Index

• A •

abiatic factors, 115
acids, 27–28, 32–33, 61
acquired traits, 134
active sites, 53–54
active transport, 48
adaptations, 151
adenosine diphosphate (ADP), 61–62
adenosine triphosphate (ATP), 52, 61–62, 70–71
adipose tissue, 37–38
ADP (adenosine diphosphate), 61–62
age-structure diagrams, 120, 121
alleles, 136, 137
allosteric site, 56
amino acids, 32–33, 61
anabolic reactions, 61
anaphase, 85, 91, 92
animalia, 10
antibiotics, discovery of, 161–162
anticodons, 106–107
antiparallel strands, 79–80
archeans, 9
Archaeopteryx, 7
artificial selection, compared with
natural selection, 152–153
asexual reproduction, 8, 76, 96
atoms, 24–25
ATP (adenosine triphosphate), 52, 61–62, 70–71
ATP synthase, 71
autosomes, 95
autotrophs, 63–64

• B •

bacteria
about, 8
discovery of, 161
prokaryotes, 8, 40, 41–42
basal metabolic rate (BMR), 72–73
base substitutions, 109–110
base-pairing rules, 77
bases, 27–28
biochemistry, 155
biodiversity
about, 14–15
extinction of species, 17–18, 152
human threats to, 16
protecting, 18–19
valuing, 15
biogeochemical cycles
about, 129
carbon cycle, 129–130
hydrologic cycle, 129
nitrogen cycle, 131–132
phosphorous cycle, 130–131
biogeography, 157
biological evolution
about, 149
beliefs of Charles Darwin, 150–155
biochemistry, 155
comparative anatomy, 156
compared with Creationism, 159–160
evidence of, 155–159
fossil record, 158
geographic distribution of
species, 157
molecular biology, 157–158
biological evolution (continued)
 observable data, 158–159
 prior beliefs, 149–150
 radioisotope dating, 159
biologist roles and responsibilities, 5–7
biology, 5, 157–158. See also specific topics
biomes, 117
biotic factors, 115
blastula, 10
blending inheritance, 134
BMR (basal metabolic rate), 72–73
body, relationship with energy, 72–73
bonds, 26–27
budding, 96
buffers, 28

calculating BMR, 72
Calories, 72–73
carbohydrates, 29–32, 46
carbon, 25–26
carbon cycle, 129–130
carbon fixation, 67
carbon-based molecules
 about, 28–29
 carbohydrates, 29–32, 46
 lipids, 36–38
 nucleic acids, 34–36
 proteins, 32–34, 97–113
carrier proteins, 47
carrying capacity, 123
catabolic reactions, 61
catalyst, 53
cell differentiation, 112–113
cell division
 about, 80–81
 interphase, 82–84
 meiosis, 81–82, 87–92
 mitosis, 81–82, 84–86
cell membrane, 42, 44–48
cell theory, 164
cells. See also reproduction
 about, 39–40
 building through photosynthesis, 65–67
 chloroplasts, 43, 53
 cytoskeleton, 43, 48–49
 defined, 6, 39
 endoplasmic reticulum (ER), 50–51
 enzymes, 33, 53–57, 141
 eukaryotes, 9–11, 40, 42–44
 Golgi apparatus, 43, 51
 lysosomes, 51
 mitochondria, 43, 52
 nucleus, 42, 49–50
 organelles, 39, 44–53
 peroxisomes, 52
 plasma membrane, 42, 44–48
 prokaryotes, 8, 40, 41–42
 reasons for dividing of, 76
 ribosomes, 50

cellular respiration
 about, 64, 67–68
 breaking down food, 69–70
 mitochondria, 52
 transferring energy to ATP, 70–71

cellular work, 63

cellulose, 32
central dogma of molecular biology, 99
centrioles, 44
centromere, 83
chemical components, of living things, 11
chemical potential energy, 60
chemiosmotic theory of oxidative phosphorylation, 71
chemistry (organic), 29
chitin, 10
chlorophyll, 53, 66–67
chloroplasts, 43, 53
cholesterol, 37, 46
chromatin, 49
Chromosome 7, 162–163
chromosomes, 87–88, 95
cilia, 49
class, 12–13
classifying living things, 11
clean technologies, 19
cleavage furrow, 85
clumped dispersion, 119
codon CGU, 104–106
codons, 104, 106–107
coenzymes, 56
cofactors, 56
collagen, 33
combining DNA from different sources, 142–143
community (ecosystem), 117
comparative anatomy, 156
competition, between species, 118
compounds, 26–27
consumers, 63–64, 125
consuming food for matter and energy, 62–63
converting energy, 53
covalent bonds, 27
Creationism, compared with evolution, 159–160
Crick, Francis (geneticist), 140, 162
crossing-over, 91, 93
Cuvier, Georges (anatomist), 150
cycle sequencing, 146–147
cytokinesis, 85–86
cytoskeleton, 43, 48–49
deoxyribonucleic acid. See DNA (deoxyribonucleic acid)
descent with modification, 152
desert biomes, 117
development and growth, 7, 16, 122–123
diffusion, 48
directional selection, 154
disaccharides, 30
discoveries, best biological, 161–165
discovery science, 19–20
dispersion, 119–120
disruptive selection, 154
DNA (deoxyribonucleic acid). See also genetics; proteins
about, 34–36, 49
amplifying with PCR, 164–165
combining from different sources, 142–143
defined, 6
structure, 162
DNA ligase, 79
DNA polymerase, 77–80, 109
DNA replication, 77–80
DNA sequencing, 146–147
DNA technology
about, 141
combining DNA from different sources, 142–143
restriction enzymes, 141
domains, 8, 12
“double helix.” See DNA (deoxyribonucleic acid)
Dominance, Mendel’s Law of, 136
doouble-stranded, 82
Down syndrome, 95
dynamics (population), 120

• D •

Darwin, Charles (naturalist), beliefs of, 150–155, 163–164
decomposers, 126
deductive reasoning, 21
dehydration synthesis, 31
deletions, 110
demography, 120
density
energy, 37
population, 119
density-dependent factors, 122
density-independent factors, 122

death, 2
development, growth, 7, 16

dominance.

• E •

Earth, 11
ecological efficiency, 127
ecological niche, 118
ecology, 116, 118–122
ecosystems. *See also* populations about, 115–116
biomes, 117
carbon cycle, 129–130
cycling matter through, 128–132
ergy principles, 126–127
energy pyramid, 127–128
hydrologic cycle, 129
moving energy and matter within, 125–132
nitrogen cycle, 131–132
organism trophic levels, 125–126
phosphorous cycle, 130–131
species interaction, 118
ecotourism, 15
electron transport chains, 70–71
electrons, 25
elements, 25
elongation, 107–108
endoplasmic reticulum (ER), 50–51
energy. *See also* matter
about, 59–60
ATP, 52, 61–62, 70–71
cellular respiration, 52, 64, 67–71
combined with matter, 67
consuming food for, 62–63
converting, 53
finding food compared with producing food, 63–64
Krebs Cycle, 68, 70, 164
metabolism, 61
moving within ecosystems, 125–132
photosynthesis, 64–67
principles, 126–127
relationship with your body, 72–73
rules, 60
transferring, 61–62, 70–71
transforming from Sun, 66–67
energy density, 37
energy pyramid, 127–128
energy transfer, 7
engineering (genetic)
about, 140
DNA sequencing, 146–147
DNA technology, 141–143
genetically modified organisms (GMOs), 143–146
Human Genome Project (HGP), 147–148
environmental changes, 112
environmental signals, 6–7
enzymes, 33, 53–57, 141
ER (endoplasmic reticulum), 50–51
eukaryotes, 9–11, 40, 42–44
evolution (biological)
about, 149
beliefs of Charles Darwin, 150–155
biochemistry, 155
comparative anatomy, 156
cmpared with Creationism, 159–160
evidence of, 155–159
fossil record, 158
geographic distribution of species, 157
molecular biology, 157–158
observable data, 158–159
prior beliefs, 149–150
radioisotope dating, 159
extinction of species, 17–18, 152
extracellular matrix, 45
extremophiles, 9

• F •

F1 generation, 135
F2 generation, 135
family, 13. *See also* genetics
fatty acids, 61
feedback inhibition, 56–57
fertilization, 94
First Law of Thermodynamics, 60, 61, 126
fission, 96
5' cap, 103–104
flagella, 49
Fleming, Alexander (scientist), 161–162
fluid-mosaic model, 45–46
food. See also cellular respiration
breaking down with cellular respiration, 69–70
consuming for matter and energy, 62–63
finding compared with producing, 63–64
food chain, 125
forest biomes, 117
fossil record, 158
fragmentation, 96
frameshift mutations, 110
freshwater biomes, 117
fundamentalism, 149–150
fungi, 10

• G •

G₁ phase, 82–83
G₂ phase, 83–84
gametes, 81, 88
gel electrophoresis, 146–147
gene regulation, 111–113
genes
about, 35–36, 137
defined, 98, 136
discovery of genetic disease, 162–163
mapping, 147–148
reading with DNA sequencing, 146–147
 genetic cross, 138–140
 genetic disease, 162–163
 genetic engineering
about, 140
DNA sequencing, 146–147
DNA technology, 141–143
genetically modified organisms (GMOs), 143–146
Human Genome Project (HGP), 147–148

• H •

habitat, 123
haploid, 89
helicase, 79
hemoglobin, 34
heritable traits, 133–134
heterotrophs, 63–64
HGP (Human Genome Project), 147–148
homeostasis, 6
homologous chromosomes, 87–88
homologous structures, 156
Human Genome Project (HGP), 147–148
human population, 123–125
human threats to biodiversity, 16
Huntington’s disease, 111
Hutton, James (geologist), 150
hydrocarbons, 29
hydrologic cycle, 129
hydrolysis, 31
hypotheses, 19
hypothesis-based science, 20

• I •
impermeable, 47
independent assortment, 93–94
Independent Assortment, Mendel’s Law of, 136
indicator species, 18
induced mutations, 109
Inheritance, Mendel’s Law of, 136
initiation, 107–108
insertions, 111
interactions among species, 118
interphase, 80, 82–84
introduced species, 16
introns, 103–104
invasive species, 16
ionic bonds, 26
ions, 25
isotopes, 25–26, 159

• K •
karyotype, 87
keystone species, 17–18
kilocalories, 72
kinetic energy, 60
kingdom, 12
Krebs, Hans Adolf (biochemist), 164
Krebs Cycle, 68, 70, 164

• L •
lagging strand, 80
Law of Dominance (Mendel), 136
Law of Independent Assortment (Mendel), 136
Law of Segregation (Mendel), 136
Laws of Inheritance (Mendel), 134–136
leading strand, 79–80
Leeuwenhoek, Antony van, 161
ligase (DNA), 79
lipids, 36–38
liquids, 24
living things. See also biodiversity
archaeans, 9
bacteria, 8, 40–42, 161
classifying, 11
eukaryotes, 9–11, 40, 42–44
observations, 19–22
reasons for studying, 5–7
taxonomic hierarchy, 12–14
loci/locus, 137
lysosomes, 51

• M •
mapping genes, 147–148
marine biomes, 117
mass, 24
mass extinction, 17
matter. See also energy
about, 23–24
carbon cycle, 129–130
carbon cycle, 129–130
combined with energy, 67
composition, 24–26
consuming food for, 62–63
cycling through ecosystems, 128–132
hydrologic cycle, 129
moving within ecosystems, 125–132
nitrogen cycle, 133–132
phosphorous cycle, 130–131
meiosis
about, 87–89
compared with mitosis, 81–82
defined, 81
meiosis I, 89–91
meiosis II, 89–90, 92
Mendel, Gregor (geneticist), 134–136, 163
Mendel’s Law of Dominance, 136
Mendel’s Law of Independent Assortment, 136
Mendel’s Law of Segregation, 136
Mendel’s Laws of Inheritance, 134–136
messenger RNA (mRNA), 50, 99
metabolism, 61
metaphase, 85, 91, 92
missense mutations, 110
mitochondria, 43, 52
mitosis
about, 84
asexual reproduction, 76, 96
compared with meiosis, 81–82
cytokinesis, 85–86
defined, 81
phases, 84–85
mitotic spindle, 84
molecular biology, 99, 157–158
molecules
about, 26–27
carbon-based, 28–38
food, 62–63
metabolizing, 61
monosaccharides, 61
mRNA (messenger RNA), 50, 99
Mullis, Kary (chemist), 164–165
mutagens, 93, 109
mutations, 93, 109–111
mutualism, 118

• N •
native species, 16
natural selection
about, 152
compared with artificial selection, 152–153
types, 154–155
negative (–) ions, 25
neutrons, 25
nitrogen cycle, 131–132
nitrogenous base, 34
nondisjunction, 94–95
nonnative species, 16
nonsense mutations, 110
nuclear envelope, 49
nuclear membrane, 49
nucleic acids, 34–36
nucleolus, 49–50
nucleotides, 34, 99–100
nucleus, 42, 49–50

• O •
observable data, 158–159
observations, 19–22
offspring. See genetics
Okazaki fragments, 80
oligosaccharides, 30
omnivores, 126
On the Origin of Species (Darwin), 152, 163–164
order, 13
organelles
about, 44
chloroplasts, 43, 53
cytoskeleton, 43, 48–49
defined, 39
endoplasmic reticulum, 50–51
Golgi apparatus, 43, 51
lysosomes, 51
mitochondria, 43, 52
nucleus, 42, 49–50
organelles (continued)
 peroxisomes, 52
 plasma membrane, 42, 44–48
 ribosomes, 50
organic chemistry, 29
organisms
 characteristics, 6–7
 energy needs for, 63
 trophic levels, 125–126
osmosis, 48
overharvesting, as threat to
 biodiversity, 16
oxidation, 69
oxidative phosphorylation, 68

P
P1 generation, 135
palaeontology, 158
parasitism, 118
parentals, 135
passive transport, 47–48
PCR (polymerase chain reaction),
 164–165
penicillin, 161–162
peptide bond, 107–108
peptidoglycan, 8
permeability, 47
peroxisomes, 52
pH scale, 27–28
phenotype, 138
phospholipids, 37, 45–46
phosphorous cycle, 130–131
photosynthesis, 64–67
phototaxis, 7
phylogenetic trees, 11, 157–158
phylum, 12
physical structures, of living
 things, 11
planteae, 10
plasma membrane, 42, 44–48
pollution, as threat to
 biodiversity, 16
polygenic traits, 137
polymerase (DNA), 77–80, 109
polymerase chain reaction (PCR),
 164–165
polypeptide chains, 33
polysaccharides, 30, 61
population density, 119
population dynamics, 120
population ecology, 118–122. See
 also populations
population pyramids, 120, 121
populations. See also ecosystems
 about, 118–119
 ecology, 119–122
 growth of, 122–123
 human, 123–125
positive (+) ions, 25
potential energy, 60
predation, 118
pre-mRNA (primary transcript),
 103–104
primary consumers, 125
primary productivity, 124–125
primary transcript (pre-mRNA),
 103–104
primase, 79
producers, 63–64, 125
producing food, 63–64
prokaryotes, 8, 40, 41–42
promoters, 102
prophase, 84, 89–92
protecting biodiversity, 18–19
proteins. See also DNA
 (deoxyribonucleic acid)
 about, 32–34, 97–98
 carrier, 47
 DNA to RNA to, 98–108
 gene regulation, 111–113
 mutation, 93, 109–111
 RNA processing, 103–104
 transcription, 99–103
 translation, 99, 104–108
protista, 10–11
protons, 25
Punnett square, 138
pure-breeding organisms, 135
pyruvate, 68, 70
radioactive isotopes, 159
radioisotope dating, 159
random dispersion, 120
receptors, 47
recombinant DNA, 142
redundant codons, 106
release factor, 107–108
replication (DNA), 77–80
replication fork, 77
reproduction
about, 7, 75–76
asexual, 76, 96
cell division, 80–92
DNA replication, 77–80
genetic variation, 92–95
interphase, 82–84
meiosis, 81–82, 87–92
mitosis, 81–82, 84–86
RER (rough ER), 50
respiration, 68. See also cellular respiration
restriction enzymes, 141
restriction site, 141
ribonucleic acid (RNA), 36
ribosomes, 50
RNA (ribonucleic acid), 36
RNA processing, 103–104
rough ER (RER), 50

S
S phase (synthesis), 31, 83
saturated bonds, 38
Schleiden, Matthias (botanist), 164
Schwann, Theodor (zoologist), 164
scientific method, 20–22
secondary consumers, 125
Segregation, Mendel’s Law of, 136
selection pressure, 153
selectively permeable, 47
semiconservative, 77
semipermeable, 47
sequencing (DNA), 146–147

T

taxonomic hierarchy, 12–14
technology (DNA)
about, 141
combining DNA from different sources, 142–143
restriction enzymes, 141
telophase, 85, 91, 92
templates, 77

SER (smooth ER), 50
sex chromosomes, 95
sexual selection, 154
shared characteristics, 11
silent mutations, 110
spindle fibers, 83–84
sister chromatids, 83
smallpox, 162
Smith, William (surveyor), 150
smooth ER (SER), 50
solids, 24
space, 24
species
about, 13
extinction of, 17–18, 152
geographic distribution of, 157
interactions among, 118
spontaneous mutations, 93, 109
spores, 81
stabilizing selection, 154
Staphylococcus aureus, 158–159
starch, 32
steroids, 37
sticky ends, 142–143
stimuli, 7
structural proteins, 33
sugars, 29–32, 46
Sun, transforming energy from, 66–67
survivorship, 120–122
sustainability, 19
synapsis, 91
synthesis, 31, 83
system regulation, 6
10-percent rule, 127–128
termination, 102, 107–108
tertiary consumers, 125
tetrad, 91
Theory of Natural Selection, 163–164
thermodynamics, 60, 61, 126
traits (heritable), 133–134
transcription
 about, 99–101
 factors, 102, 111
 process, 102–103
transfer RNA, 106
transferring energy, 61–62, 70–71
transforming energy from Sun, 66–67
transgenic organisms, 143–146
translation
 about, 99, 104
 codon CGU, 104–106
 codons and anticodons, 106–107
 process, 107–108
transport proteins, 34
triglycerides, 37–38
trisomy, 95
trophic levels, 125
tundra biomes, 117

• U •
uniform dispersion, 119–120
uniformitarianism, 150
unsaturated bonds, 38
urease (enzyme), 55

• V •
valuing biodiversity, 15

• W •
water cycle, 129
Watson, James (geneticist), 140, 162
wildlife corridors, 19
Woese, Carl (scientist), 9

• Z •
zygote, 10