Contents

Preface to the Second Edition xiii
Preface to the First Edition xv

1 Information Transfer Technology 1
 1.1 Introduction 1
 1.2 Information and Capacity 2
 1.3 Dependent States 4
 1.4 Basic Transmitter–Receiver Configuration 6
 1.5 Active Device Technology 8
 Problems 9
 Reference 10

2 Resistors, Capacitors, and Inductors 11
 2.1 Introduction 11
 2.2 Resistors 11
 2.3 Capacitors 17
 2.4 Inductors 23
 2.5 Conclusions 34
 Problems 34
 References 36

3 Impedance Matching 39
 3.1 Introduction 39
 3.2 The Q Factor 39
 3.3 Resonance and Bandwidth 40
 3.4 Unloaded Q 42
 3.5 L Circuit Impedance Matching 43
CONTENTS

Problems 152
References 152

7 Noise in RF Amplifiers 155
 7.1 Sources of Noise 155
 7.2 Thermal Noise 156
 7.3 Shot Noise 159
 7.4 Noise Circuit Analysis 161
 7.5 Amplifier Noise Characterization 162
 7.6 Noise Measurement 164
 7.7 Noisy Two-Port Circuits 165
 7.8 Two-Port Noise Factor Derivation 166
 7.9 Fukui Noise Model for Transistors 170
 Problems 174
 References 174

8 Class A Amplifiers 177
 8.1 Introduction 177
 8.2 Definitions of Gain 177
 8.3 Transducer Power Gain of a Two-Port Network 178
 8.4 Power Gain Using S Parameters 180
 8.5 Simultaneous Match for Maximum Power Gain 183
 8.6 Stability 185
 8.7 Class A Power Amplifiers 195
 8.8 Power Combining of Power Amplifiers 197
 8.9 Properties of Cascaded Amplifiers 198
 8.10 Amplifier Design for Optimum Gain and Noise 201
 8.11 Conclusions 203
 Problems 204
 References 205

9 RF Power Amplifiers 207
 9.1 Transistor Configurations 207
 9.2 Class B Amplifier 208
 9.3 Class C Amplifier 217
 9.4 Class C Input Bias Voltage 221
 9.5 Class D Power Amplifier 223
 9.6 Class E Power Amplifier 230
 9.7 Class F Power Amplifier 240
 9.8 Feed-Forward Amplifiers 247
 9.9 Conclusions 248
 Problems 249
 References 250
10 Oscillators and Harmonic Generators

10.1 Oscillator Fundamentals 253
10.2 Feedback Theory 254
10.3 Two-Port Oscillators with External Feedback 255
10.4 Practical Oscillator Example 260
10.5 Minimum Requirements of the Reflection Coefficient 262
10.6 Common Gate (Base) Oscillators 265
10.7 Stability of an Oscillator 269
10.8 Injection-Locked Oscillator 273
10.9 Oscillator Phase Noise 275
10.10 Harmonic Generators 282

Problems 286
References 287

11 RF Mixers

11.1 Nonlinear Device Characteristics 289
11.2 Figures of Merit for Mixers 293
11.3 Single-Ended Mixers 295
11.4 Single-Balanced Mixers 296
11.5 Double-Balanced Mixers 296
11.6 Double-Balanced Transistor Mixers 304
11.7 Spurious Response 307
11.8 Single-Sideband Noise Factor and Noise Temperature 310
11.9 Special Mixer Applications 313
11.10 Conclusions 317

Problems 317
References 319

12 Phase-Lock Loops

12.1 Introduction 321
12.2 PLL Design Background 321
12.3 PLL Applications 322
12.4 PLL Basics 323
12.5 Loop Design Principles 324
12.6 Linear Analysis of the PLL 328
12.7 Locking a Phase-Lock Loop 332
12.8 Loop Types 335
12.9 Negative Feedback in a PLL 336
12.10 PLL Design Equations 337
12.11 Phase Detector Types 344
12.12 Design Examples 349
12.13 Conclusions 352

Problems 353
References 353
Appendix A Example of a Solenoid Design 355
Appendix B Analytical Spiral Inductor Model 357
Appendix C Double-Tuned Matching Circuit Example 361
Appendix D Two-Port Parameter Conversion 363
Appendix E Termination of a Transistor Port with a Load 369
Appendix F Transistor and Amplifier Formulas 373
Appendix G Transformed Frequency-Domain Measurements Using SPICE 379
Appendix H Single-Tone Intermodulation Distortion Suppression for Double-Balanced Mixers 393
Index 397