Mowers .. 189
Measures of Impurity .. 191
Tree Structure ... 195
Classifying a New Observation .. 195
9.3 Evaluating the Performance of a Classification Tree 196
Example 2: Acceptance of Personal Loan .. 196
9.4 Avoiding Overfitting ... 199
Stopping Tree Growth: CHAID .. 199
Pruning the Tree .. 201
9.5 Classification Rules from Trees .. 206
9.6 Classification Trees for More Than two Classes 207
9.7 Regression Trees ... 207
Prediction .. 207
Measuring Impurity ... 208
Evaluating Performance ... 208
9.8 Advantages, Weaknesses and Extensions 209
9.9 Improving Prediction: Multiple Trees ... 210
Problems ... 214

CHAPTER 10 Logistic Regression .. 218
10.1 Introduction .. 219
10.2 The Logistic Regression Model .. 220
Example: Acceptance of Personal Loan ... 222
Model with a Single Predictor ... 223
Estimating the Logistic Model from Data: Computing Parameter Estimates ... 225
Interpreting Results in Terms of Odds (for a Profiling Goal) 227
10.3 Evaluating Classification Performance 229
Variable Selection ... 231
CONTENTS

10.4 Example of Complete Analysis: Predicting
 Delayed Flights ... 231
 Data Preprocessing 234
 Model Fitting and Estimation 234
 Model Interpretation 235
 Model Performance 236
 Variable Selection 237

10.5 Appendix: Logistic Regression for Profiling 240
 Appendix A: Why Linear Regression Is Problematic for a
 Categorical Response 240
 Appendix B: Evaluating Explanatory Power 241
 Appendix C: Logistic Regression for More Than Two Classes
 Problems ... 244

CHAPTER 11 Neural Nets

11.1 Introduction ... 250
11.2 Concept and Structure of a Neural Network 251
11.3 Fitting a Network to Data 252
 Example 1: Tiny Dataset 252
 Computing Output of Nodes 253
 Preprocessing the Data 256
 Training the Model 257
 Example 2: Classifying Accident Severity 261
 Avoiding Overfitting 263
 Using the Output for Prediction and Classification 264
11.4 Required User Input 266
11.5 Exploring the Relationship Between Predictors
 and Response ... 268
 Unsupervised Feature Extraction and Deep Learning ... 270
11.6 Advantages and Weaknesses of Neural Networks 268
Problems ... 271

CHAPTER 12 Discriminant Analysis

12.1 Introduction ... 273
 Example 1: Riding Mowers 274
 Example 2: Personal Loan Acceptance 275
12.2 Distance of an Observation from a Class 275
12.3 Fisher’s Linear Classification Functions 278
12.4 Classification Performance of Discriminant
 Analysis ... 281
12.5 Prior Probabilities 282
12.6 Unequal Misclassification Costs 283
12.7 Classifying More Than Two Classes 284
Example 3: Medical Dispatch to Accident Scenes

\[284 \]

12.8 Advantages and Weaknesses

\[286 \]

Problems

\[289 \]

CHAPTER 13

Combining Methods: Ensembles and Uplift Modeling

\[292 \]

13.1 Ensembles

- Why Ensembles Can Improve Predictive Power
- Simple Averaging
- Bagging
- Boosting
- Advantages and Weaknesses of Ensembles

\[297 \]

13.2 Uplift (Persuasion) Modeling

- A-B Testing
- Uplift
- Gathering the Data
- A Simple Model
- Modeling Individual Uplift
- Using the Results of an Uplift Model

\[303 \]

13.3 Summary

\[303 \]

Problems

\[304 \]

PART V

MINING RELATIONSHIPS AMONG RECORDS

CHAPTER 14

Association Rules and Collaborative Filtering

\[308 \]

14.1 Association Rules

- Discovering Association Rules in Transaction Databases
- Example 1: Synthetic Data on Purchases of Phone Faceplates
- Generating Candidate Rules
- The Apriori Algorithm
- Selecting Strong Rules
- Data Format
- The Process of Rule Selection
- Interpreting the Results
- Rules and Chance
- Example 2: Rules for Similar Book Purchases

\[320 \]

14.2 Collaborative Filtering

- Data Type and Format
- Example 3: Netflix Prize Contest
- User-Based Collaborative Filtering: “People Like You”
- Item-Based Collaborative Filtering
- Advantages and Weaknesses of Collaborative Filtering
- Collaborative Filtering vs. Association Rules

\[328 \]

14.3 Summary

\[330 \]

Problems

\[332 \]
CHAPTER 15 Cluster Analysis

15.1 Introduction .. 337
 Example: Public Utilities 338
15.2 Measuring Distance Between Two Observations 340
 Euclidean Distance 340
 Normalizing Numerical Measurements 341
 Other Distance Measures for Numerical Data 341
 Distance Measures for Categorical Data 343
 Distance Measures for Mixed Data 344
15.3 Measuring Distance Between Two Clusters 345
 Minimum Distance 345
 Maximum Distance 345
 Average Distance 345
 Centroid Distance 345
15.4 Hierarchical (Agglomerative) Clustering 347
 Single Linkage 348
 Complete Linkage 348
 Average Linkage (in XLMiner: “Group Average Linkage”) . 349
 Centroid Linkage 349
 Ward’s Method 349
 Dendrograms: Displaying Clustering Process and Results . 350
 Validating Clusters 352
 Limitations of Hierarchical Clustering 353
15.5 Non-hierarchical Clustering: The k-Means Algorithm 354
 Initial Partition into k Clusters 356
Problems ... 360

PART VI FORECASTING TIME SERIES

CHAPTER 16 Handling Time Series 364

16.1 Introduction .. 364
16.2 Descriptive vs. Predictive Modeling 366
16.3 Popular Forecasting Methods in Business 366
 Combining Methods 366
16.4 Time Series Components 367
 Example: Ridership on Amtrak Trains 367
16.5 Data Partitioning and Performance Evaluation 371
 Benchmark Performance: Naive Forecasts 372
 Generating Future Forecasts 372
Problems ... 374
CHAPTER 17 Regression-Based Forecasting
17.1 A Model with Trend
 Linear Trend
 Exponential Trend
 Polynomial Trend
17.2 A Model with Seasonality
17.3 A Model with Trend and Seasonality
17.4 Autocorrelation and ARIMA Models
 Computing Autocorrelation
 Improving Forecasts by Integrating Autocorrelation
 Evaluating Predictability
Problems

CHAPTER 18 Smoothing Methods
18.1 Introduction
18.2 Moving Average
 Centered Moving Average for Visualization
 Trailing Moving Average for Forecasting
 Choosing Window Width (w)
18.3 Simple Exponential Smoothing
 Choosing Smoothing Parameter \(\alpha \)
 Relation between Moving Average and Simple Exponential Smoothing
18.4 Advanced Exponential Smoothing
 Series with a Trend
 Series with a Trend and Seasonality
 Series with Seasonality (No Trend)
Problems

PART VII DATA ANALYTICS
CHAPTER 19 Social Network Analytics
19.1 Introduction
19.2 Directed vs. Undirected Networks
19.3 Visualizing and Analyzing Networks
 Graph Layout
 Adjacency List
 Adjacency Matrix
 Using Network Data in Classification and Prediction
19.4 Social Data Metrics and Taxonomy
 Node-Level Centrality Metrics
 Egocentric Network

Network Metrics

- 19.5 Using Network Metrics in Prediction and Classification
 - Link Prediction
 - Entity Resolution
 - Collaborative Filtering

Advantages and Disadvantages

Problems

CHAPTER 20 Text Mining

20.1 Introduction

20.2 The Spreadsheet Representation of Text: “Bag-of-Words”

20.3 Bag-of-Words vs. Meaning Extraction at Document Level

20.4 Preprocessing the Text
 - Tokenization
 - Text Reduction
 - Presence/Absence vs. Frequency
 - Term Frequency—Inverse Document Frequency (TF-IDF)
 - From Terms to Concepts: Latent Semantic Indexing
 - Extracting Meaning

20.5 Implementing Data Mining Methods

20.6 Example: Online Discussions on Autos and Electronics
 - Importing and Labeling the Records
 - Tokenization
 - Text Processing and Reduction
 - Producing a Concept Matrix
 - Labeling the Documents
 - Fitting a Model
 - Prediction

20.7 Summary

Problems

PART VIII CASES

CHAPTER 21 Cases

21.1 Charles Book Club
 - The Book Industry
 - Database Marketing at Charles
 - Data Mining Techniques
 - Assignment

21.2 German Credit
 - Background
 - Data
 - Assignment

21.3 Tayko Software Cataloger