Index

American National Standards Institute (ANSI) 31
Analytical Data Evaluation (ADE) 103
ASX-500 121
automated data evaluation application 225
automated sample preparation system 205
chemical analysis 208
digitalization 207
electronic laboratory notebooks (ELN) 207
elemental analysis 222
group “analytes” 218
group “naming convention” 218
group “sample preparation” 216
high-throughput screening procedures 205
high-throughput screening processes 207
measurement precision 220
Konstanz Information Miner 207
process description 220, 222
qualitative and quantitative data evaluation 205
relevant and non-relevant data 205
software functionalities 208
software functionalities and data types 205
software modules 206
software operation 214
software structure
data acquisition and data pre-processing 211
Data Upload module 214
functionality module 213
graphical user interface (GUI) 212
software products and software modules 211
structural analysis 224
system design
ADE software 209
ICP-OES analysis 210
laboratory environments 208
mobile devices 208
sample data 210
workflow 210
user interface for measurement management 217
automated decision-making (ADM) 85
automated sample preparation platform 82
automation advantages and disadvantages of 15–16
definition 4–5
from the beginnings to the 19th century 5–12
history of 12–15
limitation of 17–18
since the 19th century 10–12
social impact of 16–17
automation concepts for life sciences classification concept for life science processes 75–78
classification of automation systems 73–75
automation concepts for life sciences (contd.)
degree of automation 83–86
robot based automation systems, see robot based automation systems 78
statistical evaluations 86–89
automation in analytical measurement applications
automation systems 54–56
pre, intra and post sensoric selectivity 51
process analytical technology 52–54
automation in bioscreening
automated laboratory positioners (ALP) 43
barcode reader 39
cell culturing processes 42
centrifugation 39
high throughput screening methods 41
identification and development of antiviral drugs 40
investigation of potatoes 42
investigation of the toxicity of compounds 41
liquid-handling systems 34–37
mixing 38
overview 28–31
plate readers 39
robots 33–34
sealing systems 38
solid phase extraction 40
standardization of sample formats 31
toxicity testing 41
automation in chemical sciences
application examples 49–50
microplate based systems 48
overview 43–45
robot based synthesis systems 48–49
vessel based systems 46–48
automation in life sciences
analytical measurement applications, see automation in analytical measurement 51
automation requirements 58–61
bioscreening, see automation in bioscreening 28
chemical sciences, see automation in chemical sciences 43
definitions and basics 26–28
liquids and reagents 58
overview 25–26
process structure 58, 59
vessels and vials in analytical processes 56–58
automation systems with central system integrator
centralized closed automation system
automation goals 98–99
background and applicative scope 93–98
control 103–104
evaluation 104–108
process description 102–103
system design 99–102
centralized open automation system
control 124–126
determination of mercury in waste wood 109–111, 114–115
determination of methacrylates in dental materials 111–114, 115–116
evaluation 126–130
process description 121–125
system design 116–121
decentralized closed automation system
automation goals 132–134
background and applicative scope 131–132
control 136
evaluation 136–143
process description 135–136
system design 134–135
decentralized open automation system
control 145–148
process 144–145
system design 144
Biomek 2000 liquid handler 122
bioscreening vs. analytical measurement liquids and reagents 58
process structure 58, 59
vessels and valves in analytical processes 56–58
biotechnological HTS 14
BioWorks Method Editor 127, 138
blended decision-making (BDM) 84
blue life sciences 3
business process management (BPM)
BPMN 2.0 process model 240
BPMS and LIMS 248–249
characteristics 239
end-to-end process automation 245–246
international standardization process 239
laboratory IT integration status 245
life science automation (LSA) 242–244
life science automation industry application 241–242
scientific workflow management 241
tools and methods 240
workflow automation 246–248

cartesian robots 34
centralized closed automation system
automation goals 98–99
background and applicative scope 93–98
Cartesian pathway control 168
control 103–104
different motion modes 168
dual arm robot 176
dual arm robot SDA10 168
evaluation 104–108
flexible robot 168
grippers, of robot 171
HPLC auto sampler 171
manual method 179
offline programming 174
online programming mode 174
process description 102–103, 174
safety 172
SAMI Workstation Ex Version 4.1 176
sample storage 171
software interface 177
system design 99–102
transport and manipulation tasks 176
centralized open automation system 76
biliary disorders 180
biliary stent 181
calibration solutions 189
characteristic fragmentation pattern 191
control 124–126
determination of mercury in waste wood 109–111, 114–115
determination of methacrylates in dental materials 111–114, 115–116
evaluation 126–130
filtration process 186
flexible robot and sample storage 184
gas chromatography (GC) 182
GC-QQQ mass spectrometer 185
manual disposable syringes and filters 184
microbiological and physico-chemical methods 181
pipetting errors 184
sonication procedure 186
time requirement for manual and automated method 191
transport tasks 183
process description 121–124
system design 116–121
central robot as system integrator 79–80
chiral amino acids 179
chirality 93
commercially available methacrylate
based dental materials 112
Concept of Evolutionary Stable Strategy
2
conductivity based measuring system
12
Contergan 94

cylindrical robot 34
d
D-amino acid oxidase (DAAO) 96
D-amino acids 94
decentralized automation system
hierarchical workflow management
system (HWMS) 193
logistical sample management 193
mobile robotics 193
process flow chart 194
sample storage 192
decentralized closed automation
system 77
automation goals 132–134
background and applicative scope
131–132
control 136
evaluation 136–143
process description 135–136
system design 134–135
decentralized open automation system
control 145–148
process 144–145
system design 144
degree of automation 83–86
dental composite materials 113
Digitus HQ Webcam USB 2.0 121
DIN 1319 86
DIN 32645 86
DIN EN ISO/IEC 17025 86
DIN IEC 60050-351 5
DIN ISO 5725 86
d-proline 94
d-serine metabolism 96
dual arm robots 34
e
electronic laboratory notebook (ELN)
207, 232
enantiomer 93
EPA mercury toxicity limit 111
f
flexible robot 80–81
$N_a^{-}(5$-fluoro-2,4-dinitrophenyl)-
D-leucinamide (D-FDLA) 97
$N_a^{-}(2,4$-dinitro-5-fluorophenyl)-
L-valinamide (L-FDVA) 97
food life sciences 4
g
Gantt chart 236
gas chromatography (GC) 182
genetic algorithm (GA) 234
German waste wood regulation 111
green life sciences 3
grey life sciences 3
h
hierarchical workflow management
system (HWMS) 145, 198, 232
human machine interaction
236–239
intelligent scheduler 234–236
high-speed robot TS60 120
high-throughput screening technologies
(HTS) 14
Hopfield neural networks (HNN) 234
horizontal articulated robot 34
Horwitz criterion 86
human machine interaction 236–239
hydroxyapatite 131
i
ICP-MS 7700x 121
industrial automation 78–79
industrial life sciences 4
industrial robots 34
integrated robotics
dual arm robot 196
mobile platform 196
process control 198
process flow 198
sample storage 196
sample treatment, liquid handling,
and mobile robotics 197
ultrasonication and solid phase extraction (SPE) 196
intelligent scheduler 234
ionization device Antistat 2000 120

k
Konstanz Information Miner 207
kyanization 109

l
laboratory automation 12–15
business process management (BPM) 239–249
laboratory execution system (LES) 231
laboratory information management system (LIMS) 231
process and workflow management systems 232–239
laboratory execution system (LES) 231, 247
laboratory information management system (LIMS) 231, 246
laboratory integration system 235
LC module 179
LC-MS user interface 179
LC-TOF mass spectrometer G1969A 102
life science automation (LSA) 242–244
life sciences
biotechnology 3
blue 3
definition 1–2
development of new drugs 2
green 3
grey 3
industrial 4
red 3
spectrum of methods 3
white 4
yellow 4
l-proline 94
l-tryptophan 94

m
manufacturing execution system (MES) 246
Marfey’s reagent 97
MassHunter Acquisition 177
MassHunter Quantification software 210
mercury cold vapor method 110
microbiosensor 96
microwave assisted acid digestion 111
microwave device Mars5 119
miniaturization 58
mobile handheld devices 237
mobile robot H20 135
mobile robots 232, 238

o
ORCA laboratory robot 82, 116, 135

p
parallel robots 34
polar robot 34
process analytical technology (PAT) 52–54
process control system (PCS) 231

r
red life sciences 3
resin-modified glass-ionomer cements (RMGIC) 114
resource allocation 238
robot based automation systems
biological screening processes 82
centralized closed system 83
centralized open system 82
central robot as system integrator 79–80
decentralized open system 82–83
decimal system structure 83
determination of cyclophosphamide 83
flexible robot 80–81
industrial automation 78–79
ORCA laboratory robot 82
robot based synthesis systems 48
Robot Chemist 13
robotic platform ARCoSyn 48
robot remote center (RRC) 136
robots in bioautomation 33–34
Index

S
- SAMI Method Editor 103, 126, 138
- SAMI Run Time module 103
- SAMI Version 3.6 103
- SAMI Workstation Ex 4.0 136
- SAMI Workstation Ex Version 4.1 176
- satellite based global positioning system (GPS) 11
- SCARA robot 34
- SCARA robot motions 120
- scientific workflow management 241
- single arm/dual arm robots 78
- Society for Laboratory Automation and Screening (SLAS) 31
- standard operating procedure (SOP) 232
- StarGazer module HSG-A-02 135
- stationary robots 34
- system integration 242

T
- thalidomid 94
- total laboratory automation (TLA) 14
- Tox21 initiative 41
- transportation system 235

U
- ultra-high throughput screening (uHTS) 30
- Universal Product Coding (UPC) 11

W
- webcam HQ DA-7181 120
- white life sciences 4
- workflow management
 - dynamic planning concept 233
 - dynamic scheduling concept 234
 - hierarchical workflow management system 233
 - human machine interaction 236–239
 - information management 232
 - intelligent scheduler 234–236
 - method controller 233
 - method information manager 232
 - transport manager and workstation manager 234
 - transportation constraints 236
 - transportation tasks 236

X
- XML module 177

Y
- yellow life sciences 4