INDEX

α, 203
α_f, 212
$\alpha(x, t)$, 7
absolute permeability, 155
acceleration due to gravity, 28
adherence condition, 195
adiabatic, 36
adsorption, 51, 118, 152
advancing Mach lines, 204
advection, 65, 118
advective flux, 69
α, 70
α', 149
angular momentum, 29, 165
angular momentum balance, 29, 190
anisotropy in porous media, 90
applications of the jump conditions for flow
through porous media, 96
β, 212
auxiliary conditions, 46
average, 11
axiom of bodies impenetrability, 4
axiomatic approach, 3, 108, 130
axiomatic formulation, 23, 118, 154
axiomatic formulation of the basic model, 1,
86
$B(t)$, 3
$b(x, t)$, 109
background on oil production, 149
balance, 9
balance conditions, 24, 151
balance equation, 10
balance equations of extensive and intensive
properties, 9
balance of kinetic energy, 33
basic assumptions of the porous medium flow
model, 85
basic mathematical model
of EOR, 151
of multi-phase systems, 46
of one-phase systems, 24
of solute transport in a porous medium,
117
of the system, 24
for the flow of a fluid through a porous
medium, 86
basis, 212
Bernoulli's equation, 198
Bernoulli's theorem, 198
β, 87
compressibility of solid grains, 89
compressible fluid, 193
concentration, 47, 65, 118
condition of incompressibility, 14
confined aquifer, 98, 100
conservative process, 48, 71
conservative transport system, 67
consolidation, 86
constitutive equations, 14, 46, 48, 57, 160, 165
contact force, 28
contact problem of elastodynamics, 182
continuity equation, 26, 36, 189, 197, 202
continuum mechanics, 9, 23
contracted index, 230
ϵ_p, 37
cross product, 29
C, 169

D, 176
Darcy velocity, 16, 97, 118, 134
multiphase form, 154
Darcy's law, 52, 90
$D(\mathbf{q})$, 29
definite, 212
Δ, 95
ΔE, 10
δ_{ij}, 122
density, 26

oil phase, 53
phase α at storage tank conditions, 54
of kinetic energy, 207
of linear momentum, 207
of phase at storage tank conditions, 54
of solid material, 89
of the solid matrix, 89
differential equation of local balance, 12
differential equations and jump conditions, 55
differential equations of non-diffusive transport, 73
differential equation of local balance, 30
\mathcal{D}, 66
\mathcal{D}, 66
diffusion coefficient, 66
diffusion processes, 65
diffusion-dispersion, 118, 121, 152, 157
diffusive flux, 48, 63, 69
dilatation, 171
delta (δ), 107
Dirac delta function, 107
Dirichlet boundary condition, 70, 97, 143
Dirichlet problem, 97, 214
discontinuous models and shock conditions, 206
INDEX

dispersion tensor, 122
dispersion vector for species \(i\) in phase \(\alpha\), 132
displacement, 166
displacement conditions, 181
displacement field, 169, 181
dissolved gas, 52, 152
distribution coefficient, 121
divergence, 233
divergence of the flux, 141
Divergence Theorem, 218
divergence-free motion, 194
domain, 3, 217
\(D \psi /D t\), 7
drawdown, 103
Duhamel integral, 106
\(D^M\), 122
\(D^m\), 122
dynamic viscosity, 91

\(E\), 178
\(E(B, t)\), 8
\(E(t)\), 9
\(E_K(t)\), 32
\(\varepsilon \otimes \varepsilon\), 94
effective diffusion coefficient, 123
effective permeability, 154
effective pressure, 88
\(E_I(t)\), 32
eigenvalue, 93
eigenvectors, 212
elastic materials, 165
elastic tensor, 169
elasticity of the solid matrix, 87
elasodynamics, 180
elastostatics, 180
\(\varepsilon_{ijk}\), 31
elementary volume, 47
elastic equations, 96, 211
energy
 kinetic, 32
 mechanical, 32
total, 32
internal, 32
balance, 190
concepts, 32
enhanced oil recovery, 149, 150
entropy, 199
FOR, 150
\(\varepsilon(\varepsilon, t)\), 15
\(\varepsilon\), 191
\(\varepsilon^\alpha\), 139

equation describing unsaturated flow in a porous medium, 141
equation of state, 87, 193
\(e_\beta^\alpha\), 133
\(E(t)\), 32
\(\eta\), 178
Euclidean
 inner product, 230
 representation, 6, 166
 space, 217, 229
Euler's equation, 197
\(\varepsilon\), 93
\(F\), 170
exchange between heat and kinetic energy, 35
extension of Bernoulli's relations to compressible fluids, 199
extensive flux through the boundary, 10
extensive properties, 8, 13, 24, 47, 49, 119, 130, 151, 165
extensive/intensive properties of classical mechanics, 25
external boundary, 217
external supply
 of mass in porous-medium system, 90
 of solute, 64
 of the extensive property, 10
external supplies of mass of species \(i\) to phase \(\alpha\), 131

\(f_{-}\), 11
\(f(\varepsilon)\), 11
family of extensive properties, 54
\(F\), 166
Fick's first law of diffusion, 48, 66, 91, 121
finite rigid deformation, 168
finite strain tensor, 168
first and second viscosity coefficients, 191
first law of thermodynamics, 32
first-order irreversible processes, 71, 119
first-order systems, 229
flow of a fluid in a porous medium, 85
flow of fluids through porous media, 51
fluid compressibility, 87, 135

fluid
 density, 51
 mass, 51, 86
 mechanics, 189
 particle velocity, 96, 191
 potential, 156
flow
 advective, 69
 diffusive, 48, 69
 solute mass, 66
total mass, 69
flux of mass of species i to phase α, 131
force
body, 28
contact, 28
forces
body, 28
contact, 28
formation volume factor, 156
formulation of motion restrictions by means of balance equations, 14
Fourier's law, 37, 66, 91, 193
for isotropic materials, 193
f+, 11
free surface, 200
free-fluid, 47
fΩ, 214
fundamental theorem of calculus, 218
G, 28
g, 48, 90, 107
g(x,t), 10
γ(x,t), 70
gas dynamics, 193
gas phase, 52
gas-oil ratio relation, 155
gasoil ratio, 54
gr, 132
Gauss theorem, 68, 218
general equation
governing flow through a porous medium, 94
of global balance, 10, 27
of solute transport by a free fluid, 64
Generalized Gauss Theorem, 218
generalized Green's theorem, 218
generic mathematical model, 14
Gibbs free energy, 159
gF, 33
gF, 34
global balance equations, 9, 33, 55, 118, 131, 151, 153
global balance of angular momentum, 30
global momentum balance, 28
G, 107
governing differential equations for transport of solutes in a porous media, 123
gradient, 232
∇x, 166
∇z, 166
grain compressibility, 135
Green's theorem, 218
g(x,t), 11
gΩ, 33
h, 34, 92, 103
H, 103
H(x,t), 166
Hantush leaky aquitard method, 102
h, 101
h(x,t), 166
heat
equation, 68, 95, 213
equivalent of mechanical work, 35
flux, 34, 37, 179, 193
source, 179
transport, 36
homentropic, 199
homogeneous displacement field, 171
homogeneous fluid, 87
homogeneous stress field, 173
hσ, 144
hydraulic conductivity tensor, 93, 136
hydraulic head, 52, 136
hydrostatic pressure, 190
hyperbolic equation, 78
hyperbolic equations, 211
hysteresis, 138
I, 10
I, 166
Ideal fluids, 197, 198
identity matrix, 232
immobile air unsaturated flow model, 142
improved oil recovery, 150
incompressibility of a fluid, 14
incompressibility of a fluid in a porous medium, 15
incompressible and inviscid fluids, 193
incompressible fluid, 193, 194
incompressible Navier-Stokes equation, 194
indicial notation, 230
infinite strain tensor, 168
infinitesimal rigid deformation, 169
infinitesimal rigid displacement, 168
infinitesimal strain, 177
initial conditions, 70, 99, 103, 182
initial-boundary-value problems, 70, 99, 106, 213
initiation of motion, 204
injection wells, 149
inner product, 230
integrodifferential equations approach, 104
intensive properties, 3, 6, 13, 47, 151
vector, 27
interface, 52
internal boundary, 217
internal energy, 32, 179
internal energy per unit mass, 32
intrinsic permeability tensor, 91, 93
invariant scalar, 191
inverse transformation, 4
inviscid compressible fluids, 202
inviscid fluid, 193
IR, 150
irrational flows, 198
isobaric, 37
isochoric, 14
isochoric motion, 194
isochoric strain, 172
isotropic
diffusion, 66
material, 175
state of strain, 177
states of stress, 174, 175
strain, 175

Joule's principle, 33
f^a, 133
f^a, 132
jump, 11, 218
jump conditions, 24, 46, 96, 206, 207
jump discontinuities, 11

k, 176
k, 144
\bar{g}_{ij}, 38
\bar{g}_e, 154
$\bar{g}_{’e}$, 37
Kinematic viscosity, 194
kinematics of continuous systems, 3
kinetic energy, 32
Kronecker delta, 171, 232
K_d, 121
$K_{\alpha\beta}$, 139
\bar{K}, 91

Lagrangian representation, 6, 76, 166
Λ, 119, 178, 191
Lamé constant, 178
Laplace equation, 69, 213
Laplacian operator, 180, 213, 232
leaky-aquifer systems, 105
Lebesgue integrable, 8
Leibniz' rule, 136
Levi Civita symbol, 31
linear
differential operator, 212
elastic solid, 167
elasticity, 165
equations, 212
momentum balance, 27, 190
momentum of a body, 27
linearized theory of incompressible fluids, 196
local balance equations, 10, 33, 65

m, 27
$M(t)$, 26
$M_{\alpha}(t)$, 29
macroscopic and microscopic perspectives, 3
macroscopic approach, 2
macroscopic physical systems, 2
macroscopic systems, 2
main drainage curve, 137
main imbibition curve, 137
mass
dissolved gas, 54
fluid, 51
non-volatile oil, 54
conservation, 26, 67
conservation principle, 26
exchange, 152, 157
flux, 48, 65, 118
fraction, 119
generation processes, 66, 118
of solute, 47, 117
produced by chemical reactions occurring in phase α, 132
sink, 67
source, 67
material
coordinates, 4, 166
derivative, 29
particle, 7
particles, 10
materials with memory, 167
matrix algebra, 230
matrix compressibility, 140
\bar{M}, (t), 110
mechanical axioms, 32
mechanical dispersion, 51, 122
mechanical energy, 32
mechanics
of classical continuous systems, 23
of continuous media, 2
of non-classical continuous systems, 45
microscopic and macroscopic physics, 2
microscopic approach, 2
miscible gas injection, 150
mixed (initial-boundary value) problem of elastodynamics, 181
mixed boundary conditions, 181
mixed problem of elastostatics, 181
modeling, 1
modeling the elasticity and compressibility of the matrix-fluid system, 87
models, 1
models of porous media with a reduced number of spatial dimensions, 99
modulus of compression, 176
molar density, 159
mole fraction, 159
molecular diffusion, 48, 64, 65, 122
molecular weight, 159
\(M_g (t), 55 \)
\(M_{Og} (t), 55 \)
\(m_{Og} , 54 \)
\(M_L , 93 \)
\(M_M , 120 \)
\(M_{Oe} (t), 55 \)
\(m_{Oe} , 54 \)
\(M_S (t), 47 \)
\(M_{Se} , 50 \)
\(M_{So} , 120 \)
\(M_{So} (t) , 68 \)
\(M_T , 93 \)
\(M_w (t), 55 \)
\(M_y , 152 \)
\(M_{Go} , 152 \)
\(M_{\alpha} , 150 \)
\(M_{Oe} , 152 \)
\(M_{S}^w , 152, 157 \)
\(\mu , 191 \)
\(\mu , 177 \)

multiphase systems, 45, 129
multiphase multispecies transport, 151
\(\rho_o , 154 \)

\(N , 24 \)
\(n , 37 \)
\(\nabla (\mathbf{u}, t) , 10 \)
Navier equation, 180
Navier-Stokes equations, 192, 194
net densities, 53
Neumann boundary condition, 70, 98
Neumann boundary condition, 143
Neumann problem, 98, 214
Newtonian fluids: constitutive equations, 190
Newtonian viscosity, 193
Newtonian viscous fluid, 78
non-conservative processes, 118
non-conservative transport system, 67
non-diffusive transport, 66
non-slip condition, 195
non-volatile oil, 52
normal derivative, 52
normal stresses, 130
\(\Omega , 194 \)
\(\omega , 119 \)
\(\omega , 171 \)
\(\omega , 191 \)

one-phase continuous systems, 4
one-phase system, 23
orthogonal matrix, 169
other 2-D aquifer models, 108

\(P , 10 \)
\(\rho , 190 \)
\(p^{-1} (\mathbf{u}, t) , 4 \)
\(p (X, t) , 76 \)
\(p (\mathbf{x}, t) , 36 \)
\(p (X, t) , 168 \)

parabolic equations, 78, 96, 99, 211
\(\partial B (t) , 10 \)
\(\partial \Omega , 70 \)

partial differential equations, 14, 24, 25, 211
particle, 4
particle mass, 27
particle mechanics, 27
particle velocity, 6, 27, 46, 63
partition, 217
perfect gas equation, 193
permeability
absolute, 155
relative, 155
petroleum reservoirs
black oil model, 52
phase
gas, 52
oil, 52
water, 52
INDEX

ϕ, 182
$\phi(X, t)$, 6
Φ_{ow}, 156

piecewise continuous, 218
piezometric level, 92
Poisson ratio, 178
pore, 49
pore compressibility, 88
pore pressure, 86
porosity, 15, 49, 118
porous medium, 14, 49
position function, 4, 76
position vector, 4, 166, 229
positive definite, 176
positive sign, 11
$p^I (\rho_0)$, 203
pressure, 36
primary drainage curve, 137
primary imbibition curve, 138
primary petroleum recovery, 149
primary production, 151
principal direction, 176
problems with the prescribed piezometric head, 97
problems with the prescribed volumetric flow, 98
production wells, 149
proper value, 93
$\psi (z, t)$, 6
ψ^D, 24
ψ^d, 56
ψ^b, 152
ψ^{Gc}, 152
ψ^{Gp}, 152
ψ^{1v}, 152
ψ, 183
ρ_{nc}, 137
ρ_{ef}, 88
ρ_{ort}, 88
$\rho^{(2o)}$, 155
$\rho^{(2w)}$, 155

pure strain displacement field, 172
purely initial value problem for elastodynamics, 182

P waves, 182

Q, 101
q, 90
$q (z, t)$, 10
q_{oa}, 160
quantized energy, 3
quantum mechanics, 2
q, 34
Q, 160

Q waves, 182

R, 121
radioactive decay, 118
real number, 3
receding Mach lines, 204
relative permeability, 139, 155
representation of solutions for isotropic elastic solids, 182

representative elementary volume, 48
residual air saturation, 137
retardation coefficient, 121
ρ, 26
$\rho (z, t)$, 51
ρ^{1a}, 130
ρ^2, 130
ρ_{ASTC}, 54
ρ_b, 119
ρ_{GO}, 53
ρ_{Gc}, 55
ρ_{Gp}, 53
ρ_s, 119
ρ_s, 89
ρ_{tot}, 89

Richards' equation, 142

Riemann's equations, 204
rigid displacement, 168
Robin boundary conditions, 70, 97, 144, 214
role of balance conditions in modeling of continuous systems, 13

rotation matrix, 169
rotation rate, 191
R_S, 54
R_s, 155
R_{so}, 156
$r^{(1a)}$, 132

S, 101
s, 103
S_{oa}, 52

saturated, 15
saturated flow case, 133
saturation, 49, 117
saturation identity, 155

σ, 4
scalar intensive property, 6
scalar product, 230
second order systems, 229
secondary petroleum recovery, 149
self adjoint, 176
shallow-water theory, 200
shear modulus, 175, 178
shock, 10, 13, 26, 154
shock conditions, 207
shock conditions for total energy, 207
shock velocity, 56
$\Sigma(t)$, 10
g, 166
simple
 compression, 174
 extension, 172
 materials, 166
 shear, 172, 177
 tension, 174
 wave, 204

singular perturbation, 78, 99, 194
singular perturbation of partial differential equations, 78
skew symmetric matrix, 169
slip condition, 195
small perturbations in a compressible fluid:
 theory of sound, 203
soil mechanics, 86
solid compressibility, 141
solid matrix, 49, 86, 117
solubility limit, 45
solute, 47, 63
 mass, 47, 64
 concentration, 65
 mass-source, 119
 transport, 48, 63
 transport by a fluid in a porous medium, 117
 transport by a free fluid, 63
 transport in a free fluid, 47
some basic concepts of thermodynamics, 36
sound speed, 203
special forms of the equation governing flow through a porous medium, 95
specific heat at constant pressure, 37
specific storage coefficient, 90
specific volume, 56, 88, 193
specific volume of solid matrix, 89
S_B, 90
S^o, 135
S^m, 137
stable thermodynamic equilibrium, 158
standard conditions, 155
standard volume, 155
state variable, 52, 191
stationary states, 13
statistical mechanics, 3
steady state diffusive transport, 71
steady-state models for flow through porous media, 97
Stokes equations, 196
 constitutive equations, 190
 first axiom, 190
storage coefficient, 90, 101, 135
strain, 178
 analysis, 171
 rate, 191
streamline, 198
stress
 analysis, 173
 tensor, 27, 165, 166
 stress-strain relations, 165, 166
 for isotropic materials, 177
sub-bodies of Θ, 4
substantial derivative, 134
summation convention, 169, 230
systems of differential equations, 24

T, 102
\mathbf{T}, 28
\mathbf{t}, 48
$\tau_N(x, t)$, 64
τ_{max}, 123
τ_{st}, 131
T^*, 156

\begin{align*}
\text{tensor of viscous stress, 191} \\
\text{of infinitesimal rotation, 169} \\
\text{of molecular diffusion, 66} \\
\text{tertiary recovery techniques, 150} \\
\text{theoretical derivation of a 2-D model for a} \\
\text{confined aquifer, 100} \\
\text{theory of long waves, 200} \\
\text{thermal} \\
\text{ conductivity, 37, 193} \\
\text{ diffusivity, 38} \\
\text{ oil recovery, 150} \\
\text{thermodynamics, 36} \\
\Theta, 171 \\
\theta, 122 \\
\text{time-dependent porous medium problems, 99} \\
\text{time-dependent problems, 70} \\
\text{torque} \\
\text{ due to body forces, 30} \\
\text{ due to tractions acting on the body, 30} \\
\text{tortuosity, 122} \\
\text{total} \\
\text{ derivative, 76, 218} \\
\text{ energy, 32, 35} \\
\text{ mass flux, 69, 71} \\
\text{ pressure, 89, 198} \\
\text{ volume withdrawal per unit area, 101} \\
\mathbf{t}$, 77
\end{align*}

traction, 28, 30
traction conditions, 181
trajectory of a particle, 6
transmissivities, 156
transmissivity, 102
transport
 conservative system, 67
 non-conservative system, 67
 non-diffusive, 66
 of fluids in porous media, 49, 63
 of solutes by free fluids, 63
 solute, 48, 63
 processes, 65, 118
 T(x), 173
 T_0^2, 181
 \(\hat{\psi} \), 101
unified formulation of EOR models, 151
unified isotropic tension, 174
uniform pressure, 174
unit normal vector, 10, 123, 218
\(\omega^0 \), 158, 200
\(\omega^c \), 154
\(\omega^{\alpha} \), 181
V, 36
\(\gamma (x,t) \), 6
\(v \), 193
\(V_0 \), 52
\(\omega \), 27
vector extensive property, 27
vector intensive property, 6
vector of infinitesimal rotation, 171
vector-coordinates, 4
vectorial potential, 183
velocity
 of a particle, 63
 particle, 46
velocity of a particle, 6, 118
velocity of shock, 56
vertical leakage, 102
viscous fluid, 193
viscoelastic materials, 165, 167
viscosity of phase \(\alpha \), 154
viscous incompressible fluids: steady-states, 196
viscous stress, 191
volume fraction, 130
volume of pores, 14
volume rate of withdrawal from porous-medium system, 90
vorticity, 194
\(\omega \), 13
\(V (t) \), 49
\(V_p \), 52
\(V_H (t) \), 49
\(V_d \), 89
\(\omega_S \), 56
\(V_{rel} \), 89
\(V^{\alpha} \), 130
\(V_v (t) \), 14
w, 204
water drive, 149
water phase, 52
waterflooding, 149, 150
wave equation, 213
wave speed, 202
well-posed problems, 25, 74, 99, 181, 211, 213
 elastodynamics, 181
elastostatics, 181
 for diffusive transport, 69
 for flow through porous media, 96
 for steady-state models of non-diffusive transport, 80
 of non-diffusive transport, 74
 of non-diffusive transport in one spatial dimension, 74
W, 159
\(w \), 200
\(W \), 169
\(\times \), 29
\(\xi_{\alpha\beta} \), 159
Young modulus, 178