CONTENTS

Preface xxi
Overview xxv
Programs used in the preparation of this book xxix

1 Second Quantization 1

1.1 The Fock space 1
1.2 Creation and annihilation operators 2
 1.2.1 Creation operators 3
 1.2.2 Annihilation operators 4
 1.2.3 Anticommutation relations 5
1.3 Number-conserving operators 6
 1.3.1 Occupation-number operators 6
 1.3.2 The number operator 7
 1.3.3 Excitation operators 7
1.4 The representation of one- and two-electron operators 9
 1.4.1 One-electron operators 9
 1.4.2 Two-electron operators 11
 1.4.3 The molecular electronic Hamiltonian 13
1.5 Products of operators in second quantization 14
 1.5.1 Operator products 14
 1.5.2 The canonical commutators 17
1.6 First- and second-quantization operators compared 18
1.7 Density matrices 19
 1.7.1 The one-electron density matrix 20
 1.7.2 The two-electron density matrix 21
 1.7.3 Density matrices in spin-orbital and coordinate representations 23
1.8 Commutators and anticommutators 25
1.9 Nonorthogonal spin orbitals 27
 1.9.1 Creation and annihilation operators 27
 1.9.2 One- and two-electron operators 29
 1.9.3 Birectangular operators 30

References 31
Further reading 31
2 Spin in Second Quantization

2.1 Spin functions
2.2 Operators in the orbital basis
 2.2.1 Spin-free operators
 2.2.2 Spin operators
 2.2.3 Mixed operators
2.3 Spin tensor operators
 2.3.1 Spin tensor operators
 2.3.2 Creation and annihilation operators
 2.3.3 Two-body creation operators
 2.3.4 Excitation operators
 2.3.5 Singlet excitation operators
2.4 Spin properties of determinants
 2.4.1 General considerations
 2.4.2 Spin projection of determinants
 2.4.3 Total spin of determinants
2.5 Configuration state functions
2.6 The genealogical coupling scheme
 2.6.1 Representations of determinants and CSFs
 2.6.2 Genealogical coupling
 2.6.3 Coupling coefficients
 2.6.4 An example: three electrons in three orbitals
 2.6.5 Completeness and orthonormality
 2.6.6 Transformations between determinant and CSF bases
 2.6.7 Genealogical coupling of operators
2.7 Density matrices
 2.7.1 Orbital-density matrices
 2.7.2 Spin-density matrices
 2.7.3 Density functions
References
Further reading
Exercises
Solutions

3 Orbital Rotations

3.1 Unitary transformations and matrix exponentials
 3.1.1 Matrix exponentials
 3.1.2 Exponential representations of unitary matrices
 3.1.3 Special unitary matrices
 3.1.4 Orthogonal matrices
 3.1.5 Evaluation of matrix exponentials
 3.1.6 Nonunitary transformations
3.2 Unitary spin-orbital transformations
 3.2.1 Unitary matrix expansions of creation and annihilation operators 87
 3.2.2 Exponential unitary transformations of the elementary operators 88
 3.2.3 Exponential unitary transformations of states in Fock space 89
3.3 Symmetry-restricted unitary transformations
 3.3.1 The need for symmetry restrictions 89
 3.3.2 Symmetry restrictions in the spin-orbital basis 90
 3.3.3 Symmetry restrictions in the orbital basis 91
3.4 The logarithmic matrix function
 3.4.1 Definition of the logarithmic matrix function 93
 3.4.2 Expansion of the logarithmic matrix function 94
 3.4.3 Properties of the logarithmic matrix function 95
References 95
Further reading 95
Exercises 95
Solutions 99

4 Exact and Approximate Wave Functions 107
 4.1 Characteristics of the exact wave function 107
 4.2 The variation principle 111
 4.2.1 The variation principle 111
 4.2.2 The variation method 112
 4.2.3 Linear expansions and eigenvalue equations 113
 4.2.4 Upper bounds and the Hylleraas–Unsöld theorem 115
 4.2.5 Nonlinear expansions 117
 4.2.6 The Hellmann–Feynman theorem 119
 4.2.7 The molecular electronic virial theorem 121
 4.2.8 Variational reformulation of nonvariational energies 123
 4.2.9 The variation principle summarized 126
 4.3 Size-extensivity 126
 4.3.1 Size-extensivity of exact wave functions 126
 4.3.2 Size-extensivity of linear variational wave functions 129
 4.3.3 Matrix representation of the noninteracting eigenvalue problem 131
 4.3.4 Size-extensivity of exponential wave functions 132
 4.4 Symmetry constraints 135
References 137
Further reading 137
Exercises 137
Solutions 139

5 The Standard Models 142
 5.1 One- and N-electron expansions 143
 5.2 A model system: the hydrogen molecule in a minimal basis 146
 5.2.1 One-electron basis 146
 5.2.2 N-electron basis 148
5.2.3 Density matrices and molecular integrals
5.2.4 Bonding and antibonding configurations
5.2.5 Superposition of configurations
5.2.6 Covalent and ionic states
5.2.7 Open-shell states
5.2.8 Electron correlation
5.2.9 The dissociation limit
5.2.10 Static and dynamical correlation

5.3 Exact wave functions in Fock space
 5.3.1 Full configuration-interaction wave functions
 5.3.2 The electronic ground state of the hydrogen molecule
 5.3.3 The electronic ground state of the water molecule

5.4 The Hartree–Fock approximation
 5.4.1 The Hartree–Fock model
 5.4.2 The Fock operator and the canonical representation
 5.4.3 Restricted and unrestricted Hartree–Fock theory
 5.4.4 The correlation energy
 5.4.5 The ground state of the hydrogen molecule
 5.4.6 The bonded hydrogen molecule
 5.4.7 The RHF dissociation of the hydrogen molecule
 5.4.8 The UHF dissociation of the hydrogen molecule
 5.4.9 The ground state of the water molecule
 5.4.10 The dissociation of the water molecule
 5.4.11 Final comments

5.5 Multiconfigurational self-consistent field theory
 5.5.1 The multiconfigurational self-consistent field model
 5.5.2 The ground state of the hydrogen molecule
 5.5.3 The selection of MCSCF configuration spaces
 5.5.4 The ground state of the water molecule
 5.5.5 Final comments

5.6 Configuration-interaction theory
 5.6.1 The configuration-interaction model
 5.6.2 Single-reference CI wave functions
 5.6.3 Multireference CI wave functions
 5.6.4 Final comments

5.7 Coupled-cluster theory
 5.7.1 The coupled-cluster model
 5.7.2 The exponential ansatz of coupled-cluster theory
 5.7.3 The ground state of the water molecule
 5.7.4 The unrestricted coupled-cluster model
 5.7.5 Approximate treatments of triple excitations
 5.7.6 Final comments

5.8 Perturbation theory
 5.8.1 Möller–Plesset perturbation theory
 5.8.2 The ground state of the water molecule
 5.8.3 Convergence of the Möller–Plesset perturbation series
6 Atomic Basis Functions 201

6.1 Requirements on one-electron basis functions 201
6.2 One- and many-centre expansions 203
6.3 The one-electron central-field system 204
6.4 The angular basis 207
 6.4.1 The spherical harmonics 207
 6.4.2 The solid harmonics 209
 6.4.3 Explicit Cartesian expressions for the complex solid harmonics 210
 6.4.4 Explicit Cartesian expressions for the real solid harmonics 214
 6.4.5 Recurrence relations for the real solid harmonics 215
6.5 Exponential radial functions 218
 6.5.1 The Laguerre polynomials 219
 6.5.2 The hydrogenic functions 221
 6.5.3 The Laguerre functions 222
 6.5.4 The carbon orbitals expanded in Laguerre functions 223
 6.5.5 The nodeless Slater-type orbitals 225
 6.5.6 STOs with variable exponents 226
 6.5.7 STO basis sets 227
6.6 Gaussian radial functions 229
 6.6.1 The harmonic-oscillator functions in polar coordinates 230
 6.6.2 The carbon orbitals expanded in HO functions 231
 6.6.3 The nodeless Gaussian-type orbitals 232
 6.6.4 The GTOs with variable exponents 233
 6.6.5 The carbon orbitals expanded in GTOs 235
 6.6.6 The HO functions in Cartesian coordinates 236
 6.6.7 The Cartesian GTOs 237
References 238
Further reading 239
Exercises 239
Solutions 245

7 Short-Range Interactions and Orbital Expansions 256

7.1 The Coulomb hole 256
7.2 The Coulomb cusp 259
7.3 Approximate treatments of the ground-state helium atom 262
 7.3.1 Configuration-interaction expansions 262
 7.3.2 Correlating functions and explicitly correlated methods 264
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3</td>
<td>The Hylleraas function</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Conclusions</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>7.4</td>
<td>The partial-wave expansion of the ground-state helium atom</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Partial-wave expansion of the interelectronic distance</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Partial-wave expansion of the wave function</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>7.4.3</td>
<td>The asymptotic convergence of the partial-wave expansion</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>7.4.4</td>
<td>The truncation error of the partial-wave expansion</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>7.5</td>
<td>The principal expansion of the ground-state helium atom</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The principal expansion and its asymptotic convergence</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Comparison of the partial-wave and principal expansions</td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>7.5.3</td>
<td>The Coulomb hole in the principal expansion</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Conclusions</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>7.6</td>
<td>Electron-correlation effects summarized</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>7.6.1</td>
<td>References</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Further reading</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Exercises</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Solutions</td>
<td></td>
<td>282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Gaussian Basis Sets</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>8.1</td>
<td>Gaussian basis functions</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>8.2</td>
<td>Gaussian basis sets for Hartree–Fock calculations</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>8.2.1</td>
<td>STO-3G basis sets</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Primitive expansions of Hartree–Fock orbitals</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Even-tempered basis sets</td>
<td></td>
<td>292</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Contracted Gaussians</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Segmented contractions</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Simultaneous optimization of exponents and coefficients</td>
<td></td>
<td>297</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Polarization functions</td>
<td></td>
<td>299</td>
</tr>
<tr>
<td>8.3</td>
<td>Gaussian basis sets for correlated calculations</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Core and valence correlation energies</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Atomic natural orbitals</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Correlation-consistent basis sets</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Extended correlation-consistent basis sets</td>
<td></td>
<td>312</td>
</tr>
<tr>
<td>8.4</td>
<td>Basis-set convergence</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Basis-set convergence of the Hartree–Fock model</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Basis-set convergence of correlated models</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>8.4.3</td>
<td>The asymptotic convergence of the correlation energy</td>
<td></td>
<td>322</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Basis-set convergence of the binding energy</td>
<td></td>
<td>324</td>
</tr>
<tr>
<td>8.5</td>
<td>Basis-set superposition error</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Basis-set superposition error and the counterpoise correction</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>8.5.2</td>
<td>BSSE in the neon dimer</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>8.5.3</td>
<td>BSSE in the water dimer</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>8.5.4</td>
<td>BSSE in the BH molecule</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Summary</td>
<td></td>
<td>334</td>
</tr>
</tbody>
</table>
9 Molecular Integral Evaluation

9.1 Contracted spherical-harmonic Gaussians
 9.1.1 Primitive Cartesian GTOs
 9.1.2 Spherical-harmonic GTOs
 9.1.3 Contracted GTOs
 9.1.4 Computational considerations

9.2 Cartesian Gaussians
 9.2.1 Cartesian Gaussians
 9.2.2 Recurrence relations for Cartesian Gaussians
 9.2.3 The Gaussian product rule
 9.2.4 Gaussian overlap distributions
 9.2.5 Properties of Gaussian overlap distributions
 9.2.6 Integrals over spherical overlap distributions

9.3 The Obura–Saika scheme for simple integrals
 9.3.1 Overlap integrals
 9.3.2 Multipole-moment integrals
 9.3.3 Integrals over differential operators
 9.3.4 Momentum and kinetic-energy integrals

9.4 Hermite Gaussians
 9.4.1 Hermite Gaussians
 9.4.2 Derivative and recurrence relations for Hermite Gaussians
 9.4.3 Integrals over Hermite Gaussians
 9.4.4 Hermite Gaussians and HO functions compared

9.5 The McMurchie–Davidson scheme for simple integrals
 9.5.1 Overlap distributions expanded in Hermite Gaussians
 9.5.2 Overlap distributions from Hermite Gaussians by recursion
 9.5.3 The McMurchie–Davidson scheme for multipole-moment integrals

9.6 Gaussian quadrature for simple integrals
 9.6.1 Orthogonal polynomials
 9.6.2 Gaussian quadrature
 9.6.3 Proof of the Gaussian-quadrature formula
 9.6.4 Gauss–Hermite quadrature for simple integrals

9.7 Coulomb integrals over spherical Gaussians
 9.7.1 Spherical Gaussian charge distributions
 9.7.2 The potential from a spherical Gaussian charge distribution
 9.7.3 The repulsion between spherical Gaussian charge distributions
 9.7.4 The electrostatics of spherical Gaussian distributions

9.8 The Boys function
 9.8.1 The Boys function
 9.8.2 Evaluation of the Boys function
 9.8.3 The incomplete gamma function
9.8.4 The error function 369
9.8.5 The complementary error function 370
9.8.6 The confluent hypergeometric function 371
9.9 The McMurtrie–Davidson scheme for Coulomb integrals 372
 9.9.1 Hermite Coulomb integrals 373
 9.9.2 The evaluation of Hermite Coulomb integrals 374
 9.9.3 Cartesian Coulomb integrals by Hermite expansion 375
 9.9.4 Cartesian Coulomb integrals by Hermite recursion 377
 9.9.5 Computational considerations for the one-electron integrals 377
 9.9.6 Computational considerations for the two-electron integrals 379
9.10 The Obara–Saika scheme for Coulomb integrals 381
 9.10.1 The Obara–Saika scheme for one-electron Coulomb integrals 382
 9.10.2 The Obara–Saika scheme for two-electron Coulomb integrals 383
 9.10.3 The electron-transfer and horizontal recurrence relations 385
 9.10.4 Computational considerations for the two-electron integrals 386
9.11 Rys quadrature for Coulomb integrals 387
 9.11.1 Motivation for the Gaussian-quadrature scheme 388
 9.11.2 Gaussian quadrature for even polynomials and weight functions 388
 9.11.3 Rys polynomials and Gauss–Rys quadrature 390
 9.11.4 The Rys scheme for Hermite Coulomb integrals 392
 9.11.5 The Rys scheme for Cartesian Coulomb integrals 394
 9.11.6 Obara–Saika recursion for the two-dimensional Rys integrals 395
 9.11.7 Computational considerations for the two-electron integrals 397
9.12 Scaling properties of the molecular integrals 398
 9.12.1 Linear scaling of the overlap and kinetic-energy integrals 398
 9.12.2 Quadratic scaling of the Coulomb integrals 400
 9.12.3 Linear scaling of the nonclassical Coulomb integrals 401
 9.12.4 The Schwarz inequality 403
9.13 The multipole method for Coulomb integrals 405
 9.13.1 The multipole method for primitive two-electron integrals 405
 9.13.2 Convergence of the multipole expansion 409
 9.13.3 The multipole method for contracted two-electron integrals 409
 9.13.4 Translation of multipole moments 410
 9.13.5 Real multipole moments 412
 9.13.6 The real translation matrix 413
 9.13.7 The real interaction matrix 414
 9.13.8 Evaluation of the scaled solid harmonics 415
9.14 The multipole method for large systems 417
 9.14.1 The naive multipole method 417
 9.14.2 The two-level multipole method 420
 9.14.3 The fast multipole method 421
 9.14.4 The continuous fast multipole method 423
References 425
Further reading 426
Exercises 426
Solutions 428
10 Hartree–Fock Theory

10.1 Parametrization of the wave function and the energy 433
10.1.1 Single and triplet CSFs 434
10.1.2 Orbital rotations 435
10.1.3 Expansion of the energy 437
10.2 The Hartree–Fock wave function 438
10.2.1 The Hartree–Fock wave function 438
10.2.2 Redundant parameters 440
10.2.3 The Brillouin theorem 441
10.2.4 Size-extensivity 442
10.3 Canonical Hartree–Fock theory 443
10.3.1 The Fock operator 444
10.3.2 Identification of the elements of the Fock operator 445
10.3.3 The Fock matrix 447
10.3.4 The self-consistent field method 448
10.3.5 The variational and canonical conditions compared 449
10.4 The RHF total energy and orbital energies 450
10.4.1 The Hamiltonian and the Fock operator 450
10.4.2 The canonical representation and orbital energies 450
10.4.3 The Hartree–Fock energy 452
10.4.4 Hund’s rule for singlet and triplet states 452
10.4.5 The fluctuation potential 453
10.5 Koopmans’ theorem 454
10.5.1 Koopmans’ theorem for ionization potentials 454
10.5.2 Koopmans’ theorem for electron affinities 455
10.5.3 Ionization potentials of H₂O and N₂ 456
10.6 The Roothaan–Hall self-consistent field equations 458
10.6.1 The Roothaan–Hall equations 458
10.6.2 DFT convergence acceleration 460
10.6.3 Integral-direct Hartree–Fock theory 463
10.7 Density-based Hartree–Fock theory 465
10.7.1 Density-matrix formulation of Hartree–Fock theory 465
10.7.2 Properties of the MO density matrix 466
10.7.3 Properties of the AO density matrix 467
10.7.4 Exponential parametrization of the AO density matrix 468
10.7.5 The redundancy of the exponential parametrization 469
10.7.6 Purification of the density matrix 470
10.7.7 Convergence of the purification scheme 471
10.7.8 The Hartree–Fock energy and the variational conditions 473
10.7.9 The density-based SCF method 475
10.7.10 Optimization of the SCF orbital-energy function 477
10.7.11 Linear scaling of the density-based SCF scheme 477
10.8 Second-order optimization 478
10.8.1 Newton’s method 478
10.8.2 Density-based formulation of Newton’s method 480
10.8.3 The electronic gradient in orbital-based Hartree–Fock theory 481
10.8.4 The inactive and active Fock matrices
10.8.5 Computational cost for the calculation of the Fock matrix
10.8.6 The electronic Hessian in orbital-based Hartree–Fock theory
10.8.7 Linear transformations in the MO basis
10.8.8 Linear transformations in the AO basis
10.9 The SCF method as an approximate second-order method
 10.9.1 The GBT vector
 10.9.2 The Fock operator
 10.9.3 Identification from the gradient
 10.9.4 Identification from the Hessian
 10.9.5 Convergence rates
 10.9.6 The SCF and Newton methods compared
10.10 Singlet and triplet instabilities in RHF theory
 10.10.1 Orbital-rotation operators in RHF and UHF theories
 10.10.2 RHF instabilities for nondegenerate electronic states
 10.10.3 RHF energies of degenerate electronic states
 10.10.4 Triplet instabilities in H₂
 10.10.5 Triplet instabilities in H₂O
 10.10.6 Singlet instabilities in the allyl radical
10.11 Multiple solutions in Hartree–Fock theory
References
Further reading
Exercises
Solutions

11 Configuration-Interaction Theory
11.1 The CI model
 11.1.1 The CI model
 11.1.2 Full CI wave functions
 11.1.3 Truncated CI wave functions: CAS and RAS expansions
11.2 Size-extensivity and the CI model
 11.2.1 FCI wave functions
 11.2.2 Truncated CI wave functions
 11.2.3 The Davidson correction
 11.2.4 A numerical study of size-extensivity
11.3 A CI model system for noninteracting hydrogen molecules
 11.3.1 The CID wave function and energy
 11.3.2 The Davidson correction
 11.3.3 The CID one-electron density matrix
 11.3.4 The FCI distribution of excitation levels
11.4 Parametrization of the CI model
 11.4.1 The CI expansion
 11.4.2 The CI energy
11.5 Optimization of the CI wave function
 11.5.1 The Newton step
 11.5.2 Convergence rate of Newton's method for the CI energy
11.5.3 Approximate Newton schemes 547
11.5.4 Convergence rate of quasi-Newton schemes for the CI energy 548
11.6 Slater determinants as products of alpha and beta strings 550
11.7 The determinantal representation of the Hamiltonian operator 552
11.8 Direct CI methods 554
11.8.1 General considerations 554
11.8.2 Ordering and addressing of spin strings 555
11.8.3 The N-resolution method 558
11.8.4 The minimal operation-count method 560
11.8.5 Direct CI algorithms for RAS calculations 564
11.8.6 Simplifications for wave functions of zero projected spin 567
11.8.7 Density matrices 568
11.9 CI orbital transformations 569
11.10 Symmetry-broken CI solutions 573
References 574
Further reading 575
Exercises 575
Solutions 583

12 Multiconfigurational Self-Consistent Field Theory 598
12.1 The MCSCF model 598
12.2 The MCSCF energy and wave function 600
12.2.1 The parametrization of the MCSCF state 600
12.2.2 The Taylor expansion of the MCSCF energy 601
12.2.3 The MCSCF electronic gradient and Hessian 603
12.2.4 Invariance of the second-order MCSCF energy 604
12.2.5 Rank-1 contributions to the MCSCF electronic Hessian 604
12.2.6 Redundant orbital rotations 605
12.2.7 The MCSCF electronic gradient at stationary points 608
12.2.8 The MCSCF electronic Hessian at stationary points 609
12.3 The MCSCF Newton trust-region method 610
12.3.1 The Newton step 610
12.3.2 The level-shifted Newton step 611
12.3.3 The level-shift parameter 612
12.3.4 Step control for ground states 614
12.3.5 Step control for excited states 614
12.3.6 Trust-radius update schemes 615
12.4 The Newton eigenvector method 616
12.4.1 The MCSCF eigenvalue problem 616
12.4.2 The Newton eigenvector method 617
12.4.3 Norm-extended optimization 619
12.4.4 The augmented-Hessian method 620
12.5 Computational considerations 621
12.5.1 The MCSCF electronic gradient 622
12.5.2 MCSCF Hessian transformations 623
12.5.3 Inner and outer iterations 625
12.5.4 The structure of the MCSCF electronic Hessian 626
12.5.5 Examples of MCSCF optimizations 628
12.6 Exponential parametrization of the configuration space 630
12.6.1 General exponential parametrization of the configuration space 630
12.6.2 Exponential parametrization for a single reference state 631
12.6.3 A basis for the orthogonal complement to the reference state 633
12.6.4 Exponential parametrization for several reference states 634
12.7 MCSCF theory for several electronic states 637
12.7.1 Separate optimization of the individual states 637
12.7.2 State-averaged MCSCF theory 638
12.8 Removal of RHF instabilities in MCSCF theory 640
12.8.1 Bond breaking in H$_2$O 640
12.8.2 The ground state of the allyl radical 641

References 643
Further reading 643
Exercises 643
Solutions 645

13 Coupled-Cluster Theory 648
13.1 The coupled-cluster model 648
13.1.1 Pair clusters 649
13.1.2 The coupled-cluster wave function 650
13.1.3 Connected and disconnected clusters 650
13.1.4 The coupled-cluster Schrödinger equation 651
13.2 The coupled-cluster exponential ansatz 654
13.2.1 The exponential ansatz 654
13.2.2 The coupled-cluster hierarchy of excitation levels 654
13.2.3 The projected coupled-cluster equations 657
13.2.4 The coupled-cluster energy 660
13.2.5 The coupled-cluster amplitude equations 660
13.2.6 Coupled-cluster theory in the canonical representation 662
13.2.7 Comparison of the CI and coupled-cluster hierarchies 662
13.2.8 Cluster-commutation conditions and operator ranks 663
13.3 Size-extensivity in coupled-cluster theory 665
13.3.1 Size-extensivity in linked coupled-cluster theory 665
13.3.2 Termwise size-extensivity 667
13.3.3 Size-extensivity in unlinked coupled-cluster theory 668
13.3.4 A numerical study of size-extensivity 669
13.4 Coupled-cluster optimization techniques 670
13.4.1 Newton's method 671
13.4.2 The perturbation-based quasi-Newton method 672
13.4.3 DIIS acceleration of the quasi-Newton method 672
13.4.4 Examples of coupled-cluster optimizations 673
13.5 The coupled-cluster variational Lagrangian 674
 13.5.1 The coupled-cluster Lagrangian 674
 13.5.2 The Hellmann–Feynman theorem 675
 13.5.3 Lagrangian density matrices 676
13.6 The equation-of-motion coupled-cluster method 677
 13.6.1 The equation-of-motion coupled-cluster model 677
 13.6.2 The EOM-CC eigenvalue problem 679
 13.6.3 The similarity-transformed Hamiltonian and the Jacobian 680
 13.6.4 Solution of the EOM-CC eigenvalue problem 681
 13.6.5 Size-extensivity of the EOM-CC energies 683
 13.6.6 Final comments 684
13.7 The closed-shell CCSD model 685
 13.7.1 Parametrization of the CCSD cluster operator 685
 13.7.2 The CCSD energy expression 686
 13.7.3 The T1-transformed Hamiltonian 687
 13.7.4 The T1-transformed integrals 690
 13.7.5 Representation of the CCSD projection manifold 691
 13.7.6 The norm of the CCSD wave function 692
 13.7.7 The CCSD singles projection 693
 13.7.8 The CCSD doubles projection 695
 13.7.9 Computational considerations 697
13.8 Special treatments of coupled-cluster theory 698
 13.8.1 Orbital-optimized and Brueckner coupled-cluster theories 698
 13.8.2 Quadratic configuration-interaction theory 702
13.9 High-spin open-shell coupled-cluster theory 704
 13.9.1 Spin-restricted coupled-cluster theory 704
 13.9.2 Total spin of the spin-restricted coupled-cluster wave function 707
 13.9.3 The projection manifold in spin-restricted theory 708
 13.9.4 Spin-adapted CCSD theory 709

References 711
Further reading 712
Exercises 712
Solutions 717

14 Perturbation Theory 724

14.1 Rayleigh–Schrödinger perturbation theory 725
 14.1.1 RSPT energies and wave functions 726
 14.1.2 Wigner’s 2n + 1 rule 728
 14.1.3 The Hylleraas functional 734
 14.1.4 Size-extensivity in RSPT 736
14.2 Møller–Plesset perturbation theory 739
 14.2.1 The zero-order MPPT system 740
 14.2.2 The MP1 wave function 741
14.2.3 The MP2 wave function
14.2.4 The Møller–Plesset energies
14.2.5 Explicit expressions for MPPT wave functions and energies
14.2.6 Size-extensivity in Møller–Plesset theory

14.3 Coupled-cluster perturbation theory
14.3.1 The similarity-transformed exponential ansatz of CCPT
14.3.2 The CCPT amplitude equations
14.3.3 The CCPT wave functions
14.3.4 The CCPT energies
14.3.5 Size-extensivity in CCPT
14.3.6 The CCPT Lagrangian
14.3.7 The CCPT variational equations
14.3.8 CCPT energies that obey the $2n + 1$ rule
14.3.9 Size-extensivity of the CCPT Lagrangian

14.4 Møller–Plesset theory for closed-shell systems
14.4.1 The closed-shell zero-order system
14.4.2 The closed-shell variational Lagrangian
14.4.3 The closed-shell wave-function corrections
14.4.4 The closed-shell energy corrections

14.5 Convergence in perturbation theory
14.5.1 A two-state model
14.5.2 Conditions for convergence
14.5.3 Intruders in the general two-state model
14.5.4 Prototypical intruders
14.5.5 Convergence of the Møller–Plesset series
14.5.6 Analytic continuation

14.6 Perturbative treatments of coupled-cluster wave functions
14.6.1 Perturbation analysis of the coupled-cluster hierarchy
14.6.2 Iterative hybrid methods
14.6.3 Noniterative hybrid methods: the CCSD(T) model
14.6.4 Hybrid and nonhybrid methods compared

14.7 Multiconfigurational perturbation theory
14.7.1 The zero-order CASPT Hamiltonian
14.7.2 Size-extensivity in CASPT
14.7.3 The CASPT wave function and energy
14.7.4 Sample CASPT calculations

References
Further reading
Exercises
Solutions

15 Calibration of the Electronic-Structure Models
15.1 The sample molecules
15.2 Errors in quantum-chemical calculations
15.2.1 Apparent and intrinsic errors
15.2.2 Statistical measures of errors
References	882
Further reading	882
Exercises	882
Solutions	883
List of Acronyms	885
Index	887