CONTENTS

1 Introduction 1

2 Organic Light-Emitting Diodes 5
 2.1 OLED Device Structure and Working Principles 5
 2.2 Applications of OLED Technology 20
 2.3 Diode Versus Transistor Architecture for Light Emission 31
 2.4 Conclusions 38
 References 38

3 Organic Light-Emitting Transistors: Concept, Structure, and Optoelectronic Characteristics 45
 3.1 Working Principles of OLETs 46
 3.2 Device Structures 57
 3.3 Thin-Film OLETs 61
 3.3.1 Single-Layer OLETs 61
 3.3.2 Multilayer OLETs 68
 3.4 Single-Crystal OLET 73
 3.5 Conclusions 82
 References 82
4 Key Building Blocks of OLETs 87
 4.1 Dielectric Layer 87
 4.2 Emissive Ambipolar Semiconductors 103
 4.3 Charge-Injecting Electrodes 129
 4.4 Conclusions 146
 References 146

5 Charge-Transport and Photophysical Processes in OLETs 153
 5.1 Charge Transport in OLETs 153
 5.2 Fundamental Excitonic Processes and Modeling of OLETs 170
 5.3 Excitonic Recombination and Emitting Area in OLETs 180
 5.4 Conclusions 195
 References 196

6 Photonic Properties of OLETs 201
 6.1 External Quantum Efficiency 201
 6.2 Brightness 212
 6.3 Light Outcoupling and Emission Directionality 220
 6.4 A Possible Route for Organic Injection Lasing 230
 6.5 Conclusions 236
 References 236

7 Applications of Organic Light-Emitting Transistors 243
 7.1 OLET Display Technology 244
 7.2 OLET-Based Sensing 254
 7.3 Open Issues and Next Development Targets 265
 7.3.1 Color Gamut 265
 7.3.2 Power Efficiency 267
 7.3.3 Lifetime 268
 7.4 Conclusions 271
 References 271

8 Conclusions 277

Index 279